Sustainable Synthesis of Phytoremediated Eichhornia Crassipes-Derived Carbon Quantum Dot Supported on Zinc Oxide (CQD-ZnO): Characterisation and Sonocatalytic Activity
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterisation of Biosynthesised ZnO
2.1.1. XRD
2.1.2. FTIR
2.1.3. SEM
2.2. Characterisation Carbon Quantum Dot-Zinc Oxide Particles
2.2.1. SEM
2.2.2. BET
2.2.3. UV-Vis DRS
2.2.4. Surface Morphology
2.3. Evaluation of Catalytic Performance of CQD-ZnO Composites
3. Experimental Section
3.1. Chemicals and Reagents
3.2. Extraction of Zn from Post-Phytoremediation Plant and Plant Extract Preparation
3.3. Biosynthesis of ZnO Nanoparticles
3.4. Synthesis of Carbon Quantum Dot-Zinc Oxide Composites
3.5. Characterisation Studies
3.6. Sonocatalytic Activity of Carbon Quantum Dot-Zinc Oxide Composites Using Various Volumes of CQD Solutions for Malachite Green Degradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bayuo, J.; Rwiza, M.J.; Choi, J.W.; Njau, K.N.; Mtei, K.M. Recent and Sustainable Advances in Phytoremediation of Heavy Metals from Wastewater Using Aquatic Plant Species: Green Approach. J. Environ. Manag. 2024, 370, 122523. [Google Scholar] [CrossRef]
- Sharma, S.; Dadhwal, R.; Banerjee, R. Nanoparticle Assisted Phytoremediation: An Eco-Friendly Approach for Removal of Heavy Metals from the Environment. J. Environ. Sci. 2025, 159, 705–720. [Google Scholar] [CrossRef] [PubMed]
- Durairaj, S. Sorption Capacity of Eichhornia crassipes (Mart.) Solms for Zinc Removal from Electroplating Industry Wastewater. Environ. Sci. Pollut. Res. 2024, 31, 30849–30866. [Google Scholar] [CrossRef] [PubMed]
- Ranauda, M.A.; Prigioniero, A.; Ortega, M.L.; Gizzi, G.; Fosso, E.; Maisto, M.; Zuzolo, D.; Tartaglia, M.; Guarino, C. Poaceae in Phytoremediation: A Systematic Review of Current Knowledge, Research Trends and Insights into Useful Plant Traits. J. Hazard. Mater. 2025, 496, 139225. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Akter, R.; Rahman, M.M.; Kurasaki, M. Phytoremediation: Background, Principle, and Application, Plant Species Used for Phytoremediation. Handb. Environ. Chem. 2022, 115, 199–224. [Google Scholar] [CrossRef]
- Li, X.; Lin, S.; Ouvrard, S.; Sirguey, C.; Qiu, R.; Wu, B. Environmental Remediation Potential of a Pioneer Plant (Miscanthus sp.) from Abandoned Mine into Biochar: Heavy Metal Stabilization and Environmental Application. J. Environ. Manag. 2024, 366, 121751. [Google Scholar] [CrossRef]
- Shen, X.; Dai, M.; Yang, J.; Sun, L.; Tan, X.; Peng, C.; Ali, I.; Naz, I. A Critical Review on the Phytoremediation of Heavy Metals from Environment: Performance and Challenges. Chemosphere 2022, 291, 132979. [Google Scholar] [CrossRef]
- Zango, Z.U.; Ibnaouf, K.H.; Garba, A.; Aldaghri, O.; Wadi, I.A.; Hosseini-Bandegharaei, A.; Baigenzhenov, O. Advances in Green Synthesis, Modification Strategies, and Photocatalytic Application of Metal Oxide Nanoparticles for Organic Pollutants Degradation: A Comprehensive and in-Depth Review. J. Mol. Liq. 2025, 428, 127497. [Google Scholar] [CrossRef]
