Recent Advances in Transition Metal Selenide-Based Catalysts for Organic Pollutant Degradation by Advanced Oxidation Processes
Abstract
1. Introduction
1.1. Fundamental Aspects of Selenide-Based Catalysts
1.2. Scope of the Review
2. Classification of Selenide-Based Catalysts Used for the Degradation of Organic Pollutants
2.1. Single-Metal Selenide Catalysts
Catalyst | Synthesis Method | Pollutant | Catalyst (g L−1) | Pollutant (mg L−1) | Oxidant (mM) | % Degradation (Time) | TOC Removal | Ref. |
---|---|---|---|---|---|---|---|---|
Cu2Se | One-pot hydrothermal | RR120 | - | - | 1 (PMS) | 99.5% (2 h) | - | [130] |
4-Nitrophenol | - | - | 1 (PMS) | 80% (3 h) | - | |||
FeSe2 | Hydrothermal | SMX | 0.5 | 20 | 1 (PMS) | 100% (2 h) | 51.2% (2 h) | [135] |
PFOA | 0.5 | 10 | 5 (PMS) | 100% (3 h) | 20.3% (2 h) | |||
BPA | 0.5 | 20 | 1 (PMS) | 100% (2 h) | 58.9% (2 h) | |||
CTC | 0.5 | 20 | 1 (PMS) | 100% (2 h) | 46.3% (2 h) | |||
FeSe2 | Hydrothermal | PCB28 | 0.5 | 1 | 1 (PS) | 92% (4 h) | - | [135] |
0.5 | 1 | 1 (H2O2) | 46% (4 h) | - | ||||
BPA | 0.5 | 20 | 1 (PS) | 93% (4 h) | - | |||
0.5 | 20 | 1 (H2O2) | 95% (4 h) | - | ||||
FeSe2 | Hydrothermal | PCB28 | 0.5 | 1 | 1 (PMS) | 95% (3 h) | - | [135] |
FeSe2 (FS-1) | Wet chemical | CR | 2.5 | ~10 | H2O2 | 84.28% (28 h) | - | [139] |
FeSe2 (FS-2) | CR | 2.5 | ~10 | H2O2 | 90.94% (28 h) | - | ||
FeSe2 (FS-3) | CR | 2.5 | ~10 | H2O2 | 89.74% (28 h) | - | ||
FeSe2 (FS-1) | Wet chemical | MB | 2.5 | ~11 | H2O2 | 33.4% (28 h) | - | [139] |
FeSe2 (FS-2) | MB | 2.5 | ~11 | H2O2 | 93.3% (28 h) | - | ||
FeSe2 (FS-3) | MB | 2.5 | ~11 | H2O2 | 25.5% (28 h) | - | ||
CdSe | Solvothermal | MB | - | - | - | 75% (3 h) | - | [140] |
CdSe | Hydrothermal | MB | - | - | - | 80% (3 h) | - | [141] |
MoSe2 | Purchased | CBZ | 0.3 | 2 | 1.2 (PMS) | 100% (30 min) | 60% (30 min) | [137] |
IBU | 0.3 | 2 | 1.2 (PMS) | 38% (30 min) | - | |||
BZP | 0.3 | 2 | 1.2 (PMS) | 100% (10 min) | 80% (30 min) |
2.2. Composite and Heterostructure Selenide Catalysts
2.2.1. TMSes/g-C3N4
2.2.2. TMSes/TiO2
3. Miscellaneous Composite and Heterostructure Selenide Catalysts
3.1. Fe-Selenide-Based Catalysts
3.2. Other Selenide-Based Catalysts
4. Current Trends and Future Research Needs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Activated carbon |
ACA | Anthracene-9-carboxylic acid |
BPA | Bisphenol A |
BZP | Benzophenone-3 |
CB | Conduction band |
CBZ | Carbamazepine |
CFS | Carbon fiber sheet |
CIP | Ciprofloxacin |
CNC | Carbon nanocage |
CoFePBA | CoFe Prussian blue analogs |
CR | Congo red |
CTC | Chlortetracycline |
CTX | Ceftriaxone |
CV | Crystal violet |
CVD | Chemical vapor deposition |
E-AOPs | Electrochemical advanced oxidation processes |
EY | Eosin-Y |
GQDs | Graphene quantum dots |
HA | Humic acid |
HER | Hydrogen evolution reaction |
HIPE | High internal phase emulsion |
IBU | Ibuprofen |
LEV | Levofloxacin |
LPE | liquid phase exfoliation |
MB | Methylene blue |
MO | Methyl orange |
MSes | Metal selenides |
NOM | Natural organic matter |
NOR | Norfloxacin |
OER | Oxygen evolution reaction |
ORR | Oxygen reduction reaction |
OTC | Oxytetracycline |
PAA | Poly(acrylic acid |
PCB28 | 2,4,4′-Trichlorobiphenyl |
PCS | Polycationic selenides |
PFOA | Perfluorooctanoic acid |
PMS | Peroxymonosulfate |
PS | Persulfate |
QDs | Quantum dots |
RB 5 | Reactive Blue 5 |
RhB | Rhodamine B |
ROS | Reactive oxygen species |
RR120 | Reactive Red 120 |
RV 5 | Reactive violet 5 |
SMX | Sulfamethoxazole |
SR-AOPs | Sulftate-radical advanced oxidation processes |
TC-HCl | Tetracycline hydrochloride |
TCH | Tetracycline hydrochloride |
TCS | Triclosan |
TMCs | Transition metal chalcogenides |
TMDSes | Transition metal dichalcogenides |
TMSes | Transition metal selenides |
UV | Ultraviolet |
VB | Valence band |
References
- Babuji, P.; Thirumalaisamy, S.; Duraisamy, K.; Periyasamy, G. Human Health Risks Due to Exposure to Water Pollution: A Review. Water 2023, 15, 2532. [Google Scholar] [CrossRef]
- McMichael, S.; Waso, M.; Reyneke, B.; Khan, W.; Byrne, J.A.; Fernandez-Ibanez, P. Electrochemically Assisted Photocatalysis for the Disinfection of Rainwater under Solar Irradiation. Appl. Catal. B Environ. 2021, 281, 119485. [Google Scholar] [CrossRef]
- Izadi, P.; Izadi, P.; Salem, R.; Papry, S.A.; Magdouli, S.; Pulicharla, R.; Brar, S.K. Non-Steroidal Anti-Inflammatory Drugs in the Environment: Where Were We and How Far We Have Come? Environ. Pollut. 2020, 267, 115370. [Google Scholar] [CrossRef]
- Wang, H.; Xi, H.; Xu, L.; Jin, M.; Zhao, W.; Liu, H. Ecotoxicological Effects, Environmental Fate and Risks of Pharmaceutical and Personal Care Products in the Water Environment: A Review. Sci. Total Environ. 2021, 788, 147819. [Google Scholar] [CrossRef]
- Heryanto, H.; Tahir, D. Trends, Mechanisms, and the Role of Advanced Oxidation Processes in Mitigating Azo, Triarylmethane, and Anthraquinone Dye Pollution: A Bibliometric Analysis. Inorg. Chem. Commun. 2025, 175, 114104. [Google Scholar] [CrossRef]
- Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic Organic Dyes as Contaminants of the Aquatic Environment and Their Implications for Ecosystems: A Review. Sci. Total Environ. 2020, 717, 137222. [Google Scholar] [CrossRef]
- Terreros, G.; Cifuentes-Cabello, C.; D’Espessailles, A.; Munoz, F. Impact of Pesticide Exposure on Auditory Health: Mechanisms, Efferent System Disruption, and Public Health Implications. Toxicology 2025, 512, 154071. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wang, Z.; Yao, B.; Zhou, Y. Occurrence, Bioaccumulation, Fate, and Risk Assessment of Emerging Pollutants in Aquatic Environments: A Review. Sci. Total Environ. 2024, 923, 171388. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cao, J.; Xiong, W.; Yang, Z.; Sun, S.; Jia, M.; Xu, Z. In-Situ Growing of Metal-Organic Frameworks on Three-Dimensional Iron Network as an Efficient Adsorbent for Antibiotics Removal. Chem. Eng. J. 2020, 392, 124844. [Google Scholar] [CrossRef]
- Seo, P.W.; Khan, N.A.; Jhung, S.H. Removal of Nitroimidazole Antibiotics from Water by Adsorption over Metal–Organic Frameworks Modified with Urea or Melamine. Chem. Eng. J. 2017, 315, 92–100. [Google Scholar] [CrossRef]
- Wang, D.; Jia, F.; Wang, H.; Chen, F.; Fang, Y.; Dong, W.; Zeng, G.; Li, X.; Yang, Q.; Yuan, X. Simultaneously Efficient Adsorption and Photocatalytic Degradation of Tetracycline by Fe-Based MOFs. J. Colloid Interface Sci. 2018, 519, 273–284. [Google Scholar] [CrossRef]
- Jin, X.; Guo, J.; Hossain, M.F.; Lu, J.; Lu, Q.; Zhou, Y.; Zhou, Y. Recent Advances in the Removal and Recovery of Phosphorus from Aqueous Solution by Metal-Based Adsorbents: A Review. Resour. Conserv. Recycl. 2024, 204, 107464. [Google Scholar] [CrossRef]
- Raza, W.; Lee, J.; Raza, N.; Luo, Y.; Kim, K.H.; Yang, J. Removal of Phenolic Compounds from Industrial Waste Water Based on Membrane-Based Technologies. J. Ind. Eng. Chem. 2019, 71, 1–18. [Google Scholar] [CrossRef]
- Joseph, L.; Jun, B.M.; Flora, J.R.V.; Park, C.M.; Yoon, Y. Removal of Heavy Metals from Water Sources in the Developing World Using Low-Cost Materials: A Review. Chemosphere 2019, 229, 142–159. [Google Scholar] [CrossRef]
- Feng, Y.; Yang, S.; Xia, L.; Wang, Z.; Suo, N.; Chen, H.; Long, Y.; Zhou, B.; Yu, Y. In-Situ Ion Exchange Electrocatalysis Biological Coupling (i-IEEBC) for Simultaneously Enhanced Degradation of Organic Pollutants and Heavy Metals in Electroplating Wastewater. J. Hazard. Mater. 2019, 364, 562–570. [Google Scholar] [CrossRef]
- Hao, J.; Ji, L.; Li, C.; Hu, C.; Wu, K. Rapid, Efficient and Economic Removal of Organic Dyes and Heavy Metals from Wastewater by Zinc-Induced in-Situ Reduction and Precipitation of Graphene Oxide. J. Taiwan Inst. Chem. Eng. 2018, 88, 137–145. [Google Scholar] [CrossRef]
- Kumar, R.; Qureshi, M.; Vishwakarma, D.K.; Al-Ansari, N.; Kuriqi, A.; Elbeltagi, A.; Saraswat, A. A Review on Emerging Water Contaminants and the Application of Sustainable Removal Technologies. Case Stud. Chem. Environ. Eng. 2022, 6, 100219. [Google Scholar] [CrossRef]
