Recent Advances and Challenges in Biomolecule-Based Laccase Mimics for Environmental Applications
Abstract
1. Introduction
2. Catalytic Mechanism of Natural Laccase and the Design Strategy of Laccase Mimics
3. Nucleotide and Nucleic Acid-Based Laccase Mimics
3.1. Nucleotide-Based Laccase Mimics
3.2. Nucleic Acid-Based Laccase Mimics
4. Amino Acid, Peptide, and Protein-Based Laccase Mimics
4.1. Amino Acid-Based Laccase Mimics
4.2. Peptide-Based Laccase Mimics
4.3. Protein-Based Laccase Mimics
5. Hybrid Biomolecule-Based Laccase Mimics
Laccase Mimics | Biomolecule | [E0] (g·L−1) | Vmax (×10−5 mM·S−1) | Km (mM) | kcat/Km (×10−5 (g·L−1)−1·S−1) | Reference |
---|---|---|---|---|---|---|
Cu/GMP | Nucleotide | 0.1 | 1.38 | 0.59 | 2.34 a | [78] |
Mn-GMPNS | Nucleotide | 0.1 | 0.93 | 0.35 | 2.66 a | [80] |
AMP-Cu | Nucleotide | 0.1 | 2.17 | 0.09 | 24.1 a | [81] |
Cu-NADH | Nucleotide | 1.0 | 0.074 | 0.207 | 0.357 a | [83] |
GNF | Nucleic acid | 0.1 | 9.00 | 1.84 | 48.9 a | [84] |
F-Cu | Amino acid | 1.98 × 10−5 | 6.00 | 0.19 | 16,000 | [93] |
Cu/CysNPs | Amino acid | 1.0 | 1.19 | 0.427 | 2.79 a | [94] |
Gla + Cu(II) | Amino acid | 0.1 | 5.08 | 0.12 | 423 a | [96] |
BpA-Cu | Amino acid | 0.1 | 2.60 | 0.07 | 372 | [97] |
Cu-BH | Amino acid | 1.0 | 0.13 | 0.09 | 1.44 a | [100] |
CH-Cu | Peptide | 0.1 | 12.2 | 0.42 | 29.1 a | [108] |
CA-Cu | Peptide | 0.1 | 13.0 | 0.12 | 108 a | [109] |
GSH-Cu | Peptide | -- | 0.038 | 6.37 | -- | [112] |
Mn-car | Peptide | -- | 21.664 | 0.723 | -- | [113] |
EP-Cu | Peptide | 0.1 | 100.96 | 0.094 | 1074 a | [114] |
FF/ICA-Cu | Peptide | -- | 0.13 | 0.188 | -- | [115] |
BSA-Cu b | protein | -- | 0.04 mM/min | 0.159 | 16.73 mM−1·min−1 | [120] |
GTL-Mn | protein | -- | -- | -- | -- | [123] |
Cu-His-DNA | Hybrid-biomolecule | -- | 0.476 | 0.19 | 0.16 mM−1·min−1 | [126] |
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Upadhyay, P.; Shrivastava, R.; Agrawal, P.K. Bioprospecting and Biotechnological Applications of Fungal Laccase. 3 Biotech 2016, 6, 15. [Google Scholar] [CrossRef]
- Baldrian, P. Purification and Characterization of Laccase from the White-Rot Fungus Daedalea Quercina and Decolorization of Synthetic Dyes by the Enzyme. Appl. Microbiol. Biotechnol. 2004, 63, 560–563. [Google Scholar] [CrossRef]
- Sharma, P.; Goel, R.; Capalash, N. Bacterial Laccases. World J. Microbiol. Biotechnol. 2006, 23, 823–832. [Google Scholar] [CrossRef]
- Sharma, A.; Jain, K.K.; Jain, A.; Kidwai, M.; Kuhad, R.C. Bifunctional in Vivo Role of Laccase Exploited in Multiple Biotechnological Applications. Appl. Microbiol. Biotechnol. 2018, 102, 10327–10343. [Google Scholar] [CrossRef]
- Barrios-Estrada, C.; de Jesús Rostro-Alanis, M.; Muñoz-Gutiérrez, B.D.; Iqbal, H.M.N.; Kannan, S.; Parra-Saldívar, R. Emergent Contaminants: Endocrine Disruptors and Their Laccase-Assisted Degradation—A Review. Sci. Total Environ. 2018, 612, 1516–1531. [Google Scholar] [CrossRef]
- Itoh, T.; Takagi, Y. Laccase-Catalyzed Reactions in Ionic Liquids for Green Sustainable Chemistry. ACS Sustain. Chem. Eng. 2020, 9, 1443–1458. [Google Scholar] [CrossRef]
- Janusz, G.; Pawlik, A.; Świderska-Burek, U.; Polak, J.; Sulej, J.; Jarosz-Wilkołazka, A.; Paszczyński, A. Laccase Properties, Physiological Functions, and Evolution. Int. J. Mol. Sci. 2020, 21, 966. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Qian, Y.; Ma, Y.; Zhu, C. A Preliminary Study on the Newly Isolated High Laccase-Producing Fungi: Screening, Strain Characteristics and Induction of Laccase Production. Open Life Sci. 2018, 13, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Fu, J.; Wang, Q.; Silva, C.; Cavaco-Paulo, A. Laccase: A Green Catalyst for the Biosynthesis of Poly-Phenols. Crit. Rev. Biotechnol. 2017, 38, 294–307. [Google Scholar] [CrossRef]