- de Jesus, R.A.; de Assis, G.C.; de Oliveira, R.J.; Costa, J.A.S.; da Silva, C.M.P.; Iqbal, H.M.N.; Ferreira, L.F.R. Metal/Metal Oxide Nanoparticles: A Revolution in the Biosynthesis and Medical Applications. Nano-Struct. Nano-Objects 2024, 37, 101071. [Google Scholar] [CrossRef]
- Balaji, S.; Pandian, M.S.; Ganesamoorthy, R.; Karchiyappan, T. Green Synthesis of Metal Oxide Nanoparticles Using Plant Extracts: A Sustainable Approach to Combat Antimicrobial Resistance. Environ. Nanotechnol. Monit. Manag. 2025, 23, 101066. [Google Scholar] [CrossRef]
- Ye, F.; Liu, Y.; Lv, Q.; Gao, B.; Xia, J.; Li, X.; Dou, M.; Zhao, K.; Ahmad, M.; Xiao, Z.; et al. Unveiling the Mechanism of Efficient Detoxification by Pd Species in Chlorinated Pollutant Degradation. Chin. Chem. Lett. 2025, 111136. [Google Scholar] [CrossRef]
- Nugroho, D.; Wannakan, K.; Nanan, S.; Benchawattananon, R. The Synthesis of Carbon Dots//Zincoxide (CDs/ZnO-H400) by Using Hydrothermal Methods for Degradation of Ofloxacin Antibiotics and Reactive Red Azo Dye (RR141). Sci. Rep. 2024, 14, 2455. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.J.; Lu, Y.N.; Tao, F.F.; Liang, P.F.; Zhang, P.A. ZnO Nanoparticles Modified by Carbon Quantum Dots for the Photocatalytic Removal of Synthetic Pigment Pollutants. ACS Omega 2023, 8, 7845–7857. [Google Scholar] [CrossRef] [PubMed]
- Coccia, F.; Mascitti, A.; Rastelli, G.; d’Alessandro, N.; Tonucci, L. Sustainable Photocatalytic Reduction of Maleic Acid: Enhancing CuxO/ZnO Stability with Polydopamine. Appl. Sci. 2025, 15, 1631. [Google Scholar] [CrossRef]
- Aina, A.R.N.; Patel, H.; Aich, S.; Roy, B.; Samanta, N.S.; Pal, B. Recent Advances in ZnO Based Photocatalysts for Industrial Dye Degradation. Discov. Appl. Sci. 2025, 7, 977. [Google Scholar] [CrossRef]
- Shalahuddin Al Ja’farawy, M.; Kusumandari; Purwanto, A.; Widiyandari, H. Carbon Quantum Dots Supported Zinc Oxide (ZnO/CQDs) Efficient Photocatalyst for Organic Pollutant Degradation—A Systematic Review. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100681. [Google Scholar] [CrossRef]
- Meenakshi, G.; Sivasamy, A. Enhanced Photocatalytic Activities of CeO2@ZnO Core-Shell Nanostar Particles through Delayed Electron Hole Recombination Process. Colloids Surf. A Physicochem. Eng. Asp. 2022, 645, 128920. [Google Scholar] [CrossRef]
- Al-Mamun, M.R.; Iqbal Rokon, M.Z.; Rahim, M.A.; Hossain, M.I.; Islam, M.S.; Ali, M.R.; Bacchu, M.S.; Waizumi, H.; Komeda, T.; Hossain Khan, M.Z. Enhanced Photocatalytic Activity of Cu and Ni-Doped ZnO Nanostructures: A Comparative Study of Methyl Orange Dye Degradation in Aqueous Solution. Heliyon 2023, 9, e16506. [Google Scholar] [CrossRef]
- Kamaruzaman, N.A.N.; Fadzil, N.I.; Alli, Y.A.; Tan, T.; Abdullah, J.; Rashid, S.A. Optimized Synthesis and Characterization of Red-Shifted Nitrogen-Doped Carbon Quantum Dots for Highly Sensitive Detection of Fe3+ Ions in Aqueous Media. Sens. Actuators A Phys. 2025, 394, 116895. [Google Scholar] [CrossRef]
- Krishna Saraswat, S.; Ahmed Mustafa, M.; Kamil Ghadir, G.; Kaur, M.; Guamán Lozada, D.F.; Hasen shuhata alubiady, M.; Muzahem Al-Ani, A.; Alshahrani, M.Y.; Kadhem Abid, M.; Salih Jumaa, S.; et al. Carbon Quantum Dots: A Comprehensive Review of Green Synthesis, Characterization and Investigation Their Applications in Bioimaging. Inorg. Chem. Commun. 2024, 162, 112279. [Google Scholar] [CrossRef]
