Overall Water Splitting Performance of Nitrogen-Doped Graphene Oxide-Supported Fe-Co-Ni Single-Atom Catalysts
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of FeCoNi/CNG Catalysts
2.2. Electronic Structure Analysis of FeCoNi/CNG
2.3. Electrochemical Activity Evaluation
2.4. Catalytic Mechanism of Cat-500
3. Experimental Section
3.1. Synthesis of Nitrogen-Doped Graphene Oxide (CNG)
3.2. Synthesis of FeCoNi/CNG
3.3. Material Characterization
3.4. Working Electrode Preparation
3.5. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chu, S.; Majumdar, A. Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef]
- Shi, Y.; Li, M.; Yu, Y.; Zhang, B. Recent Advances in Nanostructured Transition Metal Phosphides: Synthesis and Energy-Related Applications. Energy Environ. Sci. 2020, 13, 4564–4582. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, M.; Gao, B.; Wang, C.; Wu, H.; Yuan, Y.; Zheng, J. Preparation of Fe, Co, Ni-Based Single Atom Catalysts and the Progress of Their Application in Electrocatalysis. Microstructures 2025, 5, 2025001. [Google Scholar] [CrossRef]
- Thalji, M.R.; Mahmoudi, F.; Bachas, L.G.; Park, C. MXene-Based Electrocatalysts for Water Splitting: Material Design, Surface Modulation, and Catalytic Performance. Int. J. Mol. Sci. 2025, 26, 8019. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Jia, W.; Cao, X.; Jiao, L. Computational Chemistry for Water-Splitting Electrocatalysis. Chem. Soc. Rev. 2024, 53, 2771–2807. [Google Scholar] [CrossRef]
- Weng, C.-C.; Ren, J.-T.; Yuan, Z.-Y. Transition Metal Phosphide-Based Materials for Efficient Electrochemical Hydrogen Evolution: A Critical Review. ChemSusChem 2020, 13, 3357–3375. [Google Scholar] [CrossRef]
- Grimaud, A.; Diaz-Morales, O.; Han, B.; Hong, W.T.; Lee, Y.-L.; Giordano, L.; Stoerzinger, K.A.; Koper, M.T.M.; Shao-Horn, Y. Activating Lattice Oxygen Redox Reactions in Metal Oxides to Catalyse Oxygen Evolution. Nat. Chem. 2017, 9, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Xiao, J.; Liu, X.; Liu, X.; He, J.; Jiang, J.; Xu, G.; Zhang, L. Engineering Ru and Ni Sites Relay Catalysis and Strong Metal-Support Interaction for Synergetic Enhanced Electrocatalytic Hydrogen Evolution Performance. Chem. Eng. J. 2025, 509, 161348. [Google Scholar] [CrossRef]
- Hao, Y.; Hung, S.-F.; Wang, L.; Deng, L.; Zeng, W.-J.; Zhang, C.; Lin, Z.-Y.; Kuo, C.-H.; Wang, Y.; Zhang, Y.; et al. Designing Neighboring-Site Activation of Single Atom via Tunnel Ions for Boosting Acidic Oxygen Evolution. Nat. Commun. 2024, 15, 8015. [Google Scholar] [CrossRef]
- Fu, Q.; Wong, L.W.; Zheng, F.; Zheng, X.; Tsang, C.S.; Lai, K.H.; Shen, W.; Ly, T.H.; Deng, Q.; Zhao, J. Unraveling and Leveraging in Situ Surface Amorphization for Enhanced Hydrogen Evolution Reaction in Alkaline Media. Nat. Commun. 2023, 14, 6462. [Google Scholar] [CrossRef]