- Patel, N.; Srivastav, A.L.; Patel, A.; Singh, A.; Singh, S.K.; Chaudhary, V.K.; Singh, P.K.; Bhunia, B. Nitrate Contamination in Water Resources, Human Health Risks and Its Remediation through Adsorption: A Focused Review. Environ. Sci. Pollut. Res. 2022, 29, 69137–69152. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Huang, B.; Wang, Z.; Tang, L.; Ji, C.; Zhao, C.; Feng, L.; Feng, Y. Homogeneous/Heterogeneous Metal-Catalyzed Persulfate Oxidation Technology for Organic Pollutants Elimination: A Review. J. Environ. Chem. Eng. 2023, 11, 109586. [Google Scholar] [CrossRef]
- Huang, C.P.; Dong, C.; Tang, Z. Advanced Chemical Oxidation: Its Present Role and Potential Future in Hazardous Waste Treatment. Waste Manag. 1993, 13, 361–377. [Google Scholar] [CrossRef]
- Machulek, A., Jr.; Oliveira, S.C.; Osugi, M.E.; Ferreira, V.S.; Quina, F.H.; Dantas, R.F.; Oliveira, S.L.; Casagrande, G.A.; Anaissi, F.J.; Silva, V.O.; et al. Application of Different Advanced Oxidation Processes for the Degradation of Organic Pollutants. In Organic Pollutants—Monitoring, Risk and Treatment; IntechOpen: London, UK, 2013. [Google Scholar] [CrossRef]
- Dong, C.; Fang, W.; Yi, Q.; Zhang, J. A Comprehensive Review on Reactive Oxygen Species (ROS) in Advanced Oxidation Processes (AOPs). Chemosphere 2022, 308, 136205. [Google Scholar] [CrossRef]
- Ma, D.; Yang, Y.; Liu, B.; Xie, G.; Chen, C.; Ren, N.; Xing, D. Zero-Valent Iron and Biochar Composite with High Specific Surface Area via K2FeO4 Fabrication Enhances Sulfadiazine Removal by Persulfate Activation. Chem. Eng. J. 2021, 408, 127992. [Google Scholar] [CrossRef]
- Wang, S.; Yang, J.; Jin, X.; Tatit, U.L.; Luo, X.; Zhou, Y.; Zhou, Y. Strategies to Enhance the Catalytic Activity of MoS2 in Advanced Oxidation Processes: A Review. Sep. Purif. Technol. 2025, 356, 129841. [Google Scholar] [CrossRef]
- Huo, X.; Yang, Y.; Niu, Q.; Zhu, Y.; Zeng, G.; Lai, C.; Yi, H.; Li, M.; An, Z.; Huang, D.; et al. A Direct Z-Scheme Oxygen Vacant BWO/Oxygen-Enriched Graphitic Carbon Nitride Polymer Heterojunction with Enhanced Photocatalytic Activity. Chem. Eng. J. 2021, 403, 126363. [Google Scholar] [CrossRef]
- da Costa Filho, B.M.; Vilar, V.J.P. Strategies for the Intensification of Photocatalytic Oxidation Processes towards Air Streams Decontamination: A Review. Chem. Eng. J. 2020, 391, 123531. [Google Scholar] [CrossRef]
- Lai, C.; An, N.; Li, B.; Zhang, M.; Yi, H.; Liu, S.; Qin, L.; Liu, X.; Li, L.; Fu, Y.; et al. Future Roadmap on Nonmetal-Based 2D Ultrathin Nanomaterials for Photocatalysis. Chem. Eng. J. 2021, 406, 126780. [Google Scholar] [CrossRef]
- Kutuzova, A.; Dontsova, T.; Kwapinski, W. Application of TiO2-Based Photocatalysts to Antibiotics Degradation: Cases of Sulfamethoxazole, Trimethoprim and Ciprofloxacin. Catalysts 2021, 11, 728. [Google Scholar] [CrossRef]
- Ghanbari, F.; Moradi, M. Application of Peroxymonosulfate and Its Activation Methods for Degradation of Environmental Organic Pollutants: Review. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Barbati, S.; Doumenq, P.; Chiron, S. Sulfate Radical Anion Oxidation of Diclofenac and Sulfamethoxazole for Water Decontamination. Chem. Eng. J. 2012, 197, 440–447. [Google Scholar] [CrossRef]
- Zhang, B.T.; Zhang, Y.; Teng, Y.; Fan, M. Sulfate Radical and Its Application in Decontamination Technologies. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1756–1800. [Google Scholar] [CrossRef]
- Tsitonaki, A.; Petri, B.; Crimi, M.; Mosbk, H.; Siegrist, R.L.; Bjerg, P.L. In Situ Chemical Oxidation of Contaminated Soil and Groundwater Using Persulfate: A Review. Crit. Rev. Environ. Sci. Technol. 2010, 40, 55–91. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, S.; Cui, M.; Ren, Y.; Park, B.; Ma, J.; Han, Z.; Khim, J. Activation of Peroxodisulfate and Peroxymonosulfate by Ultrasound with Different Frequencies: Impact on Ibuprofen Removal Efficient, Cost Estimation and Energy Analysis. Chem. Eng. J. 2021, 413, 127487. [Google Scholar] [CrossRef]
- Manos, D.; Miserli, K.; Konstantinou, I. Perovskite and Spinel Catalysts for Sulfate Radical-Based Advanced Oxidation of Organic Pollutants in Water and Wastewater Systems. Catalysts 2020, 10, 1299. [Google Scholar] [CrossRef]
- Comninellis, C. Electrocatalysis in the Electrochemical Conversion/Combustion of Organic Pollutants for Waste Water Treatment. Electrochim. Acta 1994, 39, 1857–1862. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Brillas, E. Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods: A General Review. Appl. Catal. B Environ. 2009, 87, 105–145. [Google Scholar] [CrossRef]
- Ince, N.H.; Tezcanli, G.; Belen, R.K.; Apikyan, G. Ultrasound as a Catalyzer of Aqueous Reaction Systems: The State of the Art and Environmental Applications. Appl. Catal. B Environ. 2001, 29, 167–176. [Google Scholar] [CrossRef]
- Khan, J.A.; Sayed, M.; Khan, S.; Shah, N.S.; Dionysiou, D.D.; Boczkaj, G. Advanced Oxidation Processes for the Treatment of Contaminants of Emerging Concern. In Contaminants of Emerging Concern in Water and Wastewater: Advanced Treatment Processes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 299–365. [Google Scholar] [CrossRef]
- Wang, S.; Dai, Y.; Wang, H.; Miao, S.; Deng, Z.; Yin, L. Activation of Peroxymonosulfate by Fe Based Metal Organic Framework for Selective Degradation of Phenol in Water. J. Water Process Eng. 2024, 68, 106454. [Google Scholar] [CrossRef]
- Li, F.; Yuan, C.; Niu, Y.; Sheng, J.; Wang, X.; Shi, Y.; Jiang, H. Cobalt/Iron Bimetallic Oxide Coated with Graphitized Nitrogen-Doped Carbon (Fe2O3-CoO@NC) Derived from Cobalt/Iron Solid Complex as Peroxymonosulfate (PMS) Activator for Efficient Bensulfuron-Methyl Degradation. Environ. Res. 2024, 263, 120249. [Google Scholar] [CrossRef]
- Peng, H.; Gu, H.; Xu, Z.; Xiong, G.; Gao, P.; Wang, S.; Li, X.; Li, F. Degradation Mechanisms and Toxicity Determination of Bisphenol A by FeOx-Activated Peroxydisulfate under Ultraviolet Light. Environ. Technol. 2024, 46, 13–24. [Google Scholar] [CrossRef]
- Ge, Y.; Zhong, X.; Wang, K.; Huang, L.; Zheng, Z.; Wu, C.; Fang, S.; Lin, X.; Lin, J. CoFe2O4-Catalytic Ceramic Membrane for Efficient Carbamazepine Removal via Peroxymonosulfate Activation. Sep. Purif. Technol. 2025, 357, 129876. [Google Scholar] [CrossRef]
- Gao, D.; Wang, H.; Lu, Q.; Ye, C.; Cai, J.; Wang, L. Enhanced PMS Activation Efficiency and SMX Degradation Performance via Fe(II)/Fe(III) Cycling with Efficient CCF@MoS2@GA-Fe Catalyst. Environ. Res. 2025, 274, 121299. [Google Scholar] [CrossRef] [PubMed]
- Hammouda, S.B.; Zhao, F.; Safaei, Z.; Srivastava, V.; Ramasamy, D.L.; Iftekhar, S.; Kalliola, S.; Sillanpää, M. Degradation and Mineralization of Phenol in Aqueous Medium by Heterogeneous Monopersulfate Activation on Nanostructured Cobalt Based-Perovskite Catalysts ACoO3 (A = La, Ba, Sr and Ce): Characterization, Kinetics and Mechanism Study. Appl. Catal. B Environ. 2017, 215, 60–73. [Google Scholar] [CrossRef]
- Zhang, R.; Wan, Y.; Peng, J.; Yao, G.; Zhang, Y.; Lai, B. Efficient Degradation of Atrazine by LaCoO3/Al2O3 Catalyzed Peroxymonosulfate: Performance, Degradation Intermediates and Mechanism. Chem. Eng. J. 2019, 372, 796–808. [Google Scholar] [CrossRef]
- Yamada, Y.; Yano, K.; Hong, D.; Fukuzumi, S. LaCoO 3 Acting as an Efficient and Robust Catalyst for Photocatalytic Water Oxidation with Persulfate. Phys. Chem. Chem. Phys. 2012, 14, 5753–5760. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Guo, Y.; Zhang, Y.; Xu, B.; Qi, F. LaCoO3 Perovskite Oxide Activation of Peroxymonosulfate for Aqueous 2-Phenyl-5-Sulfobenzimidazole Degradation: Effect of Synthetic Method and the Reaction Mechanism. Chem. Eng. J. 2016, 304, 897–907. [Google Scholar] [CrossRef]
- Zhao, C.; Xu, L.; Wang, Y.; Qiao, H.; Zhao, Y.; Li, D.; Bu, Y. Accelerated Peroxymonosulfate Activation over Defective Perovskite with Anchored Cobalt Nanoparticles for Organic Contaminant Removal. Chem. Eng. J. 2024, 496, 153712. [Google Scholar] [CrossRef]