- Fathali, Z.; Rezaei, S.; Faramarzi, M.A.; Habibi-Rezaei, M. Catalytic Phenol Removal Using Entrapped Cross-Linked Laccase Aggregates. Int. J. Biol. Macromol. 2019, 122, 359–366. [Google Scholar] [CrossRef]
- Romero-Guido, C.; Baez, A.; Torres, E. Dioxygen Activation by Laccases: Green Chemistry for Fine Chemical Synthesis. Catalysts 2018, 8, 223. [Google Scholar] [CrossRef]
- Mayolo-Deloisa, K.; González-González, M.; Rito-Palomares, M. Laccases in Food Industry: Bioprocessing, Potential Industrial and Biotechnological Applications. Front. Bioeng. Biotechnol. 2020, 8, 222. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Dou, X.; Huang, L.; Wang, L.; Meng, D.; Zhai, L.; Shen, Y.; You, C.; Guan, Z.; Liao, X. Characterization of a Robust Cold-Adapted and Thermostable Laccase from Pycnoporus sp. SYBC-L10 with a Strong Ability for the Degradation of Tetracycline and Oxytetracycline by Laccase-Mediated Oxidation. J. Hazard. Mater. 2020, 382, 121084. [Google Scholar] [CrossRef]
- Shokri, Z.; Seidi, F.; Karami, S.; Li, C.; Saeb, M.R.; Xiao, H. Laccase Immobilization onto Natural Polysaccharides for Biosensing and Biodegradation. Carbohydr. Polym. 2021, 262, 117963. [Google Scholar] [CrossRef]
- Bounegru, A.V.; Apetrei, C. Laccase and Tyrosinase Biosensors Used in the Determination of Hydroxycinnamic Acids. Int. J. Mol. Sci. 2021, 22, 4811. [Google Scholar] [CrossRef]
- Amin, R.; Khorshidi, A.; Shojaei, A.F.; Rezaei, S.; Faramarzi, M.A. Immobilization of Laccase on Modified Fe3O4@SiO2@Kit-6 Magnetite Nanoparticles for Enhanced Delignification of Olive Pomace Bio-Waste. Int. J. Biol. Macromol. 2018, 114, 106–113. [Google Scholar] [CrossRef]
- Ahmad, I.; Pal, S.; Waseem, M.; Jamal, A.; Kamal, M.A.; Ahmad, F.; Haji, E.M.; Siddiqui, S.; Singh, A.K. Catalytic Insights into Laccase for Sustainable Remediation of Multifaceted Pharmaceutically Active Micropollutants from Water Matrices: A State-of-Art Review. J. Water Process Eng. 2025, 70, 106901. [Google Scholar] [CrossRef]
- Kalhor, R.; Reza, M.A.S.; Aali, R.; Abolhasani, H.; Mokhtarian, M.H.; Kalhor, H. Next-Generation Bioremediation: Molecular Decoding of Fungal Laccases for Efficient Degradation of Bisphenol a and Its Derivatives. Int. J. Biol. Macromol. 2025, 320, 145658. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.K.; Peter, J.K.; Kumar, A.; Yadav, A.K.; Singh, R. From Nature to Applications: Laccase Immobilization onto Bio-Based Materials for Eco-Conscious Environmental Remediation. Int. J. Biol. Macromol. 2025, 307, 142157. [Google Scholar] [CrossRef] [PubMed]
- Gheewala, S.H.; Annachhatre, A.P. Biodegradation of Aniline. Water Sci. Technol. 1997, 36, 53–63. [Google Scholar] [CrossRef]
- Wang, X.-J.; Long, Y.; Wei, C.-W.; Gao, S.-Q.; Lin, Y.-W. Ni-Fe Bimetallic Hydrogel with Bifunctional Enzyme Activity for Colorimetric Detection of Phenolic Pollutants. Microchem. J. 2025, 209, 112851. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Lu, Q.; Zhang, P.; Zhang, X.; Du, C. Preparation and Selective Adsorption Performance of CoO/Biochar toward Phenol-like Pollutants. J. Mol. Struct. 2025, 1331, 141537. [Google Scholar] [CrossRef]
- Khlifi, R.; Belbahri, L.; Woodward, S.; Ellouz, M.; Dhouib, A.; Sayadi, S.; Mechichi, T. Decolourization and Detoxification of Textile Industry Wastewater by the Laccase-Mediator System. J. Hazard. Mater. 2010, 175, 802–808. [Google Scholar] [CrossRef]
- Shakerian, F.; Zhao, J.; Li, S.-P. Recent Development in the Application of Immobilized Oxidative Enzymes for Bioremediation of Hazardous Micropollutants—A Review. Chemosphere 2020, 239, 124716. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Appiah, B.; Zhang, B.-W.; Yang, Z.-H.; Quan, C. Recent Advances in Enzyme Immobilization Based on Nanoflowers. J. Catal. 2023, 418, 31–39. [Google Scholar] [CrossRef]