- Xue, Y.; Huang, B.; Yi, Y.; Guo, Y.; Zuo, Z.; Li, Y.; Jia, Z.; Liu, H.; Li, Y. Anchoring Zero Valence Single Atoms of Nickel and Iron on Graphdiyne for Hydrogen Evolution. Nat. Commun. 2018, 9, 1460. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Ye, C.; Jiang, Y.; Jaroniec, M.; Zheng, Y.; Qiao, S.-Z. Metal-Metal Interactions in Correlated Single-Atom Catalysts. Sci. Adv. 2022, 8, eabo0762. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, L.; Wang, Y.; Wang, X.; Khan, J.; Zhu, Y.; Xiao, J.; Li, L.; Han, L. Boosting Oxygen Reduction with Coexistence of Single-Atomic Fe and Cu Sites Decorated Nitrogen-Doped Porous Carbon. Chem. Eng. J. 2023, 452, 138938. [Google Scholar] [CrossRef]
- Da, Y.; Tian, Z.; Jiang, R.; Liu, Y.; Lian, X.; Xi, S.; Shi, Y.; Wang, Y.; Lu, H.; Cui, B.; et al. Dual Pt-Ni Atoms Dispersed on N-Doped Carbon Nanostructure with Novel (NiPt)-N4C2 Configurations for Synergistic Electrocatalytic Hydrogen Evolution Reaction. Sci. China Mater. 2023, 66, 1389–1397. [Google Scholar] [CrossRef]
- Wan, W.; Kang, L.; Schnegg, A.; Ruediger, O.; Chen, Z.; Allen, C.S.; Liu, L.; Chabbra, S.; DeBeer, S.; Heumann, S. Carbon-Supported Single Fe/Co/Ni Atom Catalysts for Water Oxidation: Unveiling the Dynamic Active Sites. Angew. Chem. Int. Ed. 2025, 64, 25. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, K.; Wang, P.; He, Y.; Liu, Z. Pt-Fe-Co Ternary Metal Single Atom Catalyst for toward High Efficiency Alkaline Oxygen Reduction Reaction. Energies 2023, 16, 3684. [Google Scholar] [CrossRef]
- Fan, L.; Wei, X.; Li, X.; Liu, Z.; Li, M.; Liu, S.; Kang, Z.; Dai, F.; Lu, X.; Sun, D. Phosphorus-Doped Iron-Nitrogen-Carbon Catalyst with Penta-Coordinated Single Atom Sites for Efficient Oxygen Reduction. Nano Res. 2022, 16, 1810–1819. [Google Scholar] [CrossRef]
- Huang, T.; Sun, Y.; Wu, J.; Shi, Z.; Ding, Y.; Wang, M.; Su, C.; Li, Y.; Sun, J. Altering Local Chemistry of Single-Atom Coordination Boosts Bidirectional Polysulfide Conversion of Li–S Batteries. Adv. Funct. Mater. 2022, 32, 2203902. [Google Scholar] [CrossRef]
- Liu, D.; Ding, S.; Wu, C.; Gan, W.; Wang, C.; Cao, D.; Rehman, Z.; Sang, Y.; Chen, S.; Zheng, X.; et al. Synergistic Effect of an Atomically Dual-Metal Doped Catalyst for Highly Efficient Oxygen Evolution. J. Mater. Chem. A 2018, 6, 6840–6846. [Google Scholar] [CrossRef]
- Hu, H.; Choi, J.-H. Single-Atom Doped Graphene for Hydrogen Evolution Reactions. 2D Mater. 2023, 10, 035026. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Han, X.; Bai, J.; Wang, X.; Zheng, L.; Hong, C.; Li, Z.; Bai, J.; Leng, K.; et al. General Negative Pressure Annealing Approach for Creating Ultra-High-Loading Single Atom Catalyst Libraries. Nat. Commun. 2024, 15, 5675. [Google Scholar] [CrossRef]
- Shan, C.; Feng, X.; Yang, J.; Yang, X.; Guan, H.-Y.; Argueta, M.; Wu, X.-L.; Liu, D.-S.; Austin, D.J.; Nie, P.; et al. Hierarchical Porous Carbon Pellicles: Electrospinning Synthesis and Applications as Anodes for Sodium-Ion Batteries with an Outstanding Performance. Carbon 2020, 157, 308–315. [Google Scholar] [CrossRef]
- Liu, X.; Deng, Y.; Zheng, L.; Kesama, M.R.; Tang, C.; Zhu, Y. Engineering Low-Coordination Single-Atom Cobalt on Graphitic Carbon Nitride Catalyst for Hydrogen Evolution. ACS Catal. 2022, 12, 5517–5526. [Google Scholar] [CrossRef]