- Niu, J.; He, T.; Cheng, J. In-Situ Synthesis of Carbon-Coated Co3O4 Nanowire for Efficient Activation of Peroxymonosulfate While Reducing Ion Leaching through Protection and Secondary Enrichment. Chem. Eng. J. 2024, 500, 157301. [Google Scholar] [CrossRef]
- Cong, Y.; Chen, X.; Ye, L.; Li, X.; Lv, S.W. A Newly-Designed Free-Standing NiCo2O4 Nanosheet Array as Effective Mediator to Activate Peroxymonosulfate for Rapid Degradation of Emerging Organic Pollutant with High Concentration. Chemosphere 2022, 307, 136073. [Google Scholar] [CrossRef]
- Pan, X.; Pu, J.; Zhang, L.; Gong, X.; Luo, X.; Fan, L. Bimetallic Iron-Nickel Phosphide as Efficient Peroxymonosulfate Activator for Tetracycline Hydrochloride Degradation: Performance and Mechanism. Environ. Res. 2024, 249, 118362. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, W.; Zhang, X.; Wang, S. Highly Efficient Targeted Adsorption and Catalytic Degradation of Ciprofloxacin by a Novel Molecularly Imprinted Bimetallic MOFs Catalyst for Persulfate Activation. Chemosphere 2024, 357, 141894. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Pan, S.; Lu, J.; Asif, A.H.; Cui, S.; Wang, S.; Sun, H. Ruthenium Decorated Nickel-Iron Layered Double Hydroxides (NiFe-LDH) for Promoting Peroxymonosulfate Activation and Atrazine Degradation. J. Environ. Chem. Eng. 2024, 12, 112996. [Google Scholar] [CrossRef]
- Fu, C.; Yi, X.; Liu, Y.; Zhou, H. Cu2+ Activated Persulfate for Sulfamethazine Degradation. Chemosphere 2020, 257, 127294. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, J.; Ma, J.; Pang, S.; Zhang, T. A Review on Advanced Oxidation Processes Homogeneously Initiated by Copper(II). Chem. Eng. J. 2022, 427, 131721. [Google Scholar] [CrossRef]
- Peng, J.; Chang, Y.; Xu, L.; Zhang, Y.; Wang, T.; Wang, X.; Liu, H.; Yan, G.; Gao, S.; Liu, D.; et al. Insights into the Enhanced Removal of Sulfamethoxazole via Peroxymonosulfate Activation Catalyzed by Bimetallic (Co/Cu) Doped Graphitic Carbon Nitride: Reaction Kinetics, Mechanisms, and Pathways. Chem. Eng. J. 2023, 476, 146692. [Google Scholar] [CrossRef]
- Okpara, E.C.; Wojuola, O.B.; Quadri, T.W.; Banks, C.E. An Overview of Advanced Oxidation Processes Using Copper-Based Catalytic Degradation of Organic Pollutants in Water. Appl. Mater. Today 2024, 36, 102053. [Google Scholar] [CrossRef]
- Feng, L.; Liu, Y.; Shan, Y.; Yang, S.; Wu, L.; Shi, T. Degradation of Ciprofloxacin by Magnetic CuS/MnFe2O4 Catalysts Efficiently Activated Peroxymonosulfate. J. Taiwan Inst. Chem. Eng. 2024, 161, 105533. [Google Scholar] [CrossRef]
- Liu, J.; Lai, Z.; Wang, K.; Wu, J.; Yang, S.; Liu, Z.; Meng, G.; Guo, X. Template-Based Fabrication of Copper Oxide for Persulfate Activation: Investigating Non-Radical Mechanisms in Efficient Bisphenol a Degradation. Korean J. Chem. Eng. 2025, 42, 843–855. [Google Scholar] [CrossRef]
- Eisa, T.; Abdelkareem, M.A.; Jadhav, D.A.; Mohamed, H.O.; Sayed, E.T.; Olabi, A.G.; Castaño, P.; Chae, K.J. Critical Review on the Synthesis, Characterization, and Application of Highly Efficient Metal Chalcogenide Catalysts for Fuel Cells. Prog. Energy Combust. Sci. 2023, 94, 101044. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, W.J.; Jie, J.S.; Meng, X.M.; Zapien, J.A.; Lee, S.T. Homoepitaxial Growth and Lasing Properties of ZnS Nanowire and Nanoribbon Arrays. Adv. Mater. 2006, 18, 1527–1532. [Google Scholar] [CrossRef]
- Radovanovic, P.V.; Barrelet, C.J.; Gradečak, S.; Qian, F.; Lieber, C.M. General Synthesis of Manganese-Doped II-VI and III-V Semiconductor Nanowires. Nano Lett. 2005, 5, 1407–1411. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.; Wang, Z.L. Growth of Anisotropic One-Dimensional ZnS Nanostructures. J. Mater. Chem. 2006, 16, 3898–3905. [Google Scholar] [CrossRef]
- Askari, M.B.; Salarizadeh, P.; Seifi, M.; Rozati, S.M. Electrocatalytic Properties of CoS2/MoS2/RGO as a Non-Noble Dual Metal Electrocatalyst: The Investigation of Hydrogen Evolution and Methanol Oxidation. J. Phys. Chem. Solids 2019, 135, 109103. [Google Scholar] [CrossRef]
- Sayed, E.T.; Abdelkareem, M.A.; Bahaa, A.; Eisa, T.; Alawadhi, H.; Al-Asheh, S.; Chae, K.J.; Olabi, A.G. Synthesis and Performance Evaluation of Various Metal Chalcogenides as Active Anodes for Direct Urea Fuel Cells. Renew. Sustain. Energy Rev. 2021, 150, 111470. [Google Scholar] [CrossRef]
- Sarkar, S.; Patel, S.; Sampath, S. Efficient Oxygen Reduction Activity on Layered Palladium Phosphosulphide and Its Application in Alkaline Fuel Cells. J. Power Sources 2020, 445, 227280. [Google Scholar] [CrossRef]
- Sobhani, A.; Salavati-Niasari, M. Synthesis and Characterization of a Nickel Selenide Series via a Hydrothermal Process. Superlattices Microstruct. 2014, 65, 79–90. [Google Scholar] [CrossRef]
- Sobhani, A.; Salavati-Niasari, M. Transition Metal Selenides and Diselenides: Hydrothermal Fabrication, Investigation of Morphology, Particle Size and and Their Applications in Photocatalyst. Adv. Colloid Interface Sci. 2021, 287, 102321. [Google Scholar] [CrossRef]
- Schäfer, A.; Kollwitz, M.; Ahlrichs, R. Electronic Excitation Energies in Copper Selenide Clusters. J. Chem. Phys. 1996, 104, 7113–7121. [Google Scholar] [CrossRef]
- Verble, J.L.; Humphrey, F.M. Infrared and Raman Spectra of MnS2. Solid State Commun. 1974, 15, 1693–1697. [Google Scholar] [CrossRef]
- Wilson, J.A.; Di Salvo, F.J.; Mahajan, S. Charge-Density Waves and Superlattices in the Metallic Layered Transition Metal Dichalcogenides. Adv. Phys. 1975, 24, 117–201. [Google Scholar] [CrossRef]
- Chhowalla, M.; Shin, H.S.; Eda, G.; Li, L.J.; Loh, K.P.; Zhang, H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat. Chem. 2013, 5, 263–275. [Google Scholar] [CrossRef]
- Peng, X.; Yan, Y.; Jin, X.; Huang, C.; Jin, W.; Gao, B.; Chu, P.K. Recent Advance and Prospectives of Electrocatalysts Based on Transition Metal Selenides for Efficient Water Splitting. Nano Energy 2020, 78, 105234. [Google Scholar] [CrossRef]
- Keszler, D.A.; Ibers, J.A.; Maoyu, S.; Jiaxi, L. New Ternary and Quaternary Transition-Metal Selenides: Syntheses and Characterization. J. Solid State Chem. 1985, 57, 68–81. [Google Scholar] [CrossRef]
- Wilson, J.A.; Yoffe, A.D. The Transition Metal Dichalcogenides Discussion and Interpretation of the Observed Optical, Electrical and Structural Properties. Adv. Phys. 1969, 18, 193–335. [Google Scholar] [CrossRef]
- Lu, T.; Dong, S.; Zhang, C.; Zhang, L.; Cui, G. Fabrication of Transition Metal Selenides and Their Applications in Energy Storage. Coord. Chem. Rev. 2017, 332, 75–99. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Zhao, H.; Du, Y. MoSe2 Nanosheets Grown on Carbon Cloth with Superior Electrochemical Performance as Flexible Electrode for Sodium Ion Batteries. RSC Adv. 2015, 6, 1440–1444. [Google Scholar] [CrossRef]
- Wickramaratne, D.; Khmelevskyi, S.; Agterberg, D.F.; Mazin, I.I. Ising Superconductivity and Magnetism in NbSe2. Phys. Rev. X 2020, 10, 041003. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, H.; Yan, Y.; Cao, J.; Li, X.; Zhou, S.; Peng, Z.; Zeng, J. Engineering the Electrical Conductivity of Lamellar Silver-Doped Cobalt(II) Selenide Nanobelts for Enhanced Oxygen Evolution. Angew. Chem. 2017, 129, 334–338. [Google Scholar] [CrossRef]
- Swesi, A.T.; Masud, J.; Nath, M. Nickel Selenide as a High-Efficiency Catalyst for Oxygen Evolution Reaction. Energy Environ. Sci. 2016, 9, 1771–1782. [Google Scholar] [CrossRef]
- Gao, D.; Xia, B.; Wang, Y.; Xiao, W.; Xi, P.; Xue, D.; Ding, J. Dual-Native Vacancy Activated Basal Plane and Conductivity of MoSe2 with High-Efficiency Hydrogen Evolution Reaction. Small 2018, 14, 1704150. [Google Scholar] [CrossRef] [PubMed]
- Rajaramanan, T.; Shanmugaratnam, S.; Gurunanthanan, V.; Yohi, S.; Velauthapillai, D.; Ravirajan, P.; Senthilnanthanan, M. Cost Effective Solvothermal Method to Synthesize Zn-Doped TiO2 Nanomaterials for Photovoltaic and Photocatalytic Degradation Applications. Catalysts 2021, 11, 690. [Google Scholar] [CrossRef]