- Cui, Z.; Li, Y.; Zhang, H.; Qin, P.; Hu, X.; Wang, J.; Wei, G.; Chen, C. Lighting Up Agricultural Sustainability in the New Era through Nanozymology: An Overview of Classifications and Their Agricultural Applications. J. Agric. Food Chem. 2022, 70, 13445–13463. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tang, L.-X.; Ye, Y.-F.; Ma, J.-X.; Li, X.; Si, J.; Cui, B.-K. Laccase Immobilization and Its Degradation of Emerging Pollutants: A Comprehensive Review. J. Environ. Manag. 2024, 359, 120984. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Khan, M.R.; Alam, M.G.; Ahmad, A.; Wahab, R.; Manoharadas, S.; Ahmad, A. Nanozymes: Multifunctional Nanomaterials as a Sustainable Approach for the Remediation of Environmental Pollutants. Chem. Eng. J. 2025, 519, 165053. [Google Scholar] [CrossRef]
- Lopez-Cantu, D.O.; González-González, R.B.; Melchor-Martínez, E.M.; Martínez, S.A.H.; Araújo, R.G.; Parra-Arroyo, L.; Sosa-Hernández, J.E.; Parra-Saldívar, R.; Iqbal, H.M.N. Enzyme-Mimicking Capacities of Carbon-Dots Nanozymes: Properties, Catalytic Mechanism, and Applications—A Review. Int. J. Biol. Macromol. 2022, 194, 676–687. [Google Scholar] [CrossRef]
- Lei, L.; Yang, X.; Song, Y.; Huang, H.; Li, Y. Current Research Progress on Laccase-like Nanomaterials. New J. Chem. 2022, 46, 3541–3550. [Google Scholar] [CrossRef]
- Ge, Z.; Wu, B.; Sun, T.; Qiao, B. Laccase-like Nanozymes Fabricated by Copper and Tannic Acid for Removing Malachite Green from Aqueous Solution. Colloid Polym. Sci. 2021, 299, 1533–1542. [Google Scholar] [CrossRef]
- Chai, S.; Huang, E.; Zeng, J.; Shi, Y.; Zhang, J.; Zhang, X. Excellent Laccase Mimic Activity of Cu-Melamine and Its Applications in the Degradation of Congo Red. Appl. Biochem. Biotechnol. 2025, 197, 3332–3345. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, Y.; Zhang, X.; Xu, X.; Wang, Q. One Stone, Two Birds: A Cu-S Cluster as a Laccase-Mimicking Nanozyme and Sulfite Activator for Phenol Remediation in Marine Environments. J. Hazard. Mater. 2023, 457, 131776. [Google Scholar] [CrossRef]
- Chen, H.; Chai, L.; Gui, J.; Liu, Y.; Liu, M.; Liu, X.; Zhang, Y.; Yao, S. Copper-Manganese Bimetallic Oxide with Excellent Laccase-like Activity for Colorimetric Detection of Formaldehyde via the Specific Aldimine Condensation Reaction. Talanta 2025, 293, 128151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, Y.; Wei, Y.; Zhang, X.; Ma, H. Construction of a CuO2@PDA Nanozyme with Switchable Dual Enzyme-Mimic Activities for Colorimetric Sensing of Catechol and Hydroquinone. ACS Appl. Mater. Interfaces 2025, 17, 15886–15895. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, X.; Huang, Y. Spinel Metal Sulfide CuCo2S4 Laccase Mimic Based Colorimetric Sensor Array for the Differentiation of Phenolic Compounds. Microchem. J. 2025, 214, 113970. [Google Scholar] [CrossRef]
- Demkiv, O.; Nogala, W.; Stasyuk, N.; Klepach, H.; Danysh, T.; Gonchar, M. Highly Sensitive Amperometric Sensors Based on Laccase-Mimetic Nanozymes for the Detection of Dopamine. RSC Adv. 2024, 14, 5472–5478. [Google Scholar] [CrossRef]
- Wu, B.; Liu, X.; Chen, C.; Wang, X. Iron-Copper Nanozyme Mimicking Laccase for Colorimetric Determination of Deoxynivalenol in Feed. Microchem. J. 2024, 202, 110757. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Cui, S.; Wei, H.; Yang, D. Perovskite Hydroxide-Based Laccase Mimics with Controllable Activity for Environmental Remediation and Biosensing. Biosens. Bioelectron. 2024, 256, 116275. [Google Scholar] [CrossRef]
- Ren, X.; Liu, J.; Ren, J.; Tang, F.; Meng, X. One-Pot Synthesis of Active Copper-Containing Carbon Dots with Laccase-like Activities. Nanoscale 2015, 7, 19641–19646. [Google Scholar] [CrossRef]
