Unsupported NiO Nanoflowers for Enhanced Methane Activation and Direct Conversion to C2–C6 Hydrocarbons
Abstract
1. Introduction
2. Results
2.1. Structure and Morphology of the Catalysts
2.2. Temperature Programmed Reaction (TPSR) with Methane
2.3. Catalytic Tests at 773 K
Selectivity of the Catalysts
3. Discussion
4. Materials and Methods
4.1. Catalysts Synthesis
4.2. Catalysis Characterization
4.2.1. X-Ray Diffraction
4.2.2. Scanning Electron Microscopy (SEM)
4.2.3. X-Ray Fluorescence (XRF)
4.2.4. Temperature-Programmed Surface Reaction (TPSR) with CH4
4.2.5. Catalytic Tests
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chu, Y.; Zhou, K.; Hu, R.; Yang, Z. Diversified hydrogen production methods can reduce carbon dioxide emissions and energy consumption across Chinese cities. Commun. Earth Environ. 2025, 6, 471. [Google Scholar] [CrossRef]
- Gao, D.; Gao, W.; Ma, Z.; Zhu, L.; Tian, J.; Liu, S.; Yu, Y.; Zhang, G.; Gao, Q. Trends and characteristics of global CH4 emissions: Insights from UNFCCC greenhouse gas inventories. Atmos. Ocean. Sci. Lett. 2025, 18, 100637. [Google Scholar] [CrossRef]
- Hureau, G.; Lecarpentier, A.; Serbutoviez, S.; Kaniewicz, J.; Madden, M.; Brooks, C.; Robertson, A.; Langston, C.; Harrison, C.; Le Ravalec, M. Global methane emissions from natural gas transmission and distribution networks. Sci. Technol. Energ. Transit. 2025, 80, 28. [Google Scholar] [CrossRef]
- Madavi, T.B.; Chauhan, S.; Madathil, V.; Sankaranarayanan, M.; Navina, B.; Velmurugan, N.K.; Choi, K.-Y.; Ankamareddy, H.; Alavilli, H.; Pamidimarri, S.D. Microbial methanotrophy: Methane capture to biomanufacturing of platform chemicals and fuels. Next Energy 2025, 8, 100251. [Google Scholar] [CrossRef]
- Zhang, P.; Li, J.; Huang, H.; Sui, X.; Zeng, H.; Lu, H.; Wang, Y.; Jia, Y.; Steele, J.A.; Ao, Y.; et al. Platinum Single-Atom Nests Boost Solar-Driven Photocatalytic Non-Oxidative Coupling of Methane to Ethane. J. Am. Chem. Soc. 2024, 146, 24150–24157. [Google Scholar] [CrossRef] [PubMed]
- Nesterenko, N.; Medeiros-Costa, I.C.; Clatworthy, E.B.; Cruchade, H.; Konnov, S.V.; Dath, J.-P.; Gilson, J.-P.; Mintova, S. Methane-to-chemicals: A pathway to decarbonization. Natl. Sci. Rev. 2023, 10, nwad116. [Google Scholar] [CrossRef] [PubMed]
- Baniam, M.; Gholamian, E.; Yari, M.; Mehr, A.S. Innovative integration of DMFC in polygeneration energy systems for enhanced renewable fuel and power outputs. Process Saf. Environ. Prot. 2025, 199, 107263. [Google Scholar] [CrossRef]
- Al Zakwani, S.; Ouadi, M.; Mohammed, K.; Steinberger-Wilckens, R. Simulation of Biomass Gasification and Syngas Methanation for Methane Production with H2/CO Ratio Adjustment in Aspen Plus. Energies 2025, 18, 4319. [Google Scholar] [CrossRef]
- Bampos, G.; Panagiotopoulou, P.; Kyriakidou, E.A. Catalytic Reforming and Hydrogen Production: From the Past to the Future. Catalysts 2025, 15, 332. [Google Scholar] [CrossRef]