- Pirashanthan, A.; Murugathas, T.; Mariappan, K.; Ravirajan, P.; Velauthapillai, D.; Yohi, S. A Multifunctional Ruthenium Based Dye for Hybrid Nanocrystalline Titanium Dioxide/Poly(3-Hexylthiophene) Solar Cells. Mater. Lett. 2020, 274, 127997. [Google Scholar] [CrossRef]
- Papavasileiou, A.V.; Antonatos, N.; Luxa, J.; Děkanovský, L.; Ashtiani, S.; Fomekong, R.L.; Sofer, Z. Two-Dimensional VSe2 Nanoflakes as a Promising Sensing Electrocatalyst for Nitrobenzene Determination in Water Samples. Electrochim. Acta 2024, 475, 143653. [Google Scholar] [CrossRef]
- Baek, J.; Yin, D.; Liu, N.; Omkaram, I.; Jung, C.; Im, H.; Hong, S.; Kim, S.M.; Hong, Y.K.; Hur, J.; et al. A Highly Sensitive Chemical Gas Detecting Transistor Based on Highly Crystalline CVD-Grown MoSe2 Films. Nano Res. 2017, 10, 1861–1871. [Google Scholar] [CrossRef]
- Malavekar, D.B.; Jadhav, S.B.; Kale, S.B.; Patil, U.M.; Lokhande, C.D. Surface Modification of Copper Selenide for Reliable Non-Enzymatic Glucose Sensing. Mater. Today Sustain. 2022, 20, 100215. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, J.; Zhang, W.; Hu, N.; Wang, J.; Huang, L.; Wang, R.; Suo, Y.; Wang, J. Monolithic Copper Selenide Submicron Particulate Film/Copper Foam Anode Catalyst for Ultrasensitive Electrochemical Glucose Sensing in Human Blood Serum. J. Mater. Chem. B 2018, 6, 718–724. [Google Scholar] [CrossRef]
- Umapathi, S.; Singh, H.; Masud, J.; Nath, M. Nanostructured Copper Selenide as an Ultrasensitive and Selective Non-Enzymatic Glucose Sensor. Mater. Adv. 2021, 2, 927–932. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, P.; Lei, J.; Dong, W.; Wang, J. Integrated 3D MoSe2@Ni0.85Se Nanowire Network with Synergistic Cooperation as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction in Alkaline Medium. Electrochim. Acta 2017, 246, 712–719. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, L.; Huang, Y.; Sun, Y.; Hu, T.; Xu, K.; Ma, F. Hydrothermal Synthesis of N-Doped RGO/MoSe2 Composites and Enhanced Electro-Catalytic Hydrogen Evolution. J. Mater. Sci. 2017, 52, 13561–13571. [Google Scholar] [CrossRef]
- Nitsche, F.; Goltz, T.; Klauss, H.H.; Isaeva, A.; Müller, U.; Schnelle, W.; Simon, P.; Doert, T.; Ruck, M. Room-Temperature Synthesis, Hydrothermal Recrystallization, and Properties of Metastable Stoichiometric FeSe. Inorg. Chem. 2012, 51, 7370–7376. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Zhang, X.; Che, G.; Fan, W.; Liu, C. Controlled Hydrothermal Synthesis and Magnetic Properties of Three-Dimensional FeSe2 Rod Clusters and Microspheres. Chem. Eng. J. 2013, 215–216, 508–516. [Google Scholar] [CrossRef]
- Hou, Y.; Lohe, M.R.; Zhang, J.; Liu, S.; Zhuang, X.; Feng, X. Vertically Oriented Cobalt Selenide/NiFe Layered-Double-Hydroxide Nanosheets Supported on Exfoliated Graphene Foil: An Efficient 3D Electrode for Overall Water Splitting. Energy Environ. Sci. 2016, 9, 478–483. [Google Scholar] [CrossRef]
- Gao, M.R.; Liang, J.X.; Zheng, Y.R.; Xu, Y.F.; Jiang, J.; Gao, Q.; Li, J.; Yu, S.H. An Efficient Molybdenum Disulfide/Cobalt Diselenide Hybrid Catalyst for Electrochemical Hydrogen Generation. Nat. Commun. 2015, 6, 5982. [Google Scholar] [CrossRef]
- Moloto, N.; Moloto, M.J.; Coville, N.J.; Sinha Ray, S. Optical and Structural Characterization of Nickel Selenide Nanoparticles Synthesized by Simple Methods. J. Cryst. Growth 2009, 311, 3924–3932. [Google Scholar] [CrossRef]
- Salavati-Niasari, M.; Sobhani, A. Effect of Nickel Salt Precursors on Morphology, Size, Optical Property and Type of Products (NiSe or Se) in Hydrothermal Method. Opt. Mater. 2013, 35, 904–909. [Google Scholar] [CrossRef]
- Sobhani, A.; Salavati-Niasari, M. Synthesis and Characterization of CdSe Nanostructures by Using a New Selenium Source: Effect of Hydrothermal Preparation Conditions. Mater. Res. Bull. 2014, 53, 7–14. [Google Scholar] [CrossRef]
- Liu, X.; Liu, R.; Chen, S.; Liang, B. Hydrothermal Synthesis of CdSe Hierarchical Dendrites Using Ionic Liquid as Template. Mater. Lett. 2012, 66, 264–266. [Google Scholar] [CrossRef]
- Sobhani, A.; Salavati-Niasari, M. A New Simple Route for the Preparation of Nanosized Copper Selenides under Different Conditions. Ceram. Int. 2014, 40, 8173–8182. [Google Scholar] [CrossRef]
- Gong, H.; Huang, H.; Wang, M.; Liu, K. Characterization and Growth Mechanism of ZnSe Microspheres Prepared by Hydrothermal Synthesis. Ceram. Int. 2007, 33, 1381–1384. [Google Scholar] [CrossRef]
- Zhu, C.; Gao, D.; Ding, J.; Chao, D.; Wang, J. TMD-Based Highly Efficient Electrocatalysts Developed by Combined Computational and Experimental Approaches. Chem. Soc. Rev. 2018, 47, 4332–4356. [Google Scholar] [CrossRef]
- Zeng, H.; Dai, J.; Yao, W.; Xiao, D.; Cui, X. Valley Polarization in MoS2 Monolayers by Optical Pumping. Nat. Nanotechnol. 2012, 7, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.; Wang, G.; Han, W.; Ye, H.; Zhu, C.; Shi, J.; Niu, Q.; Tan, P.; Wang, E.; Liu, B.; et al. Valley-Selective Circular Dichroism of Monolayer Molybdenum Disulphide. Nat. Commun. 2012, 3, 887. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, Y.A.; Ivanou, D.K.; Streltsov, E.A. Electrodeposition of PbSe onto N-Si(100) Wafers. Electrochim. Acta 2008, 53, 5051–5057. [Google Scholar] [CrossRef]
- Mahalingam, T.; Thanikaikarasan, S.; Dhanasekaran, V.; Kathalingam, A.; Velumani, S.; Rhee, J.K. Preparation and Characterization of MnSe Thin Films. Mater. Sci. Eng. B 2010, 174, 257–262. [Google Scholar] [CrossRef]
- Erenturk, B.; Gurbuz, S.; Corbett, R.E.; Claiborne, S.A.M.; Krizan, J.; Venkataraman, D.; Carter, K.R. Formation of Crystalline Cadmium Selenide Nanowires. Chem. Mater. 2011, 23, 3371–3376. [Google Scholar] [CrossRef]
- Demura, S.; Okazaki, H.; Ozaki, T.; Hara, H.; Kawasaki, Y.; Deguchi, K.; Watanabe, T.; Denholme, S.J.; Mizuguchi, Y.; Yamaguchi, T.; et al. Electrodeposition as a New Route to Synthesize Superconducting FeSe. Solid State Commun. 2013, 154, 40–42. [Google Scholar] [CrossRef]
- Delphine, S.M.; Jayachandran, M.; Sanjeeviraja, C. Pulsed Electrodeposition and Characterisation of Tungsten Diselenide Thin Films. Mater. Chem. Phys. 2003, 81, 78–83. [Google Scholar] [CrossRef]
- Damien, D.; Anil, A.; Chatterjee, D.; Shaijumon, M.M. Direct Deposition of MoSe2 Nanocrystals onto Conducting Substrates: Towards Ultra-Efficient Electrocatalysts for Hydrogen Evolution. J. Mater. Chem. A 2017, 5, 13364–13372. [Google Scholar] [CrossRef]
- Moysiadou, A.; Koutsikou, R.; Bouroushian, M. Pulse Electrodeposition of Copper Selenides from Acidic Aqueous Baths. Mater. Lett. 2015, 139, 112–115. [Google Scholar] [CrossRef]
- Xi, X.; Zhao, L.; Wang, Z.; Berger, H.; Forró, L.; Shan, J.; Mak, K.F. Strongly Enhanced Charge-Density-Wave Order in Monolayer NbSe2. Nat. Nanotechnol. 2015, 10, 765–769. [Google Scholar] [CrossRef]
- Wang, K.; Xi, D.; Zhou, C.; Shi, Z.; Xia, H.; Liu, G.; Qiao, G. CoSe2 Necklace-like Nanowires Supported by Carbon Fiber Paper: A 3D Integrated Electrode for the Hydrogen Evolution Reaction. J. Mater. Chem. A 2015, 3, 9415–9420. [Google Scholar] [CrossRef]
- Wu, Z. Transition Metal Selenides for Oxygen Evolution Reaction. Energy Technol. 2024, 12, 2301574. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Gao, W.; Mao, Z.; Hu, E.; Gao, X.; Zhang, J.; Chen, Z. Strategies to Enhance the Electrocatalytic Behavior of Metal Selenides for Hydrogen Evolution Reaction: A Review. Int. J. Hydrogen Energy 2023, 48, 36722–36749. [Google Scholar] [CrossRef]
- Deng, Y.; Xiao, S.; Zheng, Y.; Rong, X.; Bai, M.; Tang, Y.; Ma, T.; Cheng, C.; Zhao, C. Emerging Electrocatalytic Activities in Transition Metal Selenides: Synthesis, Electronic Modulation, and Structure-Performance Correlations. Chem. Eng. J. 2023, 451, 138514. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Y.; Abdukayum, A.; Xie, X.; Gao, S.; Liu, X.; Zhang, L.; Liu, Q.; Hu, G. Recent Advances in Selenide-Based Electrocatalysts for Hydrogen/Oxygen Evolution Reaction: From Mechanism and Synthesis to Application. Mater. Today Energy 2024, 44, 101641. [Google Scholar] [CrossRef]