- Gu, H.; Li, P.; Wang, J.; Niu, N.; Chen, L. Bioinspired Bimetallic Metal–Organic Framework Nanozyme with Laccase-Mimicking Activity for Detection and Removal of Phenolic Contaminants. Microchem. J. 2024, 201, 110568. [Google Scholar] [CrossRef]
- Xu, L.; Nan, J.; Han, S.; Yu, Z.; Wu, S.; Fang, Y.; Dong, S. High-Valence Mn MOF Inspired by Laccase Mediators Enables Versatile Nature-Mimicking Catalysis. Small 2024, 20, 2405293. [Google Scholar] [CrossRef]
- Chai, T.-Q.; Chen, G.-Y.; Chen, L.-X.; Wang, J.-L.; Zhang, C.-Y.; Yang, F.-Q. Adenine Phosphate-Cu Nanozyme with Multienzyme Mimicking Activity for Efficient Degrading Phenolic Compounds and Detection of Hydrogen Peroxide, Epinephrine and Glutathione. Anal. Chim. Acta 2023, 1279, 341771. [Google Scholar] [CrossRef]
- Makhlynets, O.V.; Korendovych, I.V. A Single Amino Acid Enzyme. Nat. Catal. 2019, 2, 949–950. [Google Scholar] [CrossRef]
- Majidi, S.; Rashtbari, S.; Jamei, S.; Dehghan, G. Biologically Inspired Laccase-Mimicking OVA-Cu Complex for Degradation of Organic Dye Pollutant: Artificial Neural Network Modeling and Optimization. BioImpacts 2025, 15, 30488. [Google Scholar] [CrossRef] [PubMed]
- Bassanini, I.; Ferrandi, E.E.; Riva, S.; Monti, D. Biocatalysis with Laccases: An Updated Overview. Catalysts 2020, 11, 26. [Google Scholar] [CrossRef]
- Kaur, R.; Salwan, R.; Sharma, V. Structural Properties, Genomic Distribution of Laccases from Streptomyces and Their Potential Applications. Process Biochem. 2022, 118, 133–144. [Google Scholar] [CrossRef]
- Aza, P.; Camarero, S. Fungal Laccases: Fundamentals, Engineering and Classification Update. Biomolecules 2023, 13, 1716. [Google Scholar] [CrossRef]
- Senthivelan, T.; Kanagaraj, J.; Panda, R.C. Recent Trends in Fungal Laccase for Various Industrial Applications: An Eco-Friendly Approach—A Review. Biotechnol. Bioprocess Eng. 2016, 21, 19–38. [Google Scholar] [CrossRef]
- Singh, D.; Gupta, N. Microbial Laccase: A Robust Enzyme and Its Industrial Applications. Biologia 2020, 75, 1183–1193. [Google Scholar] [CrossRef]
- Jones, S.M.; Solomon, E.I. Electron Transfer and Reaction Mechanism of Laccases. Cell. Mol. Life Sci. 2015, 72, 869–883. [Google Scholar] [CrossRef]
- Claus, H. Laccases: Structure, Reactions, Distribution. Micron 2004, 35, 93–96. [Google Scholar] [CrossRef]
- Sakurai, T.; Kataoka, K. Structure and Function of Type I Copper in Multicopper Oxidases. Cell. Mol. Life Sci. 2007, 64, 2642–2656. [Google Scholar] [CrossRef]
- Shleev, S.; Tkac, J.; Christenson, A.; Ruzgas, T.; Yaropolov, A.I.; Whittaker, J.W.; Gorton, L. Direct Electron Transfer between Copper-Containing Proteins and Electrodes. Biosens. Bioelectron. 2005, 20, 2517–2554. [Google Scholar] [CrossRef] [PubMed]
- Olbrich, A.C.; Schild, J.N.; Urlacher, V.B. Correlation between the T1 Copper Reduction Potential and Catalytic Activity of a Small Laccase. J. Inorg. Biochem. 2019, 201, 110843. [Google Scholar] [CrossRef] [PubMed]
- Munk, L.; Andersen, M.L.; Meyer, A.S. Influence of Mediators on Laccase Catalyzed Radical Formation in Lignin. Enzym. Microb. Technol. 2018, 116, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Navada, K.K.; Kulal, A. Enzymatic Degradation of Chloramphenicol by Laccase from Trametes Hirsuta and Comparison among Mediators. Int. Biodeterior Biodegrad. 2019, 138, 63–69. [Google Scholar] [CrossRef]
- Chiadò, A.; Bosco, F.; Bardelli, M.; Simonelli, L.; Pedotti, M.; Marmo, L.; Varani, L. Rational Engineering of the Lccβ T. Versicolor Laccase for the Mediator-Less Oxidation of Large Polycyclic Aromatic Hydrocarbons. Comput. Struct. Biotechnol. J. 2021, 19, 2213–2222. [Google Scholar] [CrossRef]
- Chen, L.; Yang, K.; Wang, C.; Han, D.; Wen, J. Next-Generation of a Fe-Ce Double Variable-Valence Metals Modulated High-Efficiency Nanozyme. Chem. Eng. J. 2024, 495, 153314. [Google Scholar] [CrossRef]
