Recent Advances in Methanol Steam Reforming Catalysts for Hydrogen Production
Abstract
:1. Introduction
2. Copper-Based Catalysts
2.1. Performance
2.1.1. Active Sites
2.1.2. Supports
2.1.3. Promoters
2.1.4. Preparation and Activation
2.2. Reaction Mechanism
2.3. Deactivation
3. Noble Metal-Based Catalysts
3.1. Palladium-Based Catalysts
3.1.1. Alloys
3.1.2. Supports and Promoters
3.1.3. Reaction Mechanism
3.1.4. Deactivation
3.2. Other Catalysts
4. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MSR | methanol steam reforming |
MD | methanol decomposition |
WGS | water-gas shift |
LOHCs | liquid organic hydrogen carriers |
PEMFCs | polymer electrolyte membrane fuel cells |
CCU | carbon capture and utilization |
WHSV | weight hourly space velocity |
GHSV | gas hourly space velocity |
TOF | turnover frequency |
SMSIs | strong metal–support interactions |
OR | Ostwald ripening |
PMC | particle migration and coalescence |
SEA | strong electrostatic adsorption |
SAA | single-atom alloy |
References
- Zhang, S.; Liu, Y.; Zhang, M.; Ma, Y.; Hu, J.; Qu, Y. Sustainable production of hydrogen with high purity from methanol and water at low temperatures. Nat. Commun. 2022, 13, 5527. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Lin, H.; Wang, Q.; Ren, X.; Hernández-Pinilla, D.; Nagao, T.; Xie, Y.; Yang, G.; Li, S.; Song, H.; et al. Triggering water and methanol activation for solar-driven H2 production: Interplay of dual active sites over plasmonic ZnCu alloy. J. Am. Chem. Soc. 2021, 143, 12145–12153. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Song, H.; Ichihara, F.; Oshikiri, M.; Lu, W.; Tang, D.-M.; Li, S.; Li, Y.; Li, Y.; Davin, P.; et al. Light-induced dynamic restructuring of Cu active sites on TiO2 for low-temperature H2 production from methanol and water. J. Am. Chem. Soc. 2023, 145, 20530–20538. [Google Scholar] [CrossRef] [PubMed]
- Preuster, P.; Papp, C.; Wasserscheid, P. Liquid organic hydrogen carriers (LOHCs): Toward a hydrogen-free hydrogen economy. Acc. Chem. Res. 2017, 50, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Ranjekar, A.M.; Yadav, G.D. Steam reforming of methanol for hydrogen production: A critical analysis of catalysis, processes, and scope. Ind. Eng. Chem. Res. 2021, 60, 89–113. [Google Scholar] [CrossRef]
- Rameshan, C.; Stadlmayr, W.; Penner, S.; Lorenz, H.; Memmel, N.; Hävecker, M.; Blume, R.; Teschner, D.; Rocha, T.; Zemlyanov, D.; et al. Hydrogen production by methanol steam reforming on copper boosted by zinc-assisted water activation. Angew. Chem. Int. Ed. 2012, 51, 3002–3006. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lan, T.; Zhao, G.; Nie, Q.; Jiang, F.; Lu, Y. Interface-hydroxyl enabling methanol steam reforming toward CO-free hydrogen production over inverse ZrO2/Cu catalyst. Appl. Catal. B Environ. 2023, 334, 122839. [Google Scholar] [CrossRef]
- Kang, J.; Song, Y.; Kim, T.; Kim, S. Recent trends in the development of reactor systems for hydrogen production via methanol steam reforming. Int. J. Hydrogen Energy 2022, 47, 3587–3610. [Google Scholar] [CrossRef]