- Roostaee, M.; Ranjbar-Karimi, R. Emerging Trends in Carbon Quantum Dots: Synthesis, Characterization, and Environmental Photodegradation Applications. Mater. Sci. Semicond. Process 2025, 188, 109212. [Google Scholar] [CrossRef]
- Bazazi, S.; Jodeyri, S.; Hosseini, S.P.; Arsalani, N.; Rashidzadeh, B.; Fathalipour, S.; Seidi, F.; Hashemi, E. Ball Mill-Hydrothermal Method for One-Step Synthesis of Zinc Oxide/Carbon Quantum Dot (ZnO-CQD) Nanocomposites as Photocatalyst for Degradation of Organic Pollutants. J. Photochem. Photobiol. A Chem. 2023, 445, 115096. [Google Scholar] [CrossRef]
- Bopape, D.A.; Motaung, D.E.; Hintsho-Mbita, N.C. Green Synthesis of ZnO: Effect of Plant Concentration on the Morphology, Optical Properties and Photodegradation of Dyes and Antibiotics in Wastewater. Optik 2022, 251, 168459. [Google Scholar] [CrossRef]
- Kabekkodu, S.N.; Dosen, A.; Blanton, T.N. PDF-5+: A Comprehensive Powder Diffraction FileTM for Materials Characterization. Powder Diffr. 2024, 39, 47–59. [Google Scholar] [CrossRef]
- Menon, P.S.; Anjana, M.P.; Jose, A.K.; Kunjumon, J.; PA, A.; Chandran, S.; George, M.; Vinitha, G.; Sajan, D. The Role of Defects on Linear and Nonlinear Optical Properties of Pristine and Nickel Doped Zinc Oxide Nanoparticles. Surf. Interfaces 2022, 34, 102393. [Google Scholar] [CrossRef]
- Vera, J.; Herrera, W.; Hermosilla, E.; Díaz, M.; Parada, J.; Seabra, A.B.; Tortella, G.; Pesenti, H.; Ciudad, G.; Rubilar, O. Antioxidant Activity as an Indicator of the Efficiency of Plant Extract-Mediated Synthesis of Zinc Oxide Nanoparticles. Antioxidants 2023, 12, 784. [Google Scholar] [CrossRef]
- Leprince-Wang, Y.; Jing, G.; El Zein, B.; Jaithon, T.; Ruangtong, J.; T-Thienprasert, J.; T-Thienprasert, N.P. Effects of Waste-Derived ZnO Nanoparticles against Growth of Plant Pathogenic Bacteria and Epidermoid Carcinoma Cells. Crystals 2022, 12, 779. [Google Scholar] [CrossRef]
- Neamah, S.A.; Albukhaty, S.; Falih, I.Q.; Dewir, Y.H.; Mahood, H.B. Biosynthesis of Zinc Oxide Nanoparticles Using Capparis Spinosa L. Fruit Extract: Characterization, Biocompatibility, and Antioxidant Activity. Appl. Sci. 2023, 13, 6604. [Google Scholar] [CrossRef]
- Habtoor, S.S.; Basri, H.B.; Zaini, M.; Rahmawati, A.; Shah, T. Ex Situ Synthesis and Characterization of Chitosan-ZnO Nanocomposites Using ZnO Nanoparticles Prepared by the Precipitation Method. AIMS Mater. Sci. 2025, 12, 686–702. [Google Scholar] [CrossRef]
- Albarakaty, F.M.; Alzaban, M.I.; Alharbi, N.K.; Bagrwan, F.S.; Abd El-Aziz, A.R.M.; Mahmoud, M.A. Zinc Oxide Nanoparticles, Biosynthesis, Characterization and Their Potent Photocatalytic Degradation, and Antioxidant Activities. J. King Saud. Univ. Sci. 2023, 35, 102434. [Google Scholar] [CrossRef]
- Pasieczna-Patkowska, S.; Cichy, M.; Flieger, J. Application of Fourier Transform Infrared (FTIR) Spectroscopy in Characterization of Green Synthesized Nanoparticles. Molecules 2025, 30, 684. [Google Scholar] [CrossRef]