- Zeng, C.; Dai, L.; Jin, Y.; Liu, J.; Zhang, Q.; Wang, H. Design Strategies toward Transition Metal Selenide-Based Catalysts for Electrochemical Water Splitting. Sustain. Energy Fuels 2021, 5, 1347–1365. [Google Scholar] [CrossRef]
- Feng, W.; Pang, W.; Xu, Y.; Guo, A.; Gao, X.; Qiu, X.; Chen, W. Transition Metal Selenides for Electrocatalytic Hydrogen Evolution Reaction. ChemElectroChem 2020, 7, 31–54. [Google Scholar] [CrossRef]
- Ahmed, S.; Gondal, M.A.; Alzahrani, A.S.; Almessiere, M.A. Critical Review on Transition Metal Selenides/Graphene Composite as Futuristic Electrode Material for High Performance Supercapacitors. J. Energy Storage 2023, 74, 109214. [Google Scholar] [CrossRef]
- Sajjad, M.; Amin, M.; Javed, M.S.; Imran, M.; Hu, W.; Mao, Z.; Lu, W. Recent Trends in Transition Metal Diselenides (XSe2: X = Ni, Mn, Co) and Their Composites for High Energy Faradic Supercapacitors. J. Energy Storage 2021, 43, 103176. [Google Scholar] [CrossRef]
- Ali Khan, B.; Haider, F.; Zhang, T.; Zahra, S. Advances in Graphene-Transition Metal Selenides Hybrid Materials for High-Performance Supercapacitors: A Review. Chem. Rec. 2025, 25, e202500037. [Google Scholar] [CrossRef]
- Yadav, M.S.; Kour, S.; Sharma, A.L. A Critical Review on Various Bimetallic Chalcogenides (Sulfides, Selenides, and Tellurides) as Efficient Electrode Materials for Advanced Supercapacitors. Mater. Today Commun. 2024, 41, 110520. [Google Scholar] [CrossRef]
- Tang, G.; Liang, J.; Wu, W. Transition Metal Selenides for Supercapacitors. Adv. Funct. Mater. 2024, 34, 2310399. [Google Scholar] [CrossRef]
- Tapa, A.R.; Xiang, W.; Zhao, X. Metal Chalcogenides (MxEy; E = S, Se, and Te) as Counter Electrodes for Dye–Sensitized Solar Cells: An Overview and Guidelines. Adv. Energy Sustain. Res. 2021, 2, 2100056. [Google Scholar] [CrossRef]
- Pan, J.; Wang, X.; Li, H.; Cui, Z.; Chen, H.; Nie, J.; Gou, H.; Yu, D.; Chen, C.; Liu, Y. The Conversion-Type Selenides as Potential High-Energy Cathode Materials for Mg-Based Batteries: A Review. ACS Sustain. Chem. Eng. 2022, 10, 14980–15006. [Google Scholar] [CrossRef]
- Wang, H.; Deng, N.; Wang, S.; Wang, X.; Li, Y.; Zeng, Q.; Luo, S.; Cui, X.; Cheng, B.; Kang, W. Advanced Preparation and Application of Transition Metal Selenides in Lithium–Sulfur Batteries: A Review. J. Mater. Chem. A Mater. 2022, 10, 23433–23466. [Google Scholar] [CrossRef]
- Ni, W.; Li, X.; Shi, L.-Y.; Ma, J. Research Progress on ZnSe and ZnTe Anodes for Rechargeable Batteries. Nanoscale 2022, 14, 9609–9635. [Google Scholar] [CrossRef]
- Li, L.; Wang, S.; Peng, J.; Lai, J.; Zhang, H.; Yang, J. Transition Metal Selenide-Based Anodes for Advanced Sodium-Ion Batteries: Electronic Structure Manipulation and Heterojunction Construction Aspect. Molecules 2024, 29, 3083. [Google Scholar] [CrossRef]
- Durairaj, A.; Sakthivel, T.; Ramanathan, S.; Obadiah, A.; Vasanthkumar, S. Hierarchical Cu2Se Nanostructures Film for Peroxymonosulfate Activation and Electrocatalytic Hydrogen Evolution. J. Taiwan Inst. Chem. Eng. 2019, 99, 66–73. [Google Scholar] [CrossRef]
- Rao, Y.F.; Qu, L.; Yang, H.; Chu, W. Degradation of Carbamazepine by Fe(II)-Activated Persulfate Process. J. Hazard. Mater. 2014, 268, 23–32. [Google Scholar] [CrossRef]
- Diao, Z.H.; Wei-Qian; Guo, P.-R.; Kong, L.J.; Pu, S.Y. Photo-Assisted Degradation of Bisphenol A by a Novel FeS2@SiO2 Microspheres Activated Persulphate Process: Synergistic Effect, Pathway and Mechanism. Chem. Eng. J. 2018, 349, 683–693. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, K.; Srivastava, O.N. Template Free-Solvothermaly Synthesized Copper Selenide (CuSe, Cu2−xSe, β-Cu2Se and Cu2Se) Hexagonal Nanoplates from Different Precursors at Low Temperature. J. Cryst. Growth 2010, 312, 2804–2813. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D.; Gonzalez, M.A. Cobalt-Mediated Activation of Peroxymonosulfate and Sulfate Radical Attack on Phenolic Compounds. Implications of Chloride Ions. Environ. Sci. Technol. 2006, 40, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Zhang, T.; Cui, H.; Dionysiou, D.D.; Liu, C.; Gao, J.; Wang, Y.; Zhou, D. Synergy between Iron and Selenide on FeSe2(111) Surface Driving Peroxymonosulfate Activation for Efficient Degradation of Pollutants. Environ. Sci. Technol. 2020, 54, 15489–15498. [Google Scholar] [CrossRef]
- Fang, G.D.; Dionysiou, D.D.; Al-Abed, S.R.; Zhou, D.M. Superoxide Radical Driving the Activation of Persulfate by Magnetite Nanoparticles: Implications for the Degradation of PCBs. Appl. Catal. B Environ. 2013, 129, 325–332. [Google Scholar] [CrossRef]
- Dong, C.; Wang, Z.; Ye, Z.; He, J.; Zheng, Z.; Gong, X.; Zhang, J.; Lo, I.M.C. Superoxide Radicals Dominated Visible Light Driven Peroxymonosulfate Activation Using Molybdenum Selenide (MoSe2) for Boosting Catalytic Degradation of Pharmaceuticals and Personal Care Products. Appl. Catal. B Environ. 2021, 296, 120223. [Google Scholar] [CrossRef]
- Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T.S.; Li, J.; Grossman, J.C.; Wu, J. Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576–5580. [Google Scholar] [CrossRef]
- Karuppasamy, K.; Santhoshkumar, P.; Hussain, T.; Vikraman, D.; Yim, C.J.; Hussain, S.; Shanmugam, P.; Alfantazi, A.; Manickam, S.; Kim, H.S. Influence of Selenium Precursors on the Formation of Iron Selenide Nanostructures (FeSe2): Efficient Electro-Fenton Catalysts for Detoxification of Harmful Organic Dyestuffs. Chemosphere 2021, 272, 129639. [Google Scholar] [CrossRef]
- Venci, X.; George, A.; Raj, A.D.; Irudayaraj, A.A.; Pazhanivel, T.; Josephine, R.L.; Sundaram, S.J.; Kaviyarasu, K.; Raja, A.; Al-Mekhlafi, F.A.; et al. Photocatalytic Degradation Effect of CdSe Nanoparticles for Textile Wastewater Effluents at Low Cost and Proves to Be Efficient Method. Environ. Res. 2022, 213, 113595. [Google Scholar] [CrossRef]
- Venci, X.; George, A.; Raj, A.D.; Irudayaraj, A.A.; Josephine, R.L.; Sundaram, S.J.; Kaviyarasu, K. Self-Assembly of CdSe 3D Urchins and Their Photocatalytic Response. Environ. Res. 2022, 214, 113804. [Google Scholar] [CrossRef]
- Fung, C.S.L.; Khan, M.; Kumar, A.; Lo, I.M.C. Visible-Light-Driven Photocatalytic Removal of PPCPs Using Magnetically Separable Bismuth Oxybromo-Iodide Solid Solutions: Mechanisms, Pathways, and Reusability in Real Sewage. Sep. Purif. Technol. 2019, 216, 102–114. [Google Scholar] [CrossRef]
- Li, J.; Dodgen, L.; Ye, Q.; Gan, J. Degradation Kinetics and Metabolites of Carbamazepine in Soil. Environ. Sci. Technol. 2013, 47, 3678–3684. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Sun, Y.; Dong, F. Graphitic Carbon Nitride Based Nanocomposites: A Review. Nanoscale 2015, 7, 15–37. [Google Scholar] [CrossRef]
- Stancu, A.G.; Râpă, M.; Popa, C.L.; Donțu, S.I.; Matei, E.; Covaliu-Mirelă, C.I. Degradation of Emerging Plastic Pollutants from Aquatic Environments Using TiO2 and Their Composites in Visible Light Photocatalysis. Molecules 2025, 30, 3186. [Google Scholar] [CrossRef] [PubMed]
- Nemiwal, M.; Zhang, T.C.; Kumar, D. Recent Progress in g-C3N4, TiO2 and ZnO Based Photocatalysts for Dye Degradation: Strategies to Improve Photocatalytic Activity. Sci. Total Environ. 2021, 767, 144896. [Google Scholar] [CrossRef] [PubMed]
- Maridevaru, M.C.; Sorrentino, A.; Aljafari, B.; Anandan, S. Composites for Aqueous-Mediated Heterogeneously Catalyzed Degradation and Mineralization of Water Pollutants on TiO2—A Review. J. Compos. Sci. 2022, 6, 350. [Google Scholar] [CrossRef]
- Musial, J.; Mlynarczyk, D.T.; Stanisz, B.J. Photocatalytic Degradation of Sulfamethoxazole Using TiO2-Based Materials—Perspectives for the Development of a Sustainable Water Treatment Technology. Sci. Total Environ. 2023, 856, 159122. [Google Scholar] [CrossRef]
- Rashid, R.; Shafiq, I.; Gilani, M.R.H.S.; Maaz, M.; Akhter, P.; Hussain, M.; Jeong, K.-E.; Kwon, E.E.; Bae, S.; Park, Y.-K. Advancements in TiO2-Based Photocatalysis for Environmental Remediation: Strategies for Enhancing Visible-Light-Driven Activity. Chemosphere 2024, 349, 140703. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, H. Coupled Adsorption and Photocatalysis of g-C3N4 Based Composites: Material Synthesis, Mechanism, and Environmental Applications. Chem. Eng. J. 2023, 453, 139755. [Google Scholar] [CrossRef]