- Zhuang, X.; Xu, X.; Li, L.; Deng, D. Numerical investigation of a multichannel reactor for syngas production by methanol steam reforming at various operating conditions. Int. J. Hydrogen Energy 2020, 45, 14790–14805. [Google Scholar] [CrossRef]
- Yang, W.; Ma, X.; Tang, X.; Dou, P.; Yang, Y.; He, Y. Review on developments of catalytic system for methanol steam reforming from the perspective of energy-mass conversion. Fuel 2023, 345, 128234. [Google Scholar] [CrossRef]
- Takezawa, N.; Kobayashi, H.; Hirose, A.; Shimokawabe, M.; Takahashi, K. Steam reforming of methanol on copper-silica catalysts—Effect of copper loading and calcination temperature on the reaction. Appl. Catal. 1982, 4, 127–134. [Google Scholar] [CrossRef]
- Meng, H.; Yang, Y.; Shen, T.; Yin, Z.; Wang, L.; Liu, W.; Yin, P.; Ren, Z.; Zheng, L.; Zhang, J.; et al. Designing Cu0−Cu+ dual sites for improved C−H bond fracture towards methanol steam reforming. Nat. Commun. 2023, 14, 7980. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhang, M.; Zhao, L.; Guo, X.; Xu, G.; He, H. Mechanistic insights into methanol steam reforming on copper catalysts: Dynamics of active sites and reaction pathway. J. Catal. 2025, 442, 115922. [Google Scholar] [CrossRef]
- Mao, Q.; Gao, Z.; Liu, X.; Guo, Y.; Wang, Y.; Ma, D. The Cu–Al2O3 interface: An unignorable active site for methanol steam reforming hydrogen production. Catal. Sci. Technol. 2024, 14, 3448–3458. [Google Scholar] [CrossRef]
- Mrad, M.; Gennequin, C.; Aboukaïs, A.; Abi-Aad, E. Cu/Zn-based catalysts for H2 production via steam reforming of methanol. Catal. Today 2011, 176, 88–92. [Google Scholar] [CrossRef]
- Shu, Q.; Zhang, Q.; Zhu, X. Enhancing activation and stability of core-shell CuZn catalyst by ZnOx oxygen vacancies for methanol steam reforming. Appl. Catal. A Gen. 2024, 678, 119652. [Google Scholar] [CrossRef]
- Li, D.; Xu, F.; Tang, X.; Dai, S.; Pu, T.; Liu, X.; Tian, P.; Xuan, F.; Xu, Z.; Wachs, I.E.; et al. Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol. Nat. Catal. 2022, 5, 99–108. [Google Scholar] [CrossRef]
- Shokrani, R.; Haghighi, M.; Jodeiri, N.; Ajamein, H.; Abdollahifar, M. Fuel cell grade hydrogen production via methanol steam reforming over CuO/ZnO/Al2O3 nanocatalyst with various oxide ratios synthesized via urea-nitrates combustion method. Int. J. Hydrogen Energy 2014, 39, 13141–13155. [Google Scholar] [CrossRef]
- Díaz-Pérez, M.A.; Moya, J.; Serrano-Ruiz, J.C.; Faria, J. Interplay of support chemistry and reaction conditions on copper catalyzed methanol steam reforming. Ind. Eng. Chem. Res. 2018, 57, 15268–15279. [Google Scholar] [CrossRef]
- Deshmane, V.G.; Abrokwah, R.Y.; Kuila, D. Synthesis of stable Cu-MCM-41 nanocatalysts for H2 production with high selectivity via steam reforming of methanol. Int. J. Hydrogen Energy 2015, 40, 10439–10452. [Google Scholar] [CrossRef]
- Shahsavar, H.; Taghizadeh, M.; Kiadehi, A.D. Effects of catalyst preparation route and promoters (Ce and Zr) on catalytic activity of CuZn/CNTs catalysts for hydrogen production from methanol steam reforming. Int. J. Hydrogen Energy 2021, 46, 8906–8921. [Google Scholar] [CrossRef]