- Wijesinghe, U.; Thiripuranathar, G.; Menaa, F.; Iqbal, H.; Razzaq, A.; Almukhlifi, H. Green Synthesis, Structural Characterization and Photocatalytic Applications of ZnO Nanoconjugates Using Heliotropium Indicum. Catalysts 2021, 11, 831. [Google Scholar] [CrossRef]
- Kalaivani, M.; Ravi, S. Green Synthesis of ZnO NPs and CdO-ZnO Nanocomposites Using Aqueous Extract of Water Hyacinth (Eichhornia crassipes) Characterization, Structural and Nano-Fertilizer Using Application. Indian J. Sci. Technol. 2023, 16, 1918–1926. [Google Scholar] [CrossRef]
- Abdelbaky, A.S.; Abd El-Mageed, T.A.; Babalghith, A.O.; Selim, S.; Mohamed, A.M.H.A. Green Synthesis and Characterization of ZnO Nanoparticles Using Pelargonium odoratissimum (L.) Aqueous Leaf Extract and Their Antioxidant, Antibacterial and Anti-Inflammatory Activities. Antioxidants 2022, 11, 1444. [Google Scholar] [CrossRef] [PubMed]
- Ying, S.; Guan, Z.; Ofoegbu, P.C.; Clubb, P.; Rico, C.; He, F.; Hong, J. Green Synthesis of Nanoparticles: Current Developments and Limitations. Environ. Technol. Innov. 2022, 26, 102336. [Google Scholar] [CrossRef]
- Parveen, S.; Riyazur Rahman, F.; Thulasi Krishnan, S.; Kalaiarasi, G.; Dinesh, A.; Srimathi Priya, L.; Gnanasekaran, L.; Santhamoorthy, M.; Ayyar, M.; Santhoshkumar, S. Green Synthesis of Metal Oxide Nanoparticles via Plant Extracts for Biological Applications: A Review. Trends Sci. 2025, 22, 9592. [Google Scholar] [CrossRef]
- Haji, B.S.; Barzinjy, A.A.; Abbas, A.O.; Kaygili, O.; Mousa, M.S. Green Synthesis of ZnO Nanoparticles Using Citrullus lanatus Fruit Extract and Their Potential for Microwave Absorption. Nano-Struct. Nano-Objects 2025, 43, 101502. [Google Scholar] [CrossRef]
- Rana, G.; Dhiman, V.K.; Ali, S.K.; Chauhan, A.; Jabir, M.S.; Ghotekar, S. Emerging Developments in Plant-Based Metal Nanomaterials for Diverse Versatile Applications—A Review. Results Chem. 2025, 15, 102231. [Google Scholar] [CrossRef]
- Das, A.; Mathan Kumar, P.; Bhagavathiachari, M.; Nair, R.G. Shape Selective Flower-like ZnO Nanostructures Prepared via Structure-Directing Reagent Free Methods for Efficient Photocatalytic Performance. Mater. Sci. Eng. B 2021, 269, 115149. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, Q.; Cao, J.; Qian, C.; Ye, J.; Xu, S.; Zhang, Y.; Li, Y. Facile and Green Synthesis of Highly Fluorescent Carbon Quantum Dots from Water Hyacinth for the Detection of Ferric Iron and Cellular Imaging. Nanomaterials 2022, 12, 1528. [Google Scholar] [CrossRef]
- Ejsmont, A.; Goscianska, J. Hydrothermal Synthesis of ZnO Superstructures with Controlled Morphology via Temperature and PH Optimization. Materials 2023, 16, 1641. [Google Scholar] [CrossRef]
- Na, G.; Kang, J.W. Green Synthesis of ZnO/CQD Nanocomposite Using Chestnut Shell and Evaluating Its Photocatalytic Antimicrobial Activity under Visible Light. Food Res. Int. 2025, 205, 115948. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, X.; Cui, L.; Wang, P.; Zhang, Z.; Chen, L.; Wang, Z. Microwave-Assisted Synthesis of CQDs/ZnO Hollow Microspheres for Complete NOx Oxidation under Visible Light. J. Environ. Sci. 2026, 159, 1–9. [Google Scholar] [CrossRef]