- Szablowski, L.; Wojcik, M.; Dybinski, O. Review of steam methane reforming as a method of hydrogen production. Energy 2025, 316, 134540. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, C.; Liu, H.; Jin, Y.; Zhang, R.; Ran, J. Unraveling the effects of Ni particle size and facet on CH4 activation: From cluster to nanoparticle. Int. J. Hydrogen Energy 2023, 48, 19486–19493. [Google Scholar] [CrossRef]
- Osti, A.; Rizzato, L.; Costa, S.; Cavazzani, J.; Glisenti, A. Substoichiometric La0.8MnO3-based nanocomposites for PGM-free activation of CH4: Ni or Cu? Surface or bulk? Fuel 2025, 381, 133368. [Google Scholar] [CrossRef]
- Scheiblehner, D.; Neuschitzer, D.; Wibner, S.; Sprung, A.; Tunes, M.A.; Leuchtenmüller, M.; Scherr, C.; Antrekowitsch, H.; Luidold, S. The catalytic effect of Ni in methane pyrolysis using molten SnNi alloys for hydrogen production. Int. J. Hydrogen Energy 2025, 102, 1045–1054. [Google Scholar] [CrossRef]
- González, J.M.; Sabadell-Rendón, A.; Kaźmierczak, K.; Euzenat, F.; Montroussier, N.; Curulla-Ferré, D.; López, N. Nickel Dynamics Switches the Selectivity of CO2 Hydrogenation. Angew. Chem. Int. Ed. 2025, 64, e202417392. [Google Scholar] [CrossRef]
- Sun, X.; Tang, M.; Yu, M.; Fan, Y.; Qin, C.; Cao, J.; Wang, Y. UV-activated CH4 gas sensor based on Pd@Ni/ZnO microspheres. Mater. Today Commun. 2024, 40, 109551. [Google Scholar] [CrossRef]
- Fite, M.C.; Karse, S.D.; Gode, L.M. Optical and photocatalytic properties of nickel oxide nanoparticles. J. Cryst. Growth 2025, 660, 128163. [Google Scholar] [CrossRef]
- Xu, W.; Liu, H.; Hu, Y.; Wang, Z.; Huang, Z.; Huang, C.; Lin, J.; Chang, C.; Wang, A.; Wang, X.; et al. Metal-Oxo Electronic Tuning via In Situ CO Decoration for Promoting Methane Conversion to Oxygenates over Single-Atom Catalysts. Angew. Chem. Int. Ed. 2024, 63, e202315343. [Google Scholar] [CrossRef]
- He, C.; Gong, Y.; Li, S.; Wu, J.; Lu, Z.; Li, Q.; Wang, L.; Wu, S.; Zhang, J. Single-Atom Alloys Materials for CO2 and CH4 Catalytic Conversion. Adv. Mater. 2024, 36, 2311628. [Google Scholar] [CrossRef]
- Sanwal, P.; Gu, X.; Zhang, Y.; Li, G. The Tiara Nickel Cluster Story from Theory to Catalytic Applications. Precis. Chem. 2025, 3, 157–171. [Google Scholar] [CrossRef]
- Jin, Y.; Xu, Y.; Sánchez, J.S.G.; Pérez-Lemus, G.R.; Rico, P.F.Z.; Delferro, M.; de Pablo, J.J. Free-Energy Landscapes and Surface Dynamics in Methane Activation on Ni(511) via Machine Learning and Enhanced Sampling. ACS Catal. 2025, 15, 8931–8942. [Google Scholar] [CrossRef]
- Lee, S.J.; Jang, H.; Lee, D.N. Recent advances in nanoflowers: Compositional and structural diversification for potential applications. Nanoscale Adv. 2023, 5, 5165–5213. [Google Scholar] [CrossRef]
- Zhou, M.; Xiong, W.; Li, H.; Zhang, D.; Lv, Y. Emulsion-template synthesis of mesoporous nickel oxide nanoflowers composed of crossed nanosheets for effective nitrogen reduction. Dalton Trans. 2021, 50, 5835–5844. [Google Scholar] [CrossRef]