- Maity, T.; Jain, S.; Solra, M.; Barman, S.; Rana, S. Robust and Reusable Laccase Mimetic Copper Oxide Nanozyme for Phenolic Oxidation and Biosensing. ACS Sustain. Chem. Eng. 2022, 10, 1398–1407. [Google Scholar] [CrossRef]
- Laurie, S.H. Transport and Storage of Metals. J. Inherit. Metab. Dis. 1983, 6, 9–14. [Google Scholar] [CrossRef]
- Faller, P.; Hureau, C.; Berthoumieu, O. Role of Metal Ions in the Self-Assembly of the Alzheimer’s Amyloid-β Peptide. Inorg. Chem. 2013, 52, 12193–12206. [Google Scholar] [CrossRef]
- Sato, S.; Hirose, M.; Tamiaki, H.; Ito, H. Chelatase Activity of Magnesium Dechelatase Associated with Chlorophyll Degradation. FEBS Lett. 2025, 599, 2210–2219. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xia, S.; Yue, D.; Sun, H.; Hirao, H. The Bonding Nature of Fe–CO Complexes in Heme Proteins. Inorg. Chem. 2022, 61, 17494–17504. [Google Scholar] [CrossRef]
- Felletti, M.; Hartig, J.S. Ligand-dependent Ribozymes. WIREs RNA 2016, 8, e1395. [Google Scholar] [CrossRef]
- Agrawal, K.; Chaturvedi, V.; Verma, P. Fungal Laccase Discovered but yet Undiscovered. Bioresour. Bioprocess. 2018, 5, 4. [Google Scholar] [CrossRef]
- Singh, N.; Tena-Solsona, M.; Miravet, J.F.; Escuder, B. Towards Supramolecular Catalysis with Small Self-assembled Peptides. Isr. J. Chem. 2015, 55, 711–723. [Google Scholar] [CrossRef]
- Hayashi, T.; Hilvert, D.; Green, A.P. Engineered Metalloenzymes with Non-Canonical Coordination Environments. Chem. Eur. J. 2018, 24, 11821–11830. [Google Scholar] [CrossRef]
- Zhang, S. Fabrication of Novel Biomaterials through Molecular Self-Assembly. Nat. Biotechnol. 2003, 21, 1171–1178. [Google Scholar] [CrossRef]
- Zhou, W.; Saran, R.; Liu, J. Metal Sensing by DNA. Chem. Rev. 2017, 117, 8272–8325. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, Z.; Fang, X.; Liu, Y.; Liu, B.; Liu, J. Robust Hydrogels from Lanthanide Nucleotide Coordination with Evolving Nanostructures for a Highly Stable Protein Encapsulation. ACS Appl. Mater. Interfaces 2018, 10, 14321–14330. [Google Scholar] [CrossRef]
- Navarro, J.A.R.; Lippert, B. Molecular Architecture with Metal Ions, Nucleobases and Other Heterocycles. Coord. Chem. Rev. 1999, 185–186, 653–667. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, S.; Dunn, M.R.; Chaput, J.C. An Efficient and Faithful in Vitro Replication System for Threose Nucleic Acid. J. Am. Chem. Soc. 2013, 135, 3583–3591. [Google Scholar] [CrossRef]
- Ruiz-Mirazo, K.; Briones, C.; de la Escosura, A. Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chem. Rev. 2014, 114, 285–366. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Shi, R.; Yao, J.; Sheng, C.; Li, H. Supramolecular Self-Assembly of Nucleotide–Metal Coordination Complexes: From Simple Molecules to Nanomaterials. Coord. Chem. Rev. 2015, 292, 107–143. [Google Scholar] [CrossRef]
- Su, Y.; Liu, Y.; Zhong, Y.; Ma, S.; Ouyang, Q.; Chen, X.; Li, Y.; Xiong, E.; Zou, Z.; Liu, J. Coordination-Driven Self-Assembly of Biomolecules and Metal Ions: Advances in Methodology and Applications. Coord. Chem. Rev. 2025, 527, 216403. [Google Scholar] [CrossRef]
- Bazzicalupi, C.; Bencini, A.; Lippolis, V. Tailoring Cyclic Polyamines for Inorganic/Organic Phosphate Binding. Chem. Soc. Rev. 2010, 39, 3709. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Lin, F.; Zhang, Z.; Liu, B.; Jiang, S.; Yuan, Q.; Liu, J. Multicopper Laccase Mimicking Nanozymes with Nucleotides as Ligands. ACS Appl. Mater. Interfaces 2017, 9, 1352–1360. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, F.; Yuan, Q.; Liu, J.; Li, Y.; Liang, H. Robust Magnetic Laccase-Mimicking Nanozyme for Oxidizing o-Phenylenediamine and Removing Phenolic Pollutants. J. Environ. Sci. 2020, 88, 103–111. [Google Scholar] [CrossRef]