- Bairamis, F.; Rapti, I.; Konstantinou, I. g-C3N4 Based Z-Scheme Photocatalysts for Environmental Pollutants Removal. Curr. Opin. Green Sustain. Chem. 2023, 40, 100749. [Google Scholar] [CrossRef]
- Prasad, C.; Madkhali, N.; Govinda, V.; Choi, H.Y.; Bahadur, I.; Sangaraju, S. Recent Progress on the Development of g-C3N4 Based Composite Material and Their Photocatalytic Application of CO2 Reductions. J. Environ. Chem. Eng. 2023, 11, 109727. [Google Scholar] [CrossRef]
- Song, X.-L.; Chen, L.; Ren, J.-T.; Gao, L.-J.; Yuan, Z.-Y. Engineering of g-C3N4-Based Composites for Photocatalytic and Electrocatalytic Water Splitting: Recent Progress, Challenges and Perspective. Coord. Chem. Rev. 2024, 507, 215752. [Google Scholar] [CrossRef]
- Bi, J.; Zhu, Z.; Li, T.; Lv, Z. Research Progress on g-C3N4-Based Materials for Efficient Tetracyclines Photodegradation in Wastewater: A Review. J. Water Process Eng. 2024, 66, 105941. [Google Scholar] [CrossRef]
- Singh, R.; Chauhan, M.; Garg, P.; Sharma, B.; Attri, P.; Sharma, R.K.; Sharma, D.; Chaudhary, G.R. A Critical Review on Visible Light Active Graphitic Carbon Nitride (g-CN) Based Photocatalyst for Environment Remediation Application: A Sustainable Approach. J. Clean. Prod. 2023, 427, 138855. [Google Scholar] [CrossRef]
- Xu, B.; Ahmed, M.B.; Zhou, J.L.; Altaee, A.; Xu, G.; Wu, M. Graphitic Carbon Nitride Based Nanocomposites for the Photocatalysis of Organic Contaminants under Visible Irradiation: Progress, Limitations and Future Directions. Sci. Total Environ. 2018, 633, 546–559. [Google Scholar] [CrossRef] [PubMed]
- Roškarič, M.; Žerjav, G.; Zavašnik, J.; Finšgar, M.; Pintar, A. Effect of TiO2 Morphology on the Properties and Photocatalytic Activity of g-C3N4/TiO2 Nanocomposites Under Visible-Light Illumination. Molecules 2025, 30, 460. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef]
- Diebold, U. The Surface Science of Titanium Dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [Google Scholar] [CrossRef]
- Scanlon, D.O.; Dunnill, C.W.; Buckeridge, J.; Shevlin, S.A.; Logsdail, A.J.; Woodley, S.M.; Catlow, C.R.A.; Powell, M.J.; Palgrave, R.G.; Parkin, I.P.; et al. Band Alignment of Rutile and Anatase TiO2. Nat. Mater. 2013, 12, 798–801. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D. TiO2 Photocatalysis and Related Surface Phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef]
- Darkwah, W.K.; Ao, Y. Mini Review on the Structure and Properties (Photocatalysis), and Preparation Techniques of Graphitic Carbon Nitride Nano-Based Particle, and Its Applications. Nanoscale Res. Lett. 2018, 13, 388. [Google Scholar] [CrossRef]
- Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-Based Heterostructured Photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. [Google Scholar] [CrossRef]
- Mousavi, M.; Habibi-Yangjeh, A.; Pouran, S.R. Review on Magnetically Separable Graphitic Carbon Nitride-Based Nanocomposites as Promising Visible-Light-Driven Photocatalysts. J. Mater. Sci. Mater. Electron. 2017, 29, 1719–1747. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nat. Mater. 2008, 8, 76–80. [Google Scholar] [CrossRef]
- Hussain, A.; Tahir, M.; Yang, W.; Ji, R.; Zheng, K.; Umer, M.; Ahmad, S.M.; Boota, M.; Iftikhar, A.; Raza, A.; et al. Synergic Effect among Activated Carbon/Sulphur-Assisted Graphitic Carbon Nitride for Enhanced Photocatalytic Activity. Diam. Relat. Mater. 2023, 135, 109836. [Google Scholar] [CrossRef]
- Hou, J.; Yang, M.; Dou, Q.; Chen, Q.; Wang, X.; Hu, C.; Paul, R. Defect Engineering in Polymeric Carbon Nitride with Accordion Structure for Efficient Photocatalytic CO2 Reduction and H2 Production. Chem. Eng. J. 2022, 450, 138425. [Google Scholar] [CrossRef]
- Masih, D.; Ma, Y.; Rohani, S. Graphitic C3N4 Based Noble-Metal-Free Photocatalyst Systems: A Review. Appl. Catal. B Environ. 2017, 206, 556–588. [Google Scholar] [CrossRef]
- Jia, J.; Zhang, T.; Li, K.; Zhang, J.; Wan, J.; Zhang, Y. Cobaltous Selenide/g-C3N4 Heterojunction Photocatalyst Based on Double-Electron Migration Mechanism Promotes Hydrogen Production and Tetracycline Hydrochloride Degradation. Int. J. Hydrogen Energy 2023, 48, 3901–3915. [Google Scholar] [CrossRef]
- Dileepkumar, V.G.; Balaji, K.R.; Vishwanatha, R.; Basavaraja, B.M.; Ashoka, S.; Al-Akraa, I.M.; Santosh, M.S.; Rtimi, S. CoSe2 Grafted on 2D gC3N4: A Promising Material for Wastewater Treatment, Electrocatalysis and Energy Storage. Chem. Eng. J. 2022, 446, 137023. [Google Scholar] [CrossRef]
- Ong, W.J.; Tan, L.L.; Chai, S.P.; Yong, S.T.; Mohamed, A.R. Surface Charge Modification via Protonation of Graphitic Carbon Nitride (g-C3N4) for Electrostatic Self-Assembly Construction of 2D/2D Reduced Graphene Oxide (RGO)/g-C3N4 Nanostructures toward Enhanced Photocatalytic Reduction of Carbon Dioxide to Methane. Nano Energy 2015, 13, 757–770. [Google Scholar] [CrossRef]
- Wang, K.; Song, S.; Zhang, Q.; Jin, Y.; Zhang, Q. Fabrication of Protonated g-C3N4 Nanosheets as Promising Proton Conductive Materials. Chem. Commun. 2019, 55, 7414–7417. [Google Scholar] [CrossRef]
- Shen, S.; Zhong, W.; Wang, Z.; Lin, Z.; Feng, S. β-FeSe Nanorods Composited g-C3N4 with Enhanced Photocatalytic Efficiency. R. Soc. Open Sci. 2019, 6, 181886. [Google Scholar] [CrossRef] [PubMed]
- Hadadi, N.A.; Baig, U.; Gondal, M.A.; Mohamed, M.J.S.; Dastageer, M.A. Pulsed Laser Induced Synthesis of Graphitic Carbon Nitride-Cadmium Selenide Nanocomposite for Photo-Catalytic Degradation of Organic Dyes, and Electro-Catalytic Hydrogen Evolution Reaction. Colloids Surf. A Physicochem. Eng. Asp. 2023, 658, 130711. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, X.; Shi, H.; Wang, Y.; Ren, Y.; Liu, E.; Zhang, X.; Fan, J.; Hu, X. Photocatalytic Activity Enhanced by Synergistic Effects of Nano-Silver and ZnSe Quantum Dots Co-Loaded with Bulk g-C3N4 for Ceftriaxone Sodium Degradation in Aquatic Environment. Chem. Eng. J. 2018, 353, 56–68. [Google Scholar] [CrossRef]
- Ehsan, M.F.; Shafiq, M.; Hamid, S.; Shafiee, A.; Usman, M.; Khan, I.; Ashiq, M.N.; Arfan, M. Reactive Oxygen Species: New Insights into Photocatalytic Pollutant Degradation over g-C3N4/ZnSe Nanocomposite. Appl. Surf. Sci. 2020, 532, 147418. [Google Scholar] [CrossRef]
- Bigdeli Tabar, M.; Azimi, H.; Yousefi, R. The Se Role as a Mediator to Enhance the Photocatalytic Performance of the ZnSe/g-C3N4 Nanocomposites. Appl. Surf. Sci. 2023, 622, 156912. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, Y.; Chen, F.; Shi, H. Metallic NiSe Cocatalyst Decorated g-C3N4 with Enhanced Photocatalytic Activity. Chem. Eng. J. 2021, 413, 127474. [Google Scholar] [CrossRef]
- Poiyamozhi, M.V.V.T.; Thivya, J. Design and Fabrication of Graphitic Carbon Nitride Incorporated Nickel Selenide Hybrid Composite for Effective Degradation of Organic Pollutants under UV and Natural Sunlight Irradiations. Diam. Relat. Mater. 2024, 142, 110726. [Google Scholar] [CrossRef]
- Saray, A.M.; Yousefi, R.; Zare-Dehnavi, N.; Jamali-Sheini, F. Improvement Visible-Light Photocatalytic Performance of Single-Crystalline SnSe1±x NPs toward Degradation of Organic Pollutants. Solid State Sci. 2019, 98, 106044. [Google Scholar] [CrossRef]
- Mohan, H.; Ha, G.H.; Oh, H.S.; Kim, G.; Shin, T. Zinc Iron Selenide Nanoflowers Anchored g-C3N4 as Advanced Catalyst for Photocatalytic Water Splitting and Dye Degradation. Chemosphere 2022, 307, 135937. [Google Scholar] [CrossRef]
- Nouri, M.; Zare-Dehnavi, N.; Jamali-Sheini, F.; Yousefi, R. Synthesis and Characterization of Type-II p(CuxSey)/n(g-C3N4) Heterojunction with Enhanced Visible-Light Photocatalytic Performance for Degradation of Dye Pollutants. Colloids Surf. A Physicochem. Eng. Asp. 2020, 595, 124656. [Google Scholar] [CrossRef]
- Zeng, J.H.; Jin, B.B.; Wang, Y.F. Facet Enhanced Photocatalytic Effect with Uniform Single-Crystalline Zinc Oxide Nanodisks. Chem. Phys. Lett. 2009, 472, 90–95. [Google Scholar] [CrossRef]
