Interfacial Stabilization Strategy: Hydrothermally Synthesized Highly-Dispersed and Low-Leaching CuO-Biochar for Efficient Peroxydisulfate Activation and Cu-EDTA Degradation
Abstract
1. Introduction
2. Results and Discussion
2.1. Loading Methods
2.2. Pyrolysis Temperature of BC
2.3. Secondary Pyrolysis Loading CuO Temperature
2.4. CuO Loading Amount
2.5. Characterization Analysis of CuO-BC After Optimization
2.5.1. Surface Morphology and Elemental Distribution
2.5.2. Porous Structure and Textural Properties
2.5.3. Surface Functional Groups
3. Materials and Methods
3.1. Chemicals and Solutions
3.2. Catalyst Preparation
3.3. Experimental Design
3.4. Analytical Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Cheng, N.; Wang, H.; Wang, J.; Li, G.; Liang, H. Mechanism and Efficiency of Cu-EDTA Wastewater Treatment and Cu Recovery by Cation Exchange Membrane Electrolysis Reactor. J. Environ. Chem. Eng. 2025, 13, 116775. [Google Scholar] [CrossRef]
- Mao, R.; Hu, K.; Kan, H.; Yan, L.; Chen, R.; Zhao, X. Self-Catalytic Enhancement of Cu-EDTA Decomplexation and Simultaneous Cu Recovery Via a Dual-Cathode Electrochemical Process. Water Res. 2025, 268, 122775. [Google Scholar] [CrossRef]
- Xu, Z.; Gao, G.; Pan, B.; Zhang, W.; Lv, L. A New Combined Process for Efficient Removal of Cu(II) Organic Complexes from Wastewater: Fe(III) Displacement/UV Degradation/Alkaline Precipitation. Water Res. 2015, 87, 378–384. [Google Scholar] [CrossRef]
- Guo, X.; Chen, Z.; Yao, J.; Wu, J.; Gao, N.; Zhang, Z. Visible Light for Enhancing the Reusability of MOF-Derived Fe2O3@MoS2 Heterojunction in the Rapid Degradation of Cu-EDTA by Activated Peroxymonosulfate: Performance and Mechanism. J. Hazard. Mater. 2025, 494, 138669. [Google Scholar] [CrossRef]
- He, Z.H.; Wang, W.L.; Li, B.; Liu, C. MoS2-Assisted in Situ Anodic Peroxydisulfate Activation for Low-cost and Sustainable Water Purification. Sep. Purif. Technol. 2025, 379, 134937. [Google Scholar] [CrossRef]
- Li, C.; Yuan, D.; Wang, Z.; Zhao, T.; Tang, S.; Wang, D. Promoting Cu2+/Cu+ Redox Cycling Via Molybdenum Carbide toward Peroxydisulfate-Based Advanced Oxidation Process. Chem. Eng. Sci. 2025, 318, 122210. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, H.; Zhang, J.; Weng, N.; Huo, S. Inactivation of Harmful Cyanobacteria Microcystis Aeruginosa by Cu2+ Doped Corn Stalk Biochar Treated with Different Pyrolysis Temperatures. Bioresour. Technol. 2024, 394, 130259. [Google Scholar] [CrossRef]
- Fu, X.; Yan, L.; Qi, H.; Song, W.; Li, Y.; Li, X. Enhanced Activation of Peroxymonosulfate by CuO Modified Biochar through Mechanochemical Synthesis: Insights into the Roles of Active Sites and Electron Density Redistribution. J. Environ. Chem. Eng. 2025, 13, 115180. [Google Scholar] [CrossRef]
- Wei, T.; Li, J.; Fei, C.; Fan, Z.; Wang, B. Removal of Sulfadiazine from Water by a Three-Dimensional Electrochemical System Coupled with Persulfate: Enhancement Effect of Ball-Milled CuO-Fe3O4@Biochar. Process Saf. Environ. Prot. 2024, 190, 631–644. [Google Scholar] [CrossRef]