- Tang, Q.; Zhou, C.; Shi, L.; Zhu, X.; Liu, W.; Li, B.; Jin, Y. Multifunctional Manganese–Nucleotide Laccase-Mimicking Nanozyme for Degradation of Organic Pollutants and Visual Assay of Epinephrine via Smartphone. Anal. Chem. 2024, 96, 4736–4744. [Google Scholar] [CrossRef]
- Huang, H.; Lei, L.; Bai, J.; Zhang, L.; Song, D.; Zhao, J.; Li, J.; Li, Y. Efficient Elimination and Detection of Phenolic Compounds in Juice Using Laccase Mimicking Nanozymes. Chin. J. Chem. Eng. 2021, 29, 167–175. [Google Scholar] [CrossRef]
- Tang, X.; Li, F.; Huang, S.; Xu, L.; Wang, L.; Guo, Y. Cu-NADH as Laccase Mimics for Efficient Aryl C-H Amination. Inorg. Chem. Commun. 2024, 167, 112726. [Google Scholar] [CrossRef]
- Huang, S.; Tang, X.; Yu, L.; Hong, S.; Liu, J.; Xu, B.; Liu, R.; Guo, Y.; Xu, L. Colorimetric Assay of Phosphate Using a Multicopper Laccase-like Nanozyme. Microchim. Acta 2022, 189, 378. [Google Scholar] [CrossRef]
- Tran, T.D.; Nguyen, P.T.; Le, T.N.; Kim, M.I. DNA-Copper Hybrid Nanoflowers as Efficient Laccase Mimics for Colorimetric Detection of Phenolic Compounds in Paper Microfluidic Devices. Biosens. Bioelectron. 2021, 182, 113187. [Google Scholar] [CrossRef]
- Kolyadenko, I.; Tishchenko, S.; Gabdulkhakov, A. Structural Insight into the Amino Acid Environment of the Two-Domain Laccase’s Trinuclear Copper Cluster. Int. J. Mol. Sci. 2023, 24, 11909. [Google Scholar] [CrossRef]
- Hu, R.; Zhong, S.; Liu, H.; Liu, Y.; Chen, H.; Hu, X. Laccase-Inspired Bi-Amino Acid MOFs with High Substrate Affinity: Catalytic Deposition Induced “Signal-down” Electrochemical Response towards PD-L1. Sens. Actuators B Chem. 2024, 399, 134773. [Google Scholar] [CrossRef]
- Wendt, F.; Näther, C.; Tuczek, F. Tyrosinase and Catechol Oxidase Activity of Copper(I) Complexes Supported by Imidazole-Based Ligands: Structure–Reactivity Correlations. J. Biol. Inorg. Chem. 2016, 21, 777–792. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Li, J.; Wang, Y.; Wang, Y.; Wu, P. Recent Progress on the Rational Design of Laccase Mimics. Chem.—Asian J. 2025, 20, e202401942. [Google Scholar] [CrossRef]
- Subramaniyam, V.; Ravi, P.V.; Pichumani, M. Structure Co-Ordination of Solitary Amino Acids as Ligands in Metal-Organic Frameworks (MOFs): A Comprehensive Review. J. Mol. Struct. 2022, 1251, 131931. [Google Scholar] [CrossRef]
- Zou, Q.; Yan, X. Amino Acid Coordinated Self-Assembly. Chem. Eur. J. 2017, 24, 755–761. [Google Scholar] [CrossRef]
- Zou, Q.; Yan, X. Frontispiece: Amino Acid Coordinated Self-Assembly. Chem. Eur. J. 2018, 24, 750–996. [Google Scholar] [CrossRef]
- Xing, P.; Phua, S.Z.F.; Wei, X.; Zhao, Y. Programmable Multicomponent Self-Assembly Based on Aromatic Amino Acids. Adv. Mater. 2018, 30, 1805175. [Google Scholar] [CrossRef]
- Makam, P.; Yamijala, S.S.R.K.C.; Bhadram, V.S.; Shimon, L.J.W.; Wong, B.M.; Gazit, E. Single Amino Acid Bionanozyme for Environmental Remediation. Nat. Commun. 2022, 13, 1505. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Li, Y.; Liu, W.; Li, B.; Jin, Y. One-Step Synthesis of Biomimetic Copper–Cysteine Nanoparticle with Excellent Laccase-like Activity. J. Mater. Sci. 2022, 57, 10072–10083. [Google Scholar] [CrossRef]
- Li, Y.; Dalby, P.A. Engineering of Enzymes Using Non-Natural Amino Acids. Biosci. Rep. 2022, 42, BSR20220168. [Google Scholar] [CrossRef] [PubMed]
- Tao, K.; Orr, A.A.; Hu, W.; Makam, P.; Zhang, J.; Geng, Q.; Li, B.; Jakubowski, J.M.; Wang, Y.; Tamamis, P.; et al. EDTA-Mimicking Amino Acid–Metal Ion Coordination for Multifunctional Packings. J. Mater. Chem. A 2021, 9, 20385–20394. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, L.; Qu, Z.; Yu, L.; Sun, Y. Supramolecular Assembly of Benzophenone Alanine and Copper Presents High Laccase-like Activity for the Degradation of Phenolic Pollutants. J. Hazard. Mater. 2023, 443, 130198. [Google Scholar] [CrossRef]