- Siddique, M.; Fayaz, N.; Saeed, M. Synthesis, Characterization, Photocatalytic Activity and Gas Sensing Properties of Zinc Doped Manganese Oxide Nanoparticles. Phys. B Condens. Matter 2021, 602, 412504. [Google Scholar] [CrossRef]
- Mohamed Isa, E.D.; Shameli, K.; Ch’ng, H.J.; Che Jusoh, N.W.; Hazan, R. Photocatalytic Degradation of Selected Pharmaceuticals Using Green Fabricated Zinc Oxide Nanoparticles. Adv. Powder Technol. 2021, 32, 2398–2409. [Google Scholar] [CrossRef]
- Thyda, L.; Joseph, J.K.; Naresh, K.; Dasi, G.; Suneetha, S.; Thangavel, R.; Jayalakshmi, V.; Amaladass, P.; Thangaraju, K. Green Synthesis of Carbon Quantum Dots Derived from Mango-Leaves (M−CQDs): M−CQDs/ZnO Nanorods Heterostructure Thin Films for Efficient Self-Powered UV Photodetector Applications. Appl. Surf. Sci. 2025, 685, 162032. [Google Scholar] [CrossRef]
- Halder, A.; Mohan, G.R.; Matheshwaran, S.; Jha, S.K. Green Synthesis of Neem (Azadirachta indica) Functionalized Zinc Oxide with Enhanced Antimicrobial Properties. Next Mater. 2025, 8, 100725. [Google Scholar] [CrossRef]
- Chuaicham, C.; Sekar, K.; Balakumar, V.; Uchida, J.; Katsurao, T.; Sakabe, H.; Ohtani, B.; Sasaki, K. Efficient Photocatalytic Degradation of Emerging Ciprofloxacin under Visible Light Irradiation Using BiOBr/Carbon Quantum Dot/Saponite Composite. Environ. Res. 2022, 212, 113635. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.P.H.; Pham, M.T.; Wang, Y.F.; Chang, T.C.; You, S.J. Tuning Visible Light-Driven Photocatalytic NO Removal: Insights from Glucose-Derived CQDs/ZnO Nanorods Composite. J. Environ. Chem. Eng. 2023, 11, 111561. [Google Scholar] [CrossRef]
- Toma, E.E.; Stoian, G.; Cojocaru, B.; Parvulescu, V.I.; Coman, S.M. ZnO/CQDs Nanocomposites for Visible Light Photodegradation of Organic Pollutants. Catalysts 2022, 12, 952. [Google Scholar] [CrossRef]
- Mohamed, W.A.A.; Abd El-Gawad, H.H.; Mekkey, S.D.; Galal, H.R.; Labib, A.A. Zinc Oxide Quantum Dots: Confinement Size, Photophysical and Tunning Optical Properties Effect on Photodecontamination of Industrial Organic Pollutants. Opt. Mater. 2021, 118, 111242. [Google Scholar] [CrossRef]
- Widiyandari, H.; Prilita, O.; Al Ja’farawy, M.S.; Nurosyid, F.; Arutanti, O.; Astuti, Y.; Mufti, N. Nitrogen-Doped Carbon Quantum Dots Supported Zinc Oxide (ZnO/N-CQD) Nanoflower Photocatalyst for Methylene Blue Photodegradation. Results Eng. 2023, 17, 100814. [Google Scholar] [CrossRef]
- Wang, G.; Cheng, H. Application of Photocatalysis and Sonocatalysis for Treatment of Organic Dye Wastewater and the Synergistic Effect of Ultrasound and Light. Molecules 2023, 28, 3706. [Google Scholar] [CrossRef]
- Rodríguez-Flores, T.; Hernández-Pérez, I.; de la Huerta-Hernández, G.E.; Suárez-Parra, R.; Haro-Pérez, C. Sonocatalytic Degradation of RB-5 Dye Using ZnO Nanoparticles Doped with Transition Metals. Environ. Sci. Pollut. Res. 2025, 32, 783–797. [Google Scholar] [CrossRef]
- Liu, P.; Wu, Z.; Abramova, A.V.; Cravotto, G. Sonochemical Processes for the Degradation of Antibiotics in Aqueous Solutions: A Review. Ultrason. Sonochem. 2021, 74, 105566. [Google Scholar] [CrossRef]
- Barbaroux, R.; Meunier, N.; Mercier, G.; Taillard, V.; Morel, J.L.; Simonnot, M.O.; Blais, J.F. Chemical Leaching of Nickel from the Seeds of the Metal Hyperaccumulator Plant Alyssum Murale. Hydrometallurgy 2009, 100, 10–14. [Google Scholar] [CrossRef]