- Lyu, F.; Zeng, S.; Jia, Z.; Ma, F.-X.; Sun, L.; Cheng, L.; Pan, J.; Bao, Y.; Mao, Z.; Bu, Y.; et al. Two-Dimensional Mineral Hydrogel-Derived Single Atoms-Anchored Heterostructures for Ultrastable Hydrogen Evolution. Nat. Commun. 2022, 13, 6249. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Chen, S.; Jaroniec, M.; Qiao, S.Z. Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catal. 2015, 5, 5207–5234. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, N.; He, R.; Peng, L.; Cai, D.; Qiao, J. Large-Scale Defect-Engineering Tailored Tri-Doped Graphene as a Metal-Free Bifunctional Catalyst for Superior Electrocatalytic Oxygen Reaction in Rechargeable Zn-Air Battery. Appl. Catal. B Environ. 2021, 285, 119811. [Google Scholar] [CrossRef]
- Choi, C.H.; Park, S.H.; Woo, S.I. Binary and Ternary Doping of Nitrogen, Boron, and Phosphorus into Carbon for Enhancing Electrochemical Oxygen Reduction Activity. ACS Nano 2012, 6, 7084–7091. [Google Scholar] [CrossRef]
- Luo, Z.; Guo, Y.; He, C.; Guan, Y.; Zhang, L.; Li, Y.; Zhang, Q.; He, C.; Sun, X.; Ren, X. Creating High-Entropy Single Atoms on Transition Disulfides through Substrate-Induced Redox Dynamics for Efficient Electrocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2024, 63, e202405017. [Google Scholar] [CrossRef]
- Yang, X.; Song, W.; Liao, K.; Wang, X.; Wang, X.; Zhang, J.; Wang, H.; Chen, Y.; Yan, N.; Han, X.; et al. Cohesive Energy Discrepancy Drives the Fabrication of Multimetallic Atomically Dispersed Materials for Hydrogen Evolution Reaction. Nat. Commun. 2024, 15, 8216. [Google Scholar] [CrossRef]
- Tang, S.; Xie, M.; Yu, S.; Zhan, X.; Wei, R.; Wang, M.; Guan, W.; Zhang, B.; Wang, Y.; Zhou, H.; et al. General Synthesis of High-Entropy Single-Atom Nanocages for Electrosynthesis of Ammonia from Nitrate. Nat. Commun. 2024, 15, 6932. [Google Scholar] [CrossRef]
- Zeng, H.; Xing, B.; Chen, L.; Yi, G.; Huang, G.; Yuan, R.; Zhang, C.; Cao, Y.; Chen, Z. Nitrogen-Doped Porous Co3O4/Graphene Nanocomposite for Advanced Lithium-Ion Batteries. Nanomaterials 2019, 9, 1253. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Hu, Z.; Huang, L.; Wang, Z.; Lin, Z.; Shen, S.; Zhong, W.; Pan, J. Phosphorus-Modified Cobalt Single-Atom Catalysts Loaded on Crosslinked Carbon Nanosheets for Efficient Alkaline Hydrogen Evolution Reaction. Nanoscale 2023, 15, 3550–3559. [Google Scholar] [CrossRef]
- Xie, X.; Peng, H.; Ma, G.; Lei, Z.; Xu, Y. Recent Progress in Heteroatom Doping to Modulate the Coordination Environment of M–N–C Catalysts for the Oxygen Reduction Reaction. Mater. Chem. Front. 2023, 7, 2595–2619. [Google Scholar] [CrossRef]
- Sun, M.; Yun, S.; Dang, J.; Zhang, Y.; Liu, Z.; Qiao, D. 1D/3D Rambutan-like Mott–Schottky Porous Carbon Polyhedrons for Efficient Tri-Iodide Reduction and Hydrogen Evolution Reaction. Chem. Eng. J. 2023, 458, 141301. [Google Scholar] [CrossRef]
- Li, H.; Chen, S.; Jia, X.; Xu, B.; Lin, H.; Yang, H.; Song, L.; Wang, X. Amorphous Nickel-Cobalt Complexes Hybridized with 1T-Phase Molybdenum Disulfide via Hydrazine-Induced Phase Transformation for Water Splitting. Nat. Commun. 2017, 8, 15377. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, J.; Yang, T.; Wang, R.; Shen, R.; Peng, Z.; Liu, Y.; Wu, X.; Jiang, J.; Li, B. Unveiling Complexities: Reviews on Insights into the Mechanism of Oxygen Evolution Reaction. Chin. J. Catal. 2025, 72, 48–83. [Google Scholar] [CrossRef]