- Yu, Y.; Hu, C.; Xia, L.; Wang, J. Artificial Metalloenzyme Design with Unnatural Amino Acids and Non-Native Cofactors. ACS Catal. 2018, 8, 1851–1863. [Google Scholar] [CrossRef]
- Drienovská, I.; Roelfes, G. Expanding the Enzyme Universe with Genetically Encoded Unnatural Amino Acids. Nat. Catal. 2020, 3, 193–202. [Google Scholar] [CrossRef]
- Li, M.; Xie, Y.; Zhang, J.; Lei, L.; Su, X. Construction of a Laccase Mimic Enzyme with Fluorescence Properties for Kanamycin Multi-Mode Analysis. Chem. Eng. J. 2023, 471, 144184. [Google Scholar] [CrossRef]
- Zhao, X.-E.; Zuo, Y.-N.; Xia, Y.; Sun, J.; Zhu, S.; Xu, G. Multifunctional NH2-Cu-MOF Based Ratiometric Fluorescence Assay for Discriminating Catechol from Its Isomers. Sens. Actuators B Chem. 2022, 371, 132548. [Google Scholar] [CrossRef]
- Davoodi-Rad, K.; Shokrollahi, A.; Shahdost-Fard, F.; Azadkish, K. Copper-Guanosine Nanorods (Cu-Guo NRs) as a Laccase Mimicking Nanozyme for Colorimetric Detection of Rutin. Biosensors 2023, 13, 374. [Google Scholar] [CrossRef]
- Li, M.; Xie, Y.; Su, X. Versatile Laccase-Mimicking Enzyme for Dye Decolorization and Tetracyclines Identification upon a Colorimetric Array Sensor. J. Hazard. Mater. 2025, 483, 136683. [Google Scholar] [CrossRef]
- Dey, B.; Suresh, C.M.; Singh, V.; Rahman, A.; Thomas, S.P.; Ingole, P.P.; Dutta, T. Laccase Mimics: Probing the Electrocatalytic Potential for CO2 Reduction. Small 2025, 21, 2505365. [Google Scholar] [CrossRef]
- Liu, Q.; Kuzuya, A.; Wang, Z.-G. Supramolecular Enzyme-Mimicking Catalysts Self-Assembled from Peptides. IScience 2023, 26, 105831. [Google Scholar] [CrossRef] [PubMed]
- Roohi, A.; Housaindokht, M.R.; Bozorgmehr, M.R.; Vakili, M. Impact of Surface-Active Ionic Solutions on the Structure and Function of Laccase from Trametes Versicolor: Insights from Molecular Dynamics Simulations. J. Mol. Graph. Model. 2024, 132, 108844. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, Y. Self-Reporting Cu Clusterzyme Acting as an Ultra-Small Luminescent Laccase for the Catalytic Detection of Neurotransmitter Epinephrine. Anal. Chim. Acta 2025, 1372, 344437. [Google Scholar] [CrossRef]
- Wang, J.; Huang, R.; Qi, W.; Su, R.; Binks, B.P.; He, Z. Construction of a Bioinspired Laccase-Mimicking Nanozyme for the Degradation and Detection of Phenolic Pollutants. Appl. Catal. B Environ. 2019, 254, 452–462. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Huang, R.; Qi, W.; Su, R.; He, Z. Preparation of Laccase Mimicking Nanozymes and Their Catalytic Oxidation of Phenolic Pollutants. Catal. Sci. Technol. 2021, 11, 3402–3410. [Google Scholar] [CrossRef]
- Griffith, O.W. Biologic and Pharmacologic Regulation of Mammalian Glutathione Synthesis. Free. Radic. Biol. Med. 1999, 27, 922–935. [Google Scholar] [CrossRef]
- Jones, D.P. Redox Potential of GSH/GSSG Couple: Assay and Biological Significance. Methods Enzymol. 2002, 348, 93–112. [Google Scholar] [CrossRef]
- Li, A.; Li, H.; Ma, Y.; Wang, T.; Liu, X.; Wang, C.; Liu, F.; Sun, P.; Yan, X.; Lu, G. Bioinspired Laccase-Mimicking Catalyst for on-Site Monitoring of Thiram in Paper-Based Colorimetric Platform. Biosens. Bioelectron. 2022, 207, 114199. [Google Scholar] [CrossRef]
- Wu, S.; Niu, X.; Chen, J.; Meng, W.; Tao, H.; Zhou, J.; Wu, Y. Design of Mn-Car Multivalent Laccase Mimics through Self-Assembled Coordination and Its Application for Ultrasensitive Colorimetric Detection of Kanamycin in Food. Microchem. J. 2025, 215, 114523. [Google Scholar] [CrossRef]
- Wang, Q.; Hou, Y.; Lin, M.; Yang, Q. Construction of Extracellular Peptide Laccase-Mimic Nanozyme for the Detection and Degradation of Phenols Pollutants. Colloids Surf. A Physicochem. Eng. Asp. 2024, 699, 134687. [Google Scholar] [CrossRef]
- Dong, T.; Zhang, H.; Kong, L.; Liu, Z.; Ma, H. Bioinspired Coassembly of Peptide, Imidazolecarboxaldehyde, and Copper for Nanozyme with Laccase-like Activity for Colorimetric Detection of Epinephrine. Colloids Surf. A Physicochem. Eng. Asp. 2025, 704, 135445. [Google Scholar] [CrossRef]