- Essa, R.A.; Amin, S.; Sedky, A.; Zeid, E.F.A.; Abd El-Aal, M. Efficient Water Purification: CuO-Enhanced Biochar from Banana Peels for Removing Congo Red Dye. Environ. Sci. Pollut. Res. 2024, 31, 58889–58904. [Google Scholar] [CrossRef]
- Luo, H.; Lin, Q.; Zhang, X.; Huang, Z.; Fu, H.; Xiao, R.; Liu, S.-S. Determining the Key Factors of Nonradical Pathway in Activation of Persulfate by Metal-Biochar Nanocomposites for Bisphenol A Degradation. Chem. Eng. J. 2020, 391, 123555. [Google Scholar] [CrossRef]
- Jung, A.; Cho, S.; Cho, W.J.; Lee, K.H. Morphology-Controlled Synthesis of CuO Nano- and Microparticles using Microwave Irradiation. Korean J. Chem. Eng. 2011, 29, 243–248. [Google Scholar] [CrossRef]
- Mi, X.; Zhong, H.; Zhang, H.; Xu, S.; Li, Y.; Wang, H.; Zhan, S.; Crittenden, J.C. Facilitating Redox Cycles of Copper Species by Pollutants in Peroxymonosulfate Activation. Environ. Sci. Technol. 2022, 56, 2637–2646. [Google Scholar] [CrossRef]
- Zhao, J.; Li, H.; Wang, Y.; Yu, J.; Li, N.; Wang, S. Cu/CuO-Decorated Peanut-Shell-Derived Biochar for the Efficient Degradation of Tetracycline Via Peroxymonosulfate Activation. Catalysts 2023, 13, 1246. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, X.; Li, P.; Fan, Q.; Wu, D.; Liang, H. Activation of Peroxymonosulfate with Biochar-Supported CuO (CuO@BC) for Natural Organic Matter Removal and Membrane Fouling Control. Chemosphere 2023, 341, 140044. [Google Scholar] [CrossRef]
- Makowska, M.; Dziosa, K. Influence of Different Pyrolysis Temperatures on Chemical Composition and Graphite-Like Structure of Biochar Produced from Biomass of Green Microalgae Chlorella sp. Environ. Technol. Innov. 2024, 35, 103667. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, L.; Pei, Z.; Li, H.; Wang, L.; Ma, J.; Li, Y.; Yang, R.; Zhang, Q. New Insight into the Adsorption of Sulfadiazine on Graphite-Like Biochars Prepared at Different Pyrolytic Temperatures. J. Clean. Prod. 2023, 413, 137468. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, L.; Song, C.; Chen, Z.; Meng, F.; Song, M. Selective Degradation of Electron-Rich Organic Pollutants Induced by CuO@Biochar: The Key Role of Outer-Sphere Interaction and Singlet Oxygen. Environ. Sci. Technol. 2022, 56, 10710–10720. [Google Scholar] [CrossRef]
- Ahmed Alsharif, M.; Alatawi, A.; Hamdalla, T.A.; Alfadhli, S.; Darwish, A.A.A. CuO Nanoparticles Mixed with Activated BC Extracted from Algae as Promising Material for Supercapacitor Electrodes. Sci. Rep. 2023, 13, 22321. [Google Scholar] [CrossRef]
- Praveen Kumar, D.; Shankar, M.V.; Kumari, M.M.; Sadanandam, G.; Srinivas, B.; Durgakumari, V. Nano-Size Effects on CuO/TiO2 Catalysts for Highly Efficient H2 Production under Solar Light Irradiation. Chem. Commun. 2013, 49, 9443. [Google Scholar] [CrossRef]
- Luo, H.; Wan, Y.; Zhou, H.; Cai, Y.; Zhu, M.; Dang, Z.; Yin, H. Mechanisms and Influencing Factors for Electron Transfer Complex in Metal-Biochar Nanocomposites Activated Peroxydisulfate. J. Hazard. Mater. 2022, 438, 129461. [Google Scholar] [CrossRef]