- Godlaveeti, S.K.; El-Marghany, A.; Parandamaiah, M.; Nasina, M.R.; Gedi, S.; Nagireddy, R.R.; Subbaiah, G.C.V.; Chintaparty, R. Low-Temperature Synthesis of NiO Structures: Tailoring Morphology for Enhanced Dielectric Performance. ECS J. Solid State Sci. Technol. 2025, 14, 23008. [Google Scholar] [CrossRef]
- Silveira, E.B.; Rabelo-Neto, R.C.; Noronha, F.B. Steam reforming of toluene, methane and mixtures over Ni/ZrO2 catalysts. Catal. Today 2017, 289, 289–301. [Google Scholar] [CrossRef]
- Fajardo, H.V.; Longo, E.; Mezalira, D.Z.; Nuernberg, G.B.; Almerindo, G.I.; Collasiol, A.; Probst, L.F.D.; Garcia, I.T.S.; Carreño, N.L.V. Influence of support on catalytic behavior of nickel catalysts in the steam reforming of ethanol for hydrogen production. Environ. Chem. Lett. 2010, 8, 79–84. [Google Scholar] [CrossRef]
- Wolfbeisser, A.; Sophiphun, O.; Bernardi, J.; Wittayakun, J.; Föttinger, K.; Rupprechter, G. Methane dry reforming over ceria-zirconia supported Ni catalysts. Catal. Today 2016, 277, 234–245. [Google Scholar] [CrossRef]
- Martínez, J.; Hernández, E.; Alfaro, S.; Medina, R.L.; Aguilar, G.V.; Albiter, E.; Valenzuela, M.A. High selectivity and stability of nickel catalysts for CO2 Methanation: Support effects. Catalysts 2019, 9, 24. [Google Scholar] [CrossRef]
- Martins, R.L.; Schmal, M. Activation of methane on NiO nanoparticles with different morphologies. J. Braz. Chem. Soc. 2014, 25, 2399–2409. [Google Scholar] [CrossRef]
- Si, J.; Liu, G.; Liu, J.; Zhao, L.; Li, S.; Guan, Y.; Liu, Y. Ni nanoparticles highly dispersed on ZrO2 and modified with La2O3 for CO methanation. RSC Adv. 2016, 6, 17836–17844. [Google Scholar] [CrossRef]
- Song, L.X.; Yang, Z.K.; Teng, Y.; Xia, J.; Du, P. Nickel oxide nanoflowers: Formation, structure, magnetic property and adsorptive performance towards organic dyes and heavy metal ions. J. Mater. Chem. A 2013, 1, 11246–11259. [Google Scholar] [CrossRef]
- Horti, N.C.; Kamatagi, M.D.; Nataraj, S.K.; Wari, M.N.; Inamdar, S.R. Structural and optical properties of zirconium oxide (ZrO2) nanoparticles: Effect of calcination temperature. Nano Express 2020, 1, 010028. [Google Scholar] [CrossRef]
- Gonzalez Caranton, A.R.; da Silva Pinto, J.C.C.; Stavale, F.; Barreto, J.; Schmal, M. Statistical analysis of the catalytic synthesis of Vinyl acetate over Pd-Cu/ZrO2 nanostructured based catalysts. Catal. Today 2020, 344, 190–200. [Google Scholar] [CrossRef]
- Duraisamy, N.; Numan, A.; Fatin, S.O.; Ramesh, K.; Ramesh, S. Facile sonochemical synthesis of nanostructured NiO with different particle sizes and its electrochemical properties for supercapacitor application. J. Colloid Interface Sci. 2016, 471, 136–144. [Google Scholar] [CrossRef]
- Bai, G.; Dai, H.; Deng, J.; Liu, Y.; Ji, K. Porous NiO nanoflowers and nanourchins: Highly active catalysts for toluene combustion. Catal. Commun. 2012, 27, 148–153. [Google Scholar] [CrossRef]