- Tan, H.W.; Pang, Y.L.; Lim, S.; Chong, W.C.; Lai, C.W.; Abdullah, A.Z. Exploring the Potential of Utilizing Aquatic Macrophytes for Enhanced Phytoremediation of Zinc in Artificial Wastewater: Characteristics and Parameter Studies. Sustainability 2023, 15, 15170. [Google Scholar] [CrossRef]
- Hassan, H.S.; Elkady, M.F.; El-Sayed, E.M.; Mahmoud, I.M. Synthesis and Characterization of Zinc Oxide Nanoparticles Using Green and Chemical Synthesis Techniques for Phenol Decontamination. Int. J. Nanoelectron. Mater. 2018, 11, 179–194. [Google Scholar]
- Hak, C.H.; Leong, K.H.; Chin, Y.H.; Saravanan, P.; Tan, S.T.; Chong, W.C.; Sim, L.C. Water Hyacinth Derived Carbon Quantum Dots and G-C3N4 Composites for Sunlight Driven Photodegradation of 2,4-Dichlorophenol. SN Appl. Sci. 2020, 2, 1030. [Google Scholar] [CrossRef]





| Sample | Surface Area (m2/g) | Pore Volume (cm3/g) |
|---|---|---|
| 2 mL CQD-ZnO | 0.5265 | 0.00761 |
| 6 mL CQD-ZnO | 1.8122 | 0.00779 |
| 10 mL CQD-ZnO | 2.4263 | 0.008411 |
| 14 mL CQD-ZnO | 2.8354 | 0.010708 |
| 18 mL CQD-ZnO | 2.5815 | 0.009721 |
| Bio ZnO | 0.3596 | 0.006798 |
| Solvo ZnO | 0.2868 | 0.006313 |
| Catalyst | Method | Pollutant | Source | Time (min) | Removal Efficiency (%) | Reference |
|---|---|---|---|---|---|---|
| CQD-ZnO | Hydrothermal | 30 ppm Methylene blue | UV light Visible light | 30 180 | 99.3 97.6 | [50] |
| CQD-ZnO | Ball mill-hydrothermal | 20 ppm Rhodamine B | UV light | 120 | 88 | [22] |
| CQD-ZnO | Modified wet chemical | M Coomassie Brilliant Blue R | Xenon | 120 | 99 | [51] |
| ZnO/N-CQD | Hydrothermal | 10 ppm Methylene blue | Visible light | 30 | 80 | [52] |
| CQD-ZnO | Green synthesis | 10 ppm MG | Ultrasound | 90 | 84.52 | Present study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, Y.L.; Tan, H.W.; Lim, S.; Tai, J.W.; Chong, W.C.; Shuit, S.H. Sustainable Synthesis of Phytoremediated Eichhornia Crassipes-Derived Carbon Quantum Dot Supported on Zinc Oxide (CQD-ZnO): Characterisation and Sonocatalytic Activity. Catalysts 2025, 15, 1051. https://doi.org/10.3390/catal15111051
Pang YL, Tan HW, Lim S, Tai JW, Chong WC, Shuit SH. Sustainable Synthesis of Phytoremediated Eichhornia Crassipes-Derived Carbon Quantum Dot Supported on Zinc Oxide (CQD-ZnO): Characterisation and Sonocatalytic Activity. Catalysts. 2025; 15(11):1051. https://doi.org/10.3390/catal15111051
Chicago/Turabian StylePang, Yean Ling, Hui Wun Tan, Steven Lim, Jia Wei Tai, Woon Chan Chong, and Siew Hoong Shuit. 2025. "Sustainable Synthesis of Phytoremediated Eichhornia Crassipes-Derived Carbon Quantum Dot Supported on Zinc Oxide (CQD-ZnO): Characterisation and Sonocatalytic Activity" Catalysts 15, no. 11: 1051. https://doi.org/10.3390/catal15111051
APA StylePang, Y. L., Tan, H. W., Lim, S., Tai, J. W., Chong, W. C., & Shuit, S. H. (2025). Sustainable Synthesis of Phytoremediated Eichhornia Crassipes-Derived Carbon Quantum Dot Supported on Zinc Oxide (CQD-ZnO): Characterisation and Sonocatalytic Activity. Catalysts, 15(11), 1051. https://doi.org/10.3390/catal15111051