- Dai, Q.; Li, X.; Li, J.; Zhu, Q.; Yu, G.; Wang, Y.; Xing, L.; Wang, J.; Lu, H.; Wang, J.; et al. O-Bridged Co-Cu Dual-Atom Catalyst Synergistically Triggers Interfacial Proton-Coupled Electron Transfer: A New Approach to Sustainable Decontamination. Adv. Funct. Mater. 2025, 35, 2423509. [Google Scholar] [CrossRef]
- Hao, S.; Chen, L.; Yu, C.; Yang, B.; Li, Z.; Hou, Y.; Lei, L.; Zhang, X. NiCoMo Hydroxide Nanosheet Arrays Synthesized via Chloride Corrosion for Overall Water Splitting. ACS Energy Lett. 2019, 4, 952–959. [Google Scholar] [CrossRef]
- Sun, H.; Chen, L.; Lian, Y.; Yang, W.; Lin, L.; Chen, Y.; Xu, J.; Wang, D.; Yang, X.; Rümmerli, M.H.; et al. Topotactically Transformed Polygonal Mesopores on Ternary Layered Double Hydroxides Exposing Under-Coordinated Metal Centers for Accelerated Water Dissociation. Adv. Mater. 2020, 32, 2006784. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, J.; Xi, L.; Yu, Y.; Chen, N.; Sun, S.; Wang, W.; Lange, K.M.; Zhang, B. Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction. J. Am. Chem. Soc. 2018, 140, 3876–3879. [Google Scholar] [CrossRef]
- Louie, M.W.; Bell, A.T. An Investigation of Thin-Film Ni–Fe Oxide Catalysts for the Electrochemical Evolution of Oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Zhao, X.; Wang, Y.; Li, Q.; Wang, Q.; Tang, Y.; Lei, Y. Trimetallic Oxyhydroxides as Active Sites for Large-Current-Density Alkaline Oxygen Evolution and Overall Water Splitting. J. Mater. Sci. Technol. 2022, 110, 128–135. [Google Scholar] [CrossRef]
- Huo, M.; Li, Y.; Li, Q.; Zhang, X.; Sun, X.; Wang, H.; Xing, Z.; Chang, J. Promoting Mechanism of the Ru-Integration Effect in RuCo Bimetallic Nanoparticles for Enhancing Water Splitting Performance. Nano Res. 2025, 18, 94907243. [Google Scholar] [CrossRef]
- Li, T.; Ren, S.; Zhang, C.; Qiao, L.; Wu, J.; He, P.; Lin, J.; Liu, Y.; Fu, Z.; Zhu, Q.; et al. Cobalt Single Atom Anchored on N-Doped Carbon Nanoboxes as Typical Single-Atom Catalysts (SACs) for Boosting the Overall Water Splitting. Chem. Eng. J. 2023, 458, 141435. [Google Scholar] [CrossRef]
- Chen, G.; An, Y.; Liu, S.; Sun, F.; Qi, H.; Wu, H.; He, Y.; Liu, P.; Shi, R.; Zhang, J.; et al. Highly Accessible and Dense Surface Single Metal FeN4 Active Sites for Promoting the Oxygen Reduction Reaction. Energy Environ. Sci. 2022, 15, 2619–2628. [Google Scholar] [CrossRef]
- Hu, B.; Li, Z.; Wang, B.; Chen, L.; Wang, X.; Hu, X.; Bai, Z.; Li, Y.; Chen, G.; Luo, X.; et al. Construction of Co-In Dual Single-Atom Catalysts for Photocatalytic CO2 Reduction into CH4. Appl. Catal. B Environ. Energy 2025, 371, 125196. [Google Scholar] [CrossRef]
- Bulushev, D.A.; Nishchakova, A.D.; Trubina, S.V.; Stonkus, O.A.; Asanov, I.P.; Okotrub, A.V.; Bulusheva, L.G. Ni-N4 Sites in a Single-Atom Ni Catalyst on N-Doped Carbon for Hydrogen Production from Formic Acid. J. Catal. 2021, 402, 264–274. [Google Scholar] [CrossRef]