- Cárdenas-Arenas, A.; Quindimil, A.; Davó-Quiñonero, A.; Bailón-García, E.; Lozano-Castelló, D.; De-La-Torre, U.; Pereda-Ayo, B.; González-Marcos, J.A.; González-Velasco, J.R.; Bueno-López, A. Design of active sites in Ni/CeO2 catalysts for the methanation of CO2: Tailoring the Ni-CeO2 contact. Appl. Mater. Today 2020, 19, 100591. [Google Scholar] [CrossRef]
- Boakye, O.Y.; Hashemi, S.M.; Mahinpey, N. Investigation of Al2O3, ZrO2, SiO2, and CeO2 supported nickel catalysts for tri-reforming of methane. Int. J. Hydrogen Energy 2025, 109, 802–812. [Google Scholar] [CrossRef]
- Pudukudy, M.; Yaakob, Z.; Takriff, M.S. Methane decomposition into COx free hydrogen and multiwalled carbon nanotubes over ceria, zirconia and lanthana supported nickel catalysts prepared via a facile solid state citrate fusion method. Energy Convers. Manag. 2016, 126, 302–315. [Google Scholar] [CrossRef]
- Yang, E.; Nam, E.; Jo, Y.; An, K. Coke resistant NiCo/CeO2 catalysts for dry reforming of methane derived from core@shell Ni@Co nanoparticles. Appl. Catal. B Environ. 2023, 339, 123152. [Google Scholar] [CrossRef]
- Das, S.; Sengupta, M.; Bag, A.; Shah, M.; Bordoloi, A. Facile synthesis of highly disperse Ni-Co nanoparticles over mesoporous silica for enhanced methane dry reforming. Nanoscale 2018, 10, 6409–6425. [Google Scholar] [CrossRef]
- Sukonket, T.; Khan, A.; Saha, B.; Ibrahim, H.; Tantayanon, S.; Kumar, P.; Idem, R. Influence of the Catalyst Preparation Method, Surfactant Amount, and Steam on CO2 Reforming of CH4 over 5Ni/Ce0.6Zr0.4O2 Catalysts. Energy Fuels 2011, 25, 864–877. [Google Scholar] [CrossRef]
- Arevalo, R.L.; Aspera, S.M.; Escaño, M.C.S.; Nakanishi, H.; Kasai, H. Tuning methane decomposition on stepped Ni surface: The role of subsurface atoms in catalyst design. Sci. Rep. 2017, 7, 13963. [Google Scholar] [CrossRef]
- Chen, X.; Bella, B.; Yue, Y.; Kosari, M.; Liu, L.; Hu, F.; Cao, K.; Xiong, Y.; Mandal, A.; Chang, J.; et al. Plasma induced methane conversion: A review on COx-free production of hydrogen, valuable chemicals, and functional carbon materials. EES Catal. 2025. [Google Scholar] [CrossRef]
- Tang, P.; Zhu, Q.; Wu, Z.; Ma, D. Methane activation: The past and future. Energy Environ. Sci. 2014, 7, 2580–2591. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.; Han, J.; Zhu, X.; Mei, D.; Ge, Q. Simultaneous Activation of CH4 and CO2 for Concerted C-C Coupling at Oxide-Oxide Interfaces. ACS Catal. 2019, 9, 3187–3197. [Google Scholar] [CrossRef]
- Khodagholi, M.A.; Irani, M. Catalytic and noncatalytic conversion of methane to olefins and synthesis gas in an AC parallel plate discharge reactor. J. Chem. 2013, 2013, 676901. [Google Scholar] [CrossRef]
- Seenivasan, H.; Tiwari, A.K. Enhancing methane dissociation with nickel nanoclusters. Comput. Theor. Chem. 2015, 1066, 94–99. [Google Scholar] [CrossRef]