- Varmazyari, M.; Khani, Y.; Bahadoran, F.; Shariatinia, Z.; Soltanali, S. Hydrogen production employing Cu(BDC) metal–organic framework support in methanol steam reforming process within monolithic micro-reactors. Int. J. Hydrogen Energy 2021, 46, 565–580. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, F.; Liu, Y.; Zhang, L.; Chen, Y.; Wang, H.; Tian, Y.; Zhang, C.; Liu, D. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming. Int. J. Hydrogen Energy 2019, 44, 7252–7261. [Google Scholar] [CrossRef]
- Hosseini, T.; Haghighi, M.; Ajamein, H. Fuel cell-grade hydrogen production from methanol over sonochemical coprecipitated copper based nanocatalyst: Influence of irradiation power and time on catalytic properties and performance. Energy Convers. Manag. 2016, 126, 595–607. [Google Scholar] [CrossRef]
- Sanches, S.G.; Flores, J.H.; da Silva, M.I.P. Cu/ZnO and Cu/ZnO/ZrO2 catalysts used for methanol steam reforming. Mol. Catal. 2018, 454, 55–62. [Google Scholar] [CrossRef]
- Ma, J.; Mao, L.; Du, H.; Zhong, J.; Jiang, L.; Liu, X.; Xu, J.; Xu, X.; Fang, X.; Wang, X. Tracking the critical roles of Cu+ and Cu0 sites and the optimal Cu+/Cu0 ratio for CH3OH steam reforming (MTSR) to manufacture H2. Chem. Eng. J. 2024, 496, 154195. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, L.; Ni, C.; Sun, T.; Zhao, S.; Wang, S.; Wang, A.; Hu, Y. CeO2–ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming. Int. J. Hydrogen Energy 2013, 38, 4397–4406. [Google Scholar] [CrossRef]
- Tajrishi, O.Z.; Taghizadeh, M.; Kiadehi, A.D. Methanol steam reforming in a microchannel reactor by Zn-, Ce- and Zr-modified mesoporous Cu/SBA-15 nanocatalyst. Int. J. Hydrogen Energy 2018, 43, 14103–14120. [Google Scholar] [CrossRef]
- Yu, K.M.K.; Tong, W.; West, A.; Cheung, K.; Li, T.; Smith, G.; Guo, Y.; Tsang, S.C.E. Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature. Nat. Commun. 2012, 3, 1230. [Google Scholar] [CrossRef]
- Li, D.; Yan, H.; Jiang, Z.; Qiu, R.; Liu, Q.; Zhu, M. Gallium-promoted strong metal-support interaction over a supported Cu/ZnO catalyst for methanol steam reforming. ACS Catal. 2024, 14, 9511–9520. [Google Scholar] [CrossRef]
- Liu, X.; Toyir, J.; Ramírez de la Piscina, P.; Homs, N. Hydrogen production from methanol steam reforming over Al2O3- and ZrO2-modified CuOZnOGa2O3 catalysts. Int. J. Hydrogen Energy 2017, 42, 13704–13711. [Google Scholar] [CrossRef]
- Kamyar, N.; Khani, Y.; Amini, M.M.; Bahadoran, F.; Safari, N. Copper-based catalysts over A520-MOF derived aluminum spinels for hydrogen production by methanol steam reforming: The role of spinal support on the performance. Int. J. Hydrogen Energy 2020, 45, 21341–21353. [Google Scholar] [CrossRef]
- Hou, X.; Qing, S.; Liu, Y.; Li, L.; Gao, Z.; Qin, Y. Enhancing effect of MgO modification of Cu–Al spinel oxide catalyst for methanol steam reforming. Int. J. Hydrogen Energy 2020, 45, 477–489. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhou, W.; Lan, G.; Sun, X.; Wang, X.; Jiang, C.; Li, Y. High-performance Cu/ZnO/Al2O3 catalysts for methanol steam reforming with enhanced Cu-ZnO synergy effect via magnesium assisted strategy. J. Energy Chem. 2021, 63, 550–557. [Google Scholar] [CrossRef]