- Dong, J.; Zhao, Y.; Rotich, K.H.; Hong, M. Impacts of Aeration and Active Sludge Addition on Leachate Recirculation Bioreactor. J. Hazard. Mater. 2007, 147, 240–248. [Google Scholar] [CrossRef]
- Jia, F.; Yang, Q.; Liu, X.; Li, X.; Li, B.; Zhang, L.; Peng, Y. Stratification of Extracellular Polymeric Substances (EPS) for Aggregated Anammox Microorganisms. Environ. Sci. Technol. 2017, 51, 3260–3268. [Google Scholar] [CrossRef]
- Lin, L.; Li, Z.; Zhang, B.; Zhang, Q.; Qiu, D.; Herzberg, M.; Wu, Z.; Xiao, E. Degradation and Utilization of EPS from Excessive Activated Sludge by Interaction of Electrogenesis and Light Stimulation. J. Environ. Chem. Eng. 2022, 10, 107557. [Google Scholar] [CrossRef]
- Fekri, R.; Salehi, M.; Asadi, A.; Kubicki, M. DNA/BSA Interaction, Bio-Activity, Molecular Docking Simulation Study and Electrochemical Properties of Hydrazone Schiff Base Derived Cu(II)/Ni(II) Metal Complexes: Influence of the Nuclearity and Metal Ions. Polyhedron 2017, 128, 175–187. [Google Scholar] [CrossRef]
- Rashtbari, S.; Dehghan, G. Biodegradation of Malachite Green by a Novel Laccase-Mimicking Multicopper BSA-Cu Complex: Performance Optimization, Intermediates Identification and Artificial Neural Network Modeling. J. Hazard. Mater. 2021, 406, 124340. [Google Scholar] [CrossRef]
- Huang, S.; Chen, X.; Lei, Y.; Zhao, W.; Yan, J.; Sun, J. Ionic Liquid Enhanced Fabrication of Small-Size BSA-Cu Laccase Mimicking Nanozymes for Efficient Degradation of Phenolic Compounds. J. Mol. Liq. 2022, 368, 120197. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Q.; Xue, Y.; Wu, D.; Zhang, B.; Sun, J.; Yang, X. Protein-Inorganic Hybrid Nanoflowers with Laccase-like Activity for Specific Assay of Acetylcholinesterase Activity. Sens. Actuators B Chem. 2023, 396, 134565. [Google Scholar] [CrossRef]
- Garcia-Sanz, C.; Andreu, A.; Pawlyta, M.; Vukoicic, A.; Milivojevic, A.; de las Rivas, B.; Bezbradica, D.; Palomo, J.M. Artificial Manganese Metalloenzymes with Laccase-like Activity: Design, Synthesis and Characterization. ACS Appl. Bio. Mater. 2024, 7, 4760–4771. [Google Scholar] [CrossRef]
- Zhao, H.; Shen, K. DNA-Based Asymmetric Catalysis: Role of Ionic Solvents and Glymes. RSC Adv. 2014, 4, 54051–54059. [Google Scholar] [CrossRef]
- Sarikaya, M.; Tamerler, C.; Jen, A.K.Y.; Schulten, K.; Baneyx, F. Molecular Biomimetics: Nanotechnology through Biology. Nat. Mater. 2003, 2, 577–585. [Google Scholar] [CrossRef]
- Yum, J.H.; Kumagai, T.; Hori, D.; Sugiyama, H.; Park, S. Histidine–DNA Nanoarchitecture as Laccase Mimetic DNAzymes. Nanoscale 2023, 15, 10749–10754. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, Y.; Gao, Y.; Zhu, Z. Rational Design Strategies for Nanozymes. ACS Nano 2023, 17, 13062–13080. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Liu, L.; Liu, Y.; Wang, Y.; Yu, L. Recent Advances and Challenges in Biomolecule-Based Laccase Mimics for Environmental Applications. Catalysts 2025, 15, 932. https://doi.org/10.3390/catal15100932
Liu Z, Liu L, Liu Y, Wang Y, Yu L. Recent Advances and Challenges in Biomolecule-Based Laccase Mimics for Environmental Applications. Catalysts. 2025; 15(10):932. https://doi.org/10.3390/catal15100932
Chicago/Turabian StyleLiu, Zhiliang, Ling Liu, Yu Liu, Yuxuan Wang, and Linling Yu. 2025. "Recent Advances and Challenges in Biomolecule-Based Laccase Mimics for Environmental Applications" Catalysts 15, no. 10: 932. https://doi.org/10.3390/catal15100932
APA StyleLiu, Z., Liu, L., Liu, Y., Wang, Y., & Yu, L. (2025). Recent Advances and Challenges in Biomolecule-Based Laccase Mimics for Environmental Applications. Catalysts, 15(10), 932. https://doi.org/10.3390/catal15100932