- Okolie, C.; Lyu, Y.; Kovarik, L.; Stavitski, E.; Sievers, C. Coupling of Methane to Ethane, Ethylene, and Aromatics over Nickel on Ceria–Zirconia at Low Temperatures. ChemCatChem 2018, 10, 4653–4662. [Google Scholar] [CrossRef]
- Dutta, K.; Li, L.; Gupta, P.; Gutierrez, D.P.; Kopyscinski, J. Direct non-oxidative methane aromatization over gallium nitride catalyst in a continuous flow reactor. Catal. Commun. 2018, 104, 106–110. [Google Scholar] [CrossRef]
- Hasnan, N.S.N.; Timmiati, S.N.; Lim, K.L.; Yaakob, Z.; Kamaruddin, N.H.N.; Teh, L.P. Recent developments in methane decomposition over heterogeneous catalysts: An overview. Mater. Renew. Sustain. Energy 2020, 9, 7. [Google Scholar] [CrossRef]
- Bengaard, H.S.; Nørskov, J.K.; Sehested, J.; Clausen, B.S.; Nielsen, L.P.; Molenbroek, A.M.; Rostrup-Nielsen, J.R. Steam reforming and graphite formation on Ni catalysts. J. Catal. 2002, 209, 365–384. [Google Scholar] [CrossRef]
- Lee, J.S.; Oyama, S.T. Oxidative Coupling of Methane to Higher Hydrocarbons. Catal. Rev. 1988, 30, 249–280. [Google Scholar] [CrossRef]
- Spivey, J.J.; Hutchings, G. Catalytic aromatization of methane. Chem. Soc. Rev. 2014, 43, 792–803. [Google Scholar] [CrossRef]
- Charisiou, N.D.; Douvartzides, S.L.; Siakavelas, G.I.; Tzounis, L.; Sebastian, V.; Stolojan, V.; Hinder, S.J.; Baker, M.A.; Polychronopoulou, K.; Goula, M.A. The relationship between reaction temperature and carbon deposition on nickel catalysts based on Al2O3, ZrO2 or SiO2 supports during the biogas dry reforming reaction. Catalysts 2019, 9, 676. [Google Scholar] [CrossRef]
- Lee, K.-M.; Kim, B.; Lee, J.; Kwon, G.; Yoon, K.; Song, H.; Min, K.H.; Shim, S.E.; Hwang, S.; Kim, T. The NO reduction by CO over NiOx/CeO2 catalysts with a fixed Ni surface density: Pretreatment effects on the catalyst structure and catalytic activity. Catal. Sci. Technol. 2024, 14, 279–292. [Google Scholar] [CrossRef]
- Martins, R.L.; Baldanza, M.A.; Souza, M.M.V.M.; Schmal, M. Methane activation on alumina supported platinum, palladium, ruthenium and rhodium catalysts. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2004; Volume 147, pp. 187–192. [Google Scholar] [CrossRef]
- Jarvis, J.; He, P.; Wang, A.; Song, H. Pt-Zn/HZSM-5 as a highly selective catalyst for the Co-aromatization of methane and light straight run naphtha. Fuel 2019, 236, 1301–1310. [Google Scholar] [CrossRef]
- Guisnet, M.; Gnep, N.S.; Alario, F. Aromatization of short chain alkanes on zeolite catalysts. Appl. Catal. A Gen. 1992, 89, 1–30. [Google Scholar] [CrossRef]
- Ellison, C.; Lauterbach, J.; Smith, M.W. Activated Carbon Supported Ni, Fe, and Bimetallic NiFe Catalysts for COx-Free H2 Production by Microwave Methane Pyrolysis. Int. J. Hydrogen Energy 2024, 55, 1062–1070. [Google Scholar] [CrossRef]
- Gubanov, M.A.; Ivantsov, M.I.; Kulikova, M.V.; Kryuchkov, V.A.; Nikitchenko, N.V.; Knyazeva, M.I.; Kulikov, A.B.; Pimenov, A.A.; Maksimov, A.L. Methane Decomposition Nickel Catalysts Based on Structured Supports. Pet. Chem. 2020, 60, 1043–1051. [Google Scholar] [CrossRef]