- Wu, K.-H.; Liu, Y.; Tan, X.; Liu, Y.; Lin, Y.; Huang, X.; Ding, Y.; Su, B.-J.; Zhang, B.; Chen, J.-M.; et al. Regulating Electron Transfer over Asymmetric Low-Spin Co(II) for Highly Selective Electrocatalysis. Chem. Catal. 2022, 2, 372–385. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.; Yu, H.; Yi, K.; Zhang, W.; Yuan, X.; Huang, J.; Deng, Y.; Zeng, G. Single-Atom Catalysts for Hydrogen Generation: Rational Design, Recent Advances, and Perspectives. Adv. Energy Mater. 2022, 12, 27. [Google Scholar] [CrossRef]
- Hao, J.; Zhuang, Z.; Cao, K.; Gao, G.; Wang, C.; Lai, F.; Lu, S.; Ma, P.; Dong, W.; Liu, T.; et al. Unraveling the Electronegativity-Dominated Intermediate Adsorption on High-Entropy Alloy Electrocatalysts. Nat. Commun. 2022, 13, 2662. [Google Scholar] [CrossRef]
- Fu, W.; Wan, J.; Zhang, H.; Li, J.; Chen, W.; Li, Y.; Guo, Z.; Wang, Y. Photoinduced Loading of Electron-Rich Cu Single Atoms by Moderate Coordination for Hydrogen Evolution. Nat. Commun. 2022, 13, 5496. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; van Dijk, B.; Wu, L.; Maheu, C.; Hofmann, J.P.; Tudor, V.; Koper, M.T.M.; Hetterscheid, D.G.H.; Schneider, G.F. Predoped Oxygenated Defects Activate Nitrogen-Doped Graphene for the Oxygen Reduction Reaction. ACS Catal. 2022, 12, 173–182. [Google Scholar] [CrossRef]
- Xiong, W.; Li, H.; You, H.; Cao, M.; Cao, R. Encapsulating Metal Organic Framework into Hollow Mesoporous Carbon Sphere as Efficient Oxygen Bifunctional Electrocatalyst. Natl. Sci. Rev. 2020, 7, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Fan, J.; Fan, Y.; Feng, C.; Jin, H.; Cai, Y.; Liu, M.-C. Cation Substituted Ni3S2 Nanosheets Wrapped Zn0.76Co0.24S Nanowire Arrays Prepared with in-Situ Oxidative Etching Strategy for High Performance Solid-State Asymmetric Supercapacitors. J. Energy Storage 2022, 46, 103870. [Google Scholar] [CrossRef]













| Catalyst | Fe (wt%) | Co (wt%) | Ni (wt%) | Content (wt%) |
|---|---|---|---|---|
| Cat-400 | 1.57 | 1.50 | 1.49 | 4.56 |
| Cat-500 | 2.14 | 2.34 | 2.30 | 6.78 |
| Cat-600 | 2.20 | 2.36 | 2.04 | 6.6 |
| Catalysts | C=N (%) | C-N (%) | C-C (%) |
|---|---|---|---|
| Cat-400 | 49.34 | 26.42 | 24.24 |
| Cat-500 | 51.25 | 26.24 | 22.51 |
| Cat-600 | 41.20 | 24.89 | 33.91 |
| Catalysts | Pyridinic N (%) | Pyrrolic N (%) | Graphitic N (%) | Oxide N (%) |
|---|---|---|---|---|
| Cat-400 | 67.15 | 21.59 | 6.44 | 4.82 |
| Cat-500 | 75.90 | 11.36 | 6.93 | 5.81 |
| Cat-600 | 68.09 | 18.82 | 7.20 | 5.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Zhu, C.; Zhang, Y.; Gu, M. Overall Water Splitting Performance of Nitrogen-Doped Graphene Oxide-Supported Fe-Co-Ni Single-Atom Catalysts. Catalysts 2025, 15, 1108. https://doi.org/10.3390/catal15121108
Yang H, Zhu C, Zhang Y, Gu M. Overall Water Splitting Performance of Nitrogen-Doped Graphene Oxide-Supported Fe-Co-Ni Single-Atom Catalysts. Catalysts. 2025; 15(12):1108. https://doi.org/10.3390/catal15121108
Chicago/Turabian StyleYang, Heng, Chuang Zhu, Yongwei Zhang, and Manting Gu. 2025. "Overall Water Splitting Performance of Nitrogen-Doped Graphene Oxide-Supported Fe-Co-Ni Single-Atom Catalysts" Catalysts 15, no. 12: 1108. https://doi.org/10.3390/catal15121108
APA StyleYang, H., Zhu, C., Zhang, Y., & Gu, M. (2025). Overall Water Splitting Performance of Nitrogen-Doped Graphene Oxide-Supported Fe-Co-Ni Single-Atom Catalysts. Catalysts, 15(12), 1108. https://doi.org/10.3390/catal15121108