- Liu, Y.; Qu, G.; Sun, Q.; Jia, H.; Wang, T.; Zhu, L. Endogenously Activated Persulfate by Non-Thermal Plasma for Cu(II)-EDTA Decomplexation: Synergistic Effect and Mechanisms. Chem. Eng. J. 2021, 406, 126774. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Q.; Soklun, H.; Qu, G.; Xia, T.; Guo, X.; Jia, H.; Zhu, L. A Green Strategy for Simultaneous Cu(II)-EDTA Decomplexation and Cu Precipitation from Water by Bicarbonate-Activated Hydrogen Peroxide/Chemical Precipitation. Chem. Eng. J. 2019, 370, 1298–1309. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, L.; Zhang, B.; Liu, H.; Qu, J. Photoelectrocatalytic Oxidation of Cu(II)-EDTA at the TiO2 Electrode and Simultaneous Recovery of Cu(II) by Electrodeposition. Environ. Sci. Technol. 2013, 47, 4480–4488. [Google Scholar] [CrossRef]
- Li, T.; He, S.; Kou, L.; Peng, J.; Liu, H.; Zou, W.; Cao, Z.; Wang, T. Highly Efficient Cu-EDTA Decomplexation by Ag/AgCl Modified MIL-53(Fe) under Xe Lamp: Z-Scheme Configuration. Sep. Purif. Technol. 2023, 306, 122588. [Google Scholar] [CrossRef]
- He, S.; Li, T.; Zhang, L.; Zhang, X.; Liu, Z.; Zhang, Y.; Wang, J.; Jia, H.; Wang, T.; Zhu, L. Highly Effective Photocatalytic Decomplexation of Cu-EDTA by MIL-53(Fe): Highlight the Important Roles of Fe. Chem. Eng. J. 2021, 424, 130515. [Google Scholar] [CrossRef]
- Lin, G.; Ding, Y. Application of Sodium Alginate/Iron Sulfide/Biochar Beads as Electron Donors to Enhance Nitrate Removal from Carbon-Limited Wastewater. Chem. Eng. J. 2023, 477, 147079. [Google Scholar] [CrossRef]
- Wang, B.; Xie, Q.; Sha, Y.; Qian, S.; Liu, J.; Liang, D. Hydrothermal Pretreatment for Controlling Bamboo Biomass Composition and Regulating Pore Structure of Bamboo-Based Activated Carbon for CO2 Adsorption. J. Energy Inst. 2026, 124, 102341. [Google Scholar] [CrossRef]
- Wang, Q.; Ni, J.; Gao, Y. Correlation Between Biochar Pore Structure-Nitrogen Defects and Tetracycline Hydrochloride Degradation. China Environ. Sci. 2022, 42, 3370–3377. [Google Scholar] [CrossRef]
- Liu, H.B.; Shan, J.H.; Chen, Z.B.; Lichtfouse, E. Efficient Recovery of Phosphate from Simulated Urine by Mg/Fe Bimetallic Oxide Modified Biochar as a Potential Resource. Sci. Total Environ. 2021, 784, 147546. [Google Scholar] [CrossRef]
- Zhuang, Y.; Haderlein, S.B.; Lutze, H.V.; Sun, C.; Fink, F.; Paul, A.; Spahr, S. Persulfate Activation by Biochar for Trace Organic Contaminant Removal from Urban Stormwater. Water Res. 2025, 284, 123921. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, S.; Liu, Y.; Wang, Z.; Zhang, H.; Xiao, R. Removal of Cr(VI) from Aqueous Solution by Rice-Husk-Based Activated Carbon Prepared by Dual-Mode Heating Method. Carbon Resour. Convers. 2023, 6, 76–84. [Google Scholar] [CrossRef]
- Fang, G.; Liu, C.; Gao, J.; Dionysiou, D.D.; Zhou, D. Manipulation of Persistent Free Radicals in Biochar to Activate Persulfate for Contaminant Degradation. Environ. Sci. Technol. 2015, 49, 5645–5653. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Sánchez-Montes, I.; Luo, H.; Qu, L.; Wang, J.; Chelme-Ayala, P.; Luo, Z.; Gamal El-Din, M. Activation of Persulfate by Visible-Light-Driven Fe(II)/Fe(III) Cycle of Ferric Citrate for Decomplexation of Cu(II)-EDTA. J. Water Process. Eng. 2024, 63, 105484. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Wu, B.; Rui, M.; Liu, J.; Lu, G. Comparison of Toxicity Induced by EDTA-Cu after UV/H2O2 and UV/Persulfate Treatment: Species-Specific and Technology-Dependent Toxicity. Chemosphere 2020, 240, 124942. [Google Scholar] [CrossRef] [PubMed]