- Dipu, A.L.; Nishikawa, Y.; Inami, Y.; Iguchi, S.; Yamanaka, I. Development of Highly Active Silica-Supported Nickel Phosphide Catalysts for Direct Dehydrogenative Conversion of Methane to Higher Hydrocarbons. Catal. Lett. 2022, 152, 199–212. [Google Scholar] [CrossRef]
- Gomez, L.A.; Bavlnka, C.Q.; Nguyen, P.T.; Alalq, I.; Sabisch, J.E.; Boscoboinik, J.A.; Resasco, D.E.; Crossley, S.P. Evolution of Ni-Mo/MgO during Catalytic Methane Pyrolysis to Produce Base-Growth Nanotubes. Cell Rep. Phys. Sci. 2025, 6, 102519. [Google Scholar] [CrossRef]
- Yang, S.Y.; Yun, J.S.; Park, H.W.; Kim, J.H.; Saidova, N.U.K.; Lee, H.; An, K.; Im, J.S.; Lee, S.H. Unveiling the Role of Metal–Support Interactions in Ni Catalysts for CO2-Free Hydrogen and Carbon Nanotube Production via Methane Pyrolysis. Int. J. Hydrogen Energy 2025, 152, 150168. [Google Scholar] [CrossRef]
- Choi, S.-B.; Kang, D.-B.; Kim, S.-J.; Park, G.-J.; Kim, Y.; Kim, W.; Ko, C.H. Tailoring Ni Particle Size to Improve Catalytic Methane Decomposition on La2Ce2O7 Supports. Catal. Today 2026, 462, 115550. [Google Scholar] [CrossRef]
- Ibrahimov, H.; Malikli, S.; Ibrahimova, Z.; Babali, R.; Aleskerova, S. Ni-γ-Al2O3 Catalysts for Obtaining Nanocarbon by Decomposition of Natural Gas. Appl. Petrochem. Res. 2021, 11, 123–128. [Google Scholar] [CrossRef]
- Siudyga, T.; Kapkowski, M.; Janas, D.; Wasiak, T.; Sitko, R.; Zubko, M.; Szade, J.; Balin, K.; Klimontko, J.; Lach, D.; et al. Nano-Ru Supported on Ni Nanowires for Low-Temperature Carbon Dioxide Methanation. Catalysts 2020, 10, 513. [Google Scholar] [CrossRef]
- Ye, Z.; Long, Z.; Zhang, B.; Navid, I.A.; Menzel, J.P.; Shen, Y.; Mondal, S.; Guo, F.; Norris, T.B.; Batista, V.S.; et al. Photocatalytic Conversion of Methane to Ethane and Propane Using Cobalt-Cluster-Activated GaN Nanowires. Angew. Chem. Int. Ed. 2025, 64, e202500158. [Google Scholar] [CrossRef]
- Ricca, A.; Renda, S.; Di Stasi, C.; Truda, L.; Palma, V. Effective H2 Conversion to Substitute Natural Gas on Ni-Based Catalysts: Role of Promoters and Synthesis Method. Renew. Energy 2026, 256, 124179. [Google Scholar] [CrossRef]
- Kattel, S.; Ramírez, P.J.; Chen, J.G.; Rodriguez, J.A.; Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 2017, 355, 1296–1299. [Google Scholar] [CrossRef] [PubMed]





| Sample | dNiO | dNiO * | BET | %NiO | d (200) | a | ** dg |
|---|---|---|---|---|---|---|---|
| nm | nm | m2 g−1 | None | nm | nm | nm | |
| NiEG | 5.18 | 5.9 | 180 | 2 | 5.24 | 11 | 4.6 (111) |
| 25NiZ | 14.1 | 8.1 | 128 | 27.6 | 5.8 | 12 | 9.9 (002) |
| Methane Activation (A) | |||||||||
| CH4 | T | Molar Selectivity | |||||||
| (cm3 min−1) | (0K) | C2H4 | C2H6 | C3H8 | iC4 | nC4 | iC5 | nC5 | nC6 |
| 30 | 503 | 100.0 | -- | -- | -- | -- | -- | -- | -- |
| 250 | 503 | 65.4 | 34.6 | -- | -- | -- | -- | -- | -- |
| 30 | 593 | 15.8 | -- | -- | 49.1 | -- | 35.1 | -- | -- |
| 250 | 593 | -- | -- | 15.7 | -- | 20.4 | 53.4 | 2.3 | 8.2 |
| Carbon hydrogenation (B) | |||||||||
| CH4 | T | Molar Selectivity | |||||||
| (cm3/min) | (0K) | C2H4 | C2H6 | C3H8 | iC4 | nC4 | iC5 | nC5 | nC6 |
| 30 | 503 | 56.9 | -- | -- | 43.1 | -- | -- | -- | -- |
| 250 | 503 | 19.0 | -- | -- | 40.4 | 14.2 | 26.4 | -- | -- |
| 30 | 593 | 38.3 | -- | 31.4 | 11.5 | -- | -- | -- | 18.9 |
| 250 | 593 | 47.2 | 35.5 | -- | -- | -- | -- | 17.3 | -- |
| Sample | CH4 Uptake (μmols/gNi) | TOF (s−1) | H2 Uptake (μmols/gNi) | TONH2 (mol H2/mol Ni0) | rCH4 (mol/[s gNiO]) |
| NiEG | 4.98 × 102 | 2.92 × 10−2 | 4.45 × 10−1 | 2.61 × 10−5 | 1.79 |
| 25NiZ | 5.26 × 101 | 3.09 × 10−3 | 3.05 × 100 | 1.79 × 10−4 | 0.003 |
| Metallic dispersion | dMe (nm) | Metallic Surface Area (m2/gNi0) | Metal loading | H2 Des (mol) | |
| NiEG | 18.7 | 5.39 | 2.50 | 2 | 8.0 × 10−7 |
| 25NiZ | 2.9 | 16.9 | 7.82 | 27.6 | 5.0 × 10−6 |
| Catalyst System | Reaction | T (K) | GHSV L·h−1·gcat−1) | Conv. (%) | Selectivity (%) | BET (m2 g−1) | d (nm) | Reference |
|---|---|---|---|---|---|---|---|---|
| NiEG | MA | 593 | 186 | 10 | C6: 8.2% | 180 | 5.2 | This work |
| 20Ni-20Fe/AC | MA | 1123 | 3.75 | 20 | C6: 30% | 68 | 8 | [58] |
| 20Ni-20Co/AC | MA | 1123 | 1.5 | 30 | H2: 60% | 265 | 10 | [59] |
| NixPy/SiO2 (18%) | MA | 1173 | 6 | 3,2 | C2–C10: 60% | 4.5 | 34 | [60] |
| 5%Ni-40%Mo/MgO | MP | 1073 | 120 | 20 | H2 + CNTs: 25% | 67.1 | 5.21 | [61] |
| 7Ni3Al | MA | 923 | 60 | 68 | H2 + CNTs:30% | 21.1 | 4.88 | [62] |
| Ni/La2Ce2O7 | MA | 973 | 36 | 5 | H2 + C(s): 20% | 87 | 11.5 | [63] |
| Ni/γ−Al2O3 | MA | 823 | 300 | 15.2 | C(nano): 20% | 265 | 6 | [64] |
| 1.0% Ru/Ni Nanowires | CM | 452 | 600 | 90 | CH4:100% | 83 | 9 | [65] |
| Co0.1/GaN Nanowires | PNOCM | 298 | 1.6 | -- | C2+: 90.6% | -- | 2 | [66] |
| RuNi/CeZr_TSI | CM | 623 | 60 | 69 | CH4: 98% | 61 | 8.1 | [67] |
| MA = Methane activation | ||||||||
| CM = CO2 methanation | ||||||||
| MP = Methane pyrolysis | ||||||||
| PNOCM = Photocatalytic Non-Oxidative Coupling of Methane | ||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caranton, A.R.G.; Schmal, M. Unsupported NiO Nanoflowers for Enhanced Methane Activation and Direct Conversion to C2–C6 Hydrocarbons. Catalysts 2025, 15, 1042. https://doi.org/10.3390/catal15111042
Caranton ARG, Schmal M. Unsupported NiO Nanoflowers for Enhanced Methane Activation and Direct Conversion to C2–C6 Hydrocarbons. Catalysts. 2025; 15(11):1042. https://doi.org/10.3390/catal15111042
Chicago/Turabian StyleCaranton, Alberth Renne Gonzalez, and Martin Schmal. 2025. "Unsupported NiO Nanoflowers for Enhanced Methane Activation and Direct Conversion to C2–C6 Hydrocarbons" Catalysts 15, no. 11: 1042. https://doi.org/10.3390/catal15111042
APA StyleCaranton, A. R. G., & Schmal, M. (2025). Unsupported NiO Nanoflowers for Enhanced Methane Activation and Direct Conversion to C2–C6 Hydrocarbons. Catalysts, 15(11), 1042. https://doi.org/10.3390/catal15111042