- Durairasan, M.; Karthik, P.S.; Balaji, J.; Rajeshkanna, B. Enhanced Visible Light Photocatalytic Performance of WSe2/CNT Hybrid Photocatalysts That Were Synthesized by a Facile Hydrothermal Route. Ionics 2021, 27, 2151–2158. [Google Scholar] [CrossRef]
- Ali, Z.; Asif, M.; Huang, X.; Tang, T.; Hou, Y. Hierarchically Porous Fe2CoSe4 Binary-Metal Selenide for Extraordinary Rate Performance and Durable Anode of Sodium-Ion Batteries. Adv. Mater. 2018, 30, 1802745. [Google Scholar] [CrossRef]
- Chen, D.; Cheng, Y.; Zhou, N.; Chen, P.; Wang, Y.; Li, K.; Huo, S.; Cheng, P.; Peng, P.; Zhang, R.; et al. Photocatalytic Degradation of Organic Pollutants Using TiO2-Based Photocatalysts: A Review. J. Clean. Prod. 2020, 268, 121725. [Google Scholar] [CrossRef]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Kusiak-Nejman, E.; Morawski, A.W. TiO2/Graphene-Based Nanocomposites for Water Treatment: A Brief Overview of Charge Carrier Transfer, Antimicrobial and Photocatalytic Performance. Appl. Catal. B Environ. 2019, 253, 179–186. [Google Scholar] [CrossRef]
- Burda, C.; Lou, Y.; Chen, X.; Samia, A.C.S.; Stout, J.; Gole, J.L. Enhanced Nitrogen Doping in TiO2 Nanoparticles. Nano Lett. 2003, 3, 1049–1051. [Google Scholar] [CrossRef]
- Li, Y.; Luo, S.; Yang, L.; Liu, C.; Chen, Y.; Meng, D. Photo-Assisted Synthesis of Rosalike CuSe Hierarchical Nanostructures on TiO2 Nanotubes with Remarkable Photocatalytic Performance. Electrochim. Acta 2012, 83, 394–401. [Google Scholar] [CrossRef]
- Xu, D.; Liu, B.; Zou, W.; Wang, H.; Zhang, C. In Situ Synthesis of TiO2 Nanosheets@CdSe Nanocomposites and the Improved Photocatalytic Performance on Removal of Methylene Blue. Appl. Surf. Sci. 2019, 487, 91–100. [Google Scholar] [CrossRef]
- Warkhade, S.K.; Zodape, S.P.; Pratap, U.R.; Wankhade, A.V. Rutile TiO2/CoSe Nanocomposite: An Efficient Photocatalyst for Photodegradation of Model Organic Dyes under Visible Light Irradiation. J. Mol. Liq. 2019, 279, 434–443. [Google Scholar] [CrossRef]
- Khan, A.; Khan, A.U.; Tahir, K.; Liu, J.; Zaki, M.E.A.; Almarhoon, Z.M.; Alanazi, A.A.; Althagafi, T.M.; Al-Saeedi, S.I.; Mohamedbakr, H.G. FeSe2/TiO2 Heterostructure as an Efficient Photocatalyst and Their Electrochemical Energy Storage Applications. Mater. Chem. Phys. 2023, 303, 127793. [Google Scholar] [CrossRef]
- Ahmad, S.; Tahir, M.; Kamal, G.; Zhang, X.; Nazir, S.; Tahir, M.; Jiang, B.; Safdar, M. TiO2/Activated Carbon/2D Selenides Composite Photocatalysts for Industrial Wastewater Treatment. Water 2023, 15, 1788. [Google Scholar] [CrossRef]
- Moosavi, S.; Lai, C.W.; Gan, S.; Zamiri, G.; Akbarzadeh Pivehzhani, O.; Johan, M.R. Application of Efficient Magnetic Particles and Activated Carbon for Dye Removal from Wastewater. ACS Omega 2020, 5, 20684–20697. [Google Scholar] [CrossRef]
- Yan, Y.; Kuang, W.; Shi, L.; Ye, X.; Yang, Y.; Xie, X.; Shi, Q.; Tan, S. Carbon Quantum Dot-Decorated TiO2 for Fast and Sustainable Antibacterial Properties under Visible-Light. J. Alloys Compd. 2019, 777, 234–243. [Google Scholar] [CrossRef]
- Leary, R.; Westwood, A. Carbonaceous Nanomaterials for the Enhancement of TiO2 Photocatalysis. Carbon 2011, 49, 741–772. [Google Scholar] [CrossRef]
- Xie, T.; Liu, Y.; Wang, H.; Wu, Z. Layered MoSe2/Bi2WO6 Composite with P-N Heterojunctions as a Promising Visible-Light Induced Photocatalyst. Appl. Surf. Sci. 2018, 444, 320–329. [Google Scholar] [CrossRef]
- Rivera, P.; Schaibley, J.R.; Jones, A.M.; Ross, J.S.; Wu, S.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N.J.; et al. Observation of Long-Lived Interlayer Excitons in Monolayer MoSe2–WSe2 Heterostructures. Nat. Commun. 2015, 6, 6242. [Google Scholar] [CrossRef] [PubMed]
- Coehoorn, R.; Haas, C.; Dijkstra, J.; Flipse, C.J.F.; de Groot, R.A.; Wold, A. Electronic Structure of MoSe2, MoS2, and WSe2. I. Band-Structure Calculations and Photoelectron Spectroscopy. Phys. Rev. B 1987, 35, 6195–6202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, W.; Ran, L.; Wang, X.; Zou, B.; Zhou, L. Mechanism and Performance Evaluation of FeSe2 and MoS2-Loaded Carbon Fiber Sheet as a Novel Heterogeneous Fenton-like Catalyst. Appl. Surf. Sci. 2022, 598, 153860. [Google Scholar] [CrossRef]
- Xiao, S.; Zhou, J.; Liu, D.; Liu, W.; Li, L.; Liu, X.; Sun, Y. Efficient Degradation of Tetracycline Hydrochloride by Peroxymonosulfate Activated by Composite Materials FeSe2/Fe3O4 under Visible Light. Chem. Phys. Lett. 2022, 805, 139944. [Google Scholar] [CrossRef]
- Chen, C.; Yang, H.; Zhang, J.; Lin, J.; Yang, S.; Xiong, X.; Qin, H.; Xi, J.; Kong, Z.; Song, L. Cu2−xSe/FeSe2 Z-Type Heterojunction Demonstrate Versatile Boosting Photoelectrochemical, Electrocatalytic and Photocatalytic Properties. J. Alloys Compd. 2023, 947, 169496. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, J.; Xiong, X.; Lin, J.; Yang, S.; Xi, J.; Kong, Z. A Novel Z-Type Multidimensional FeSe2/CuSe Heterojunction Photocatalyst with High Photocatalytic and Photoelectrochemical Performance. Int. J. Hydrogen Energy 2022, 47, 28879–28893. [Google Scholar] [CrossRef]
- Xiong, X.; Zhang, J.; Cheng, Y.; Chen, C.; Zeng, J.; Xi, J.; Kong, Z.; Yuan, Y.-J.; Ji, Z. Excellent Photocatalytic and Photoelectrochemical Activities from 1D/2D FeSe2/SnSe Heterojunction Photocatalysts Constructed by FeSe2 Nanorods and SnSe Nanosheets. Int. J. Hydrogen Energy 2022, 47, 7189–7201. [Google Scholar] [CrossRef]
- Cheng, Y.; Yang, H.; Zhang, J.; Xiong, X.; Chen, C.; Zeng, J.; Xi, J.; Yuan, Y.-J.; Ji, Z. Novel 0D/2D ZnSe/SnSe Heterojunction Photocatalysts Exhibiting Enhanced Photocatalytic and Photoelectrochemical Activities. J. Alloys Compd. 2022, 897, 163123. [Google Scholar] [CrossRef]
- Du, C.; Nie, S.; Zhang, C.; Wang, T.; Wang, S.; Zhang, J.; Yu, C.; Lu, Z.; Dong, S.; Feng, J.; et al. Dual-Functional Z-Scheme CdSe/Se/BiOBr Photocatalyst: Generation of Hydrogen Peroxide and Efficient Degradation of Ciprofloxacin. J. Colloid Interface Sci. 2022, 606, 1715–1728. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Liu, J.; Song, P. Electro-Activated Peroxymonosulfate Based on Hollow Cubic Skeleton Nanoflower Cathode Catalyst MoSe2/Cubic Nanocage (CNC) for Enhanced Degradation of Norfloxacin: Performance, Mechanism, Degradation Pathways and Toxicity. J. Colloid Interface Sci. 2025, 681, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, A.; Atif, M.; Khan, A.; Siddique, M.; Ali, N.; Naz, F.; Bilal, M.; Kim, T.H.; Momotko, M.; Haq, H.U.; et al. Solar Light Driven Degradation of Textile Dye Contaminants for Wastewater Treatment—Studies of Novel Polycationic Selenide Photocatalyst and Process Optimization by Response Surface Methodology Desirability Factor. Chemosphere 2023, 328, 138476. [Google Scholar] [CrossRef]
- Sajjadi, S.; Khataee, A.; Kamali, M. Sonocatalytic Degradation of Methylene Blue by a Novel Graphene Quantum Dots Anchored CdSe Nanocatalyst. Ultrason. Sonochem. 2017, 39, 676–685. [Google Scholar] [CrossRef]
- Sheebha, I.; Venugopal, V.; James, J.; Maheskumar, V.; Sakunthala, A.; Vidhya, B. Comparative Studies on Hierarchical Flower like Cu2XSnS4[X= Zn, Ni, Mn & Co] Quaternary Semiconductor for Electrocatalytic and Photocatalytic Applications. Int. J. Hydrogen Energy 2020, 45, 8139–8150. [Google Scholar] [CrossRef]
Catalyst | Synthesis Method | Pollutant | Catalyst (g L−1) | Concentration (mg L−1) | % Degradation (Time) | TOC Removal | Ref. |
---|---|---|---|---|---|---|---|
CoSe2 | Solvothermal | TCH | 0.6 | 20 | 75.1% (60 min) | - | [170] |
7.5% CoSe2/CNNS | Solvothermal | 0.6 | 20 | 86.2% (60 min) | 40.6% (2 h) | ||
CoSe2 | Hydrothermal | BPA | 0.03 | 30 | ~40% (3 h 30 min) | 41.65% | [171] |
CoSe2-gC3N4 | Hydrothermal | 0.03 | 30 | 92.73% (3 h 30 min) | 90.31% | ||
β-FeSe/g-C3N4 | Solid-state reaction | RhB | 1 | 30 | 100% (60 min) | - | [174] |
β-FeSe/g-C3N4 | Solid-state reaction | RhB | 1 | 30 | 45% (3 h) | - | |
g-C3N4/CdSe x% (x = 0, 1, 2.5, 5 wt%) | Pulsed laser-induced method | RhB | - | 10 | ~90% (120 min) g-C3N4/CdSe 2.5% | - | [175] |