- Othmani, A.; Selatnia, A.; Hamitouche, A.; Bachari, K. Sustainable Biosorption of Cationic Textile Dyes (BY28, BB41, BR46) from Aqueous Solutions Using Pharmaceutical Waste Biomass (Streptomyces Rimosus): Comparative Study in Single, Binary, and Ternary Systems. J. Water Process Eng. 2025, 76, 108103. [Google Scholar] [CrossRef]





| Sample | Specific Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) |
|---|---|---|---|
| BC | 7.552 | 0.013 | 6.760 |
| CuO-BC | 32.948 | 0.201 | 16.443 |
| Sample | Carboxyl Groups (mmol/g) | Lactone Groups (mmol/g) | Phenolic Hydroxyl Groups (mmol/g) | Carbonyl Groups (mmol/g) | Total Oxygen-Containing Functional Groups (mmol/g) |
|---|---|---|---|---|---|
| BC | 1.35 | 1.50 | 10.15 | 1.05 | 14.05 |
| CuO-BC | 0.82 | 2.07 | 11.53 | 1.82 | 16.24 |
| Strategies | Loading Methods | Pyrolysis Temperature of BC (°C) | Secondary Pyrolysis Loading CuO Temperature (°C) | CuO Loading Amount m(CuO):m(BC) |
|---|---|---|---|---|
| Loading methods | Wet impregnation | 500 | 350 | 5:1 |
| 700 | ||||
| Hydrothermal co-precipitation | 500 | 1:1 | ||
| 700 | ||||
| Pyrolysis temperature of BC | Hydrothermal co-precipitation | 300 | 350 | 1:1 |
| 500 | ||||
| 700 | ||||
| 900 | ||||
| Secondary pyrolysis loading CuO temperature | Hydrothermal co-precipitation | 700 | 200 | 1:1 |
| 250 | ||||
| 350 | ||||
| 500 | ||||
| 700 | ||||
| Cu loading amount | Hydrothermal co-precipitation | 700 | 350 | 0:1 |
| 1:1 | ||||
| 2:1 | ||||
| 5:1 | ||||
| 10:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, W.; Zhou, Y.; Hui, J.; Sun, W.; Liu, Q.; Liu, H. Interfacial Stabilization Strategy: Hydrothermally Synthesized Highly-Dispersed and Low-Leaching CuO-Biochar for Efficient Peroxydisulfate Activation and Cu-EDTA Degradation. Catalysts 2025, 15, 1027. https://doi.org/10.3390/catal15111027
An W, Zhou Y, Hui J, Sun W, Liu Q, Liu H. Interfacial Stabilization Strategy: Hydrothermally Synthesized Highly-Dispersed and Low-Leaching CuO-Biochar for Efficient Peroxydisulfate Activation and Cu-EDTA Degradation. Catalysts. 2025; 15(11):1027. https://doi.org/10.3390/catal15111027
Chicago/Turabian StyleAn, Wenhui, Yige Zhou, Jiayu Hui, Wenhui Sun, Qiting Liu, and Hongbo Liu. 2025. "Interfacial Stabilization Strategy: Hydrothermally Synthesized Highly-Dispersed and Low-Leaching CuO-Biochar for Efficient Peroxydisulfate Activation and Cu-EDTA Degradation" Catalysts 15, no. 11: 1027. https://doi.org/10.3390/catal15111027
APA StyleAn, W., Zhou, Y., Hui, J., Sun, W., Liu, Q., & Liu, H. (2025). Interfacial Stabilization Strategy: Hydrothermally Synthesized Highly-Dispersed and Low-Leaching CuO-Biochar for Efficient Peroxydisulfate Activation and Cu-EDTA Degradation. Catalysts, 15(11), 1027. https://doi.org/10.3390/catal15111027