MB | - | 10 | ~95% (120 min) g-C3N4/CdSe 2.5% | - | |||
ZnSe | - | CTX | 1 | - | 19.83% (90 min) | - | [176] |
g-C3N4 | - | 1 | - | 56.01% (90 min) | - | ||
x% ZnSe/g-C3N4 (x = 3, 5, 9) | - | 1 | - | 78.89% (90 min) 5% ZnSe/g-C3N4 | - | ||
x% Ag/g-C3N4 (x = 3, 5, 7, 9) | - | 1 | - | 65.57% (90 min) 7% Ag/g-C3N4 | - | ||
x% ZnSe-Ag/g-C3N4 (x = 1, 3, 5, 7, 9, 11) | Wet-chemical | 1 | - | 89.24% (90 min) 7% ZnSe-Ag/g-C3N4 | - | ||
g-C3N4 | Calcination | CR | 0.125 | 100 | 52.93% (60 min) | - | [177] |
ZnSe | Hydrothermal | 0.125 | 60.97% (60 min) | - | |||
g-C3N4/ZnSe | Hydrothermal | 0.125 | 95.69% (60 min) | - | |||
g-C3N4 | - | MB | 1 | - | 55% (120 min) | - | [178] |
ZnSe | Co-precipitation | 1 | - | 75% (120 min) | - | ||
ZnSe/g-C3N4 x% (x = 5, 10, 15 wt%) | Co-precipitation | 1 | - | 97% (120 min) ZnSe/g-C3N4 10% | - | ||
g-C3N4 | Thermal condensation | OTC | 1 | 20 | 88.6% (60 min) | - | [179] |
NiSe | - | 1 | 64.14% (60 min) | - | |||
x% NiSe/g-C3N4 (x = 1, 3, 6, 9, 15 wt%) | Solvothermal | 1 | 98.68% (60 min) 3% NiSe/g-C3N4 | 74.4% (30 min) 3% NiSe/g-C3N4 | |||
g-C3N4 | Thermal condensation | MO | 1 | 20 | 38.64% (5 min) | - | [179] |
NiSe | - | 1 | 22.81% (5 min) | - | |||
x% NiSe/g-C3N4 (x = 1, 3, 6, 9, 15 wt%) | Solvothermal | 1 | 92.25% (5 min) 3% NiSe/g-C3N4 | - | |||
g-C3N4 | Direct pyrolysis | RB 5 | 0.5 | 10 | ~20% (150 min) | - | [180] |
NiSe2 | - | 0.5 | ~10% (150 min) | - | |||
x% g-C3N4/NiSe2 (x = 10, 20, 30 wt%) | Ultrasonic-assisted hydrothermal | 0.5 | 86.4% (150 min) 30% g-C3N4/NiSe2 | - | |||
g-C3N4 | Direct pyrolysis | RV 5 | 0.5 | 10 | ~20% (150 min) | - | [180] |
NiSe2 | - | 0.5 | ~10% (150 min) | - | |||
x% g-C3N4/NiSe2 (x = 10, 20, 30 wt%) | Ultrasonic-assisted hydrothermal | 0.5 | 89.4% (150 min) 30% g-C3N4/NiSe2 | - | |||
g-C3N4 | - | MB | 0.33 | 10 | 30% (25 min) | - | [181] |
SnSe | Co-precipitation | 0.33 | ~94% (25 min) | - | |||
SnSe/g-C3N4 x% (x = 5, 10, 15 wt%) | Co-precipitation | 0.33 | 100% (25 min) SnSe/g-C3N4 10% | - | |||
g-C3N4 | - | RhB | - | 100 | - | - | [182] |
Zn/FeSe2 | Hydrothermal | 0.1 | 65% (60 min) | - | |||
g-C3N4-Zn/FeSe2 | Hydrothermal | 0.1 | 98% (60 min) | - | |||
g-C3N4 | - | MB | - | 10 | 35% (75 min) | - | [183] |
CuxSey | Co-precipitation | - | ~92% (75 min) | - | |||
CuxSey/g-C3N4 x% (x = 5, 10, 15 wt%) | Co-precipitation | - | 98% (60 min) CuxSey/g-C3N4 5% | - |
Catalyst | Synthesis Method | Pollutant | Catalyst (g L−1) | Pollutant (mg L−1) | % Degradation (Time) | TOC Removal | Ref. |
---|---|---|---|---|---|---|---|
CuSe/TiO2 | Photo-assisted chemical bath | ACA | - | 10 | 100% (70 min) | - | [192] |
TiO2 | - | MB | 1 | - | 90.4% (5 h) (UV irradiation) | - | [193] |
CdSe | - | 83.3% (5 h) (UV irradiation) | - | ||||
CdSe/TiO2 | HIPE | 98.5% (5 h) (UV irradiation) | - | ||||
TiO2 | - | MB | 1 | - | 41.5% (5 h) (simulated light irradiation) | - | [193] |
CdSe | - | ~60% (5 h) (simulated light irradiation) | - | ||||
CdSe/TiO2 | HIPE | 90.5% (5 h) (simulated light irradiation) | - | ||||
TiO2 | Hydrothermal | RhB | 0.5 | 60 | ~15% (90 min) | - | [194] |
CoSe | Hydrothermal | 18% (90 min) | - | ||||
TiO2/CoSe | Hydrothermal | 99.86% (90 min) | - | ||||
TiO2 | Hydrothermal | MB | 0.5 | 60 | - | - | [194] |
CoSe | Hydrothermal | - | - | ||||
TiO2/CoSe | Hydrothermal | 97.85% (90 min) | - | ||||
FeSe2 | Solvothermal | RhB | 0.1 | - | 91% (100 min) | - | [195] |
TiO2 | Sol–gel and solvothermal | 0.1 | - | 94% (180 min) | - | ||
(25%) FeSe2-TiO2 (75%) | Wet chemical | 0.1 | - | 98% (60 min) | - | ||
(50%) FeSe2-TiO2 (50%) | Wet chemical | 0.1 | - | 96% (90 min) | - | ||
TiO2 | Hydrothermal | MB | 0.1 | 10 | 71% (150 min) | - | [196] |
TiO2/0.25AC/MoSe2 | Hydrothermal | 0.1 | 10 | 76% (150 min) | - | ||
TiO2/0.50AC/MoSe2 | Hydrothermal | 0.1 | 10 | 80% (150 min) | - | ||
TiO2/0.75AC/MoSe2 | Hydrothermal | 0.1 | 10 | 81% (150 min) | - | ||
TiO2/1.00AC/MoSe2 | Hydrothermal | 0.1 | 10 | 83% (150 min) | - |
Catalyst | Synthesis Method | Pollutant | Catalyst (g L−1) | Concentration (mg L−1) | Oxidant (mM) | % Degradation (Time) | TOC Removal | Ref. |
---|---|---|---|---|---|---|---|---|
FeSe2@CFS | Solvothermal | MB | 0.25 | 20 | 50 (H2O2) | 16% (60 min) | - | [203] |
MoS2@CFS | Solvothermal | 0.25 | 20 | 50 (H2O2) | 99.7% (20 min) | - | ||
Fe3O4@MoS2@CFS | Solvothermal | 0.25 | 20 | 50 (H2O2) | 87.5% (10 min) | - | ||
FeSe2@MoS2@CFS | Solvothermal | 0.25 | 20 | 50 (H2O2) | 80.5% (10 min) | - | ||
MoS2@FeSe2@CFS | 2-step solvothermal | 0.25 | 20 | 50 (H2O2) | 99.6% (5 min) | - | ||
Fe3O4 | Hydrothermal | TC-HCl | 0.5 | 50 | - | - | - | [204] |
FeSe2 | Hydrothermal | 0.5 | 50 | - | - | - | ||
x FeSe2/Fe3O4 (x = 0.1, 0.2, 0.3) | Hydrothermal | 0.5 | 50 | - | 28.6% (60 min) 0.2 FeSe2/Fe3O4 | - | ||
Fe3O4 | Hydrothermal | TC-HCl | 0.5 | 50 | 2 (PMS) | - | - | [204] |
FeSe2 | Hydrothermal | 0.5 | 50 | 2 (PMS) | - | - | ||
x FeSe2/Fe3O4 (x = 0.1, 0.2, 0.3) | Hydrothermal | 0.5 | 50 | 2 (PMS) | 87.8% (60 min) 0.2 FeSe2/Fe3O4 | - | ||
Cu2−xSe | Hydrothermal | TC-HCl | 0.20 | 15 | - | ~84% (120 min) | - | [205] |
FeSe2 | Hydrothermal | 0.20 | 15 | - | ~40% (120 min) | - | ||
Cu2-xSe/FeSe2 | Hydrothermal | 0.20 | 15 | - | ~90% (210 min) CFS3 | - | ||
CuSe | Hydrothermal | MB | 0.20 | 15 | - | ~40% (120 min) | - | [206] |
FeSe2 | Hydrothermal | 0.20 | 15 | - | ~26% (120 min) | - | ||
FeSe2/CuSe | Hydrothermal | 0.20 | 15 | - | ~80% (210 min) FCS3 | - | ||
CuSe | Hydrothermal | LEV | 0.20 | 15 | - | ~10% (120 min) | - | [206] |
FeSe2 | Hydrothermal | 0.20 | 15 | - | ~35% (120 min) | - | ||
FeSe2/CuSe | Hydrothermal | 0.20 | 15 | - | ~55% (120 min) FCS3 | - | ||
SnSe | Hydrothermal | MB | 0.20 | 3.2 | - | ~40% (120 min) | - | [207] |
FeSe2 | Hydrothermal | 0.20 | 3.2 | - | ~10% (120 min) | - | ||
FeSe2/SnSe | Hydrothermal | 0.20 | 3.2 | - | ~60% (210 min) FSS4 | - | ||
ZnSe | Hydrothermal | MB | 0.20 | 3.2 | - | ~20% (120 min) | - | [208] |
SnSe | Hydrothermal | 0.20 | 3.2 | - | ~35% (120 min) | - | ||
ZnSe/SnSe | 2-step hydrothermal | 0.20 | 3.2 | - | ~55% (120 min) ZSS2 | - | ||
ZnSe | Hydrothermal | LEV | 0.20 | 3.6 | - | ~65% (120 min) | - | [208] |
SnSe | Hydrothermal | 0.20 | 3.6 | - | ~75% (120 min) | - | ||
ZnSe/SnSe | 2-step hydrothermal | 0.20 | 3.6 | - | 85% (120 min) ZSS2 | - | ||
CdSe/Se | Solvothermal | CIP | 1 | 20 | - | ~3% (30 min) | - | [209] |
BiOBr | Solvothermal | 1 | 20 | - | ~40% (30 min) | - | ||
CdSe/Se/BiOBr | 2-step solvothermal | 1 | 20 | - | ~100% (30 min) CSB-2 | 79.54% (30 min) | ||
CdSe/Se/BiOBr | 2-step solvothermal | TCS | 1 | 20 | - | 90.1% (30 min) CSB-2 | - | [209] |
CdSe/Se/BiOBr | 2-step solvothermal | Phenol | 1 | 20 | - | 97.2% (30 min) CSB-2 | - | |
MoSe2/CNC | Co-Hydrothermal | NOR | - | - | - | 92.7% (120 min) | 82.17% | [210] |
FeBiCoSe4 | Hydrothermal | CV | 0.05 | 80 | - | 99.47% (60 min) | - | [211] |
EY | 0.05 | 80 | - | 99.31% (60 min) | - | |||
CdSe | Hydrothermal | MB | 1 | 20 | - | 33.69% (90 min) | - | [212] |
CdSe/GQDs | 3-step sonochemical-hydrothermal | MB | 1 | 20 | - | 99% (90 min) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manos, D.; Konstantinou, I. Recent Advances in Transition Metal Selenide-Based Catalysts for Organic Pollutant Degradation by Advanced Oxidation Processes. Catalysts 2025, 15, 938. https://doi.org/10.3390/catal15100938
Manos D, Konstantinou I. Recent Advances in Transition Metal Selenide-Based Catalysts for Organic Pollutant Degradation by Advanced Oxidation Processes. Catalysts. 2025; 15(10):938. https://doi.org/10.3390/catal15100938
Chicago/Turabian StyleManos, Donatos, and Ioannis Konstantinou. 2025. "Recent Advances in Transition Metal Selenide-Based Catalysts for Organic Pollutant Degradation by Advanced Oxidation Processes" Catalysts 15, no. 10: 938. https://doi.org/10.3390/catal15100938
APA StyleManos, D., & Konstantinou, I. (2025). Recent Advances in Transition Metal Selenide-Based Catalysts for Organic Pollutant Degradation by Advanced Oxidation Processes. Catalysts, 15(10), 938. https://doi.org/10.3390/catal15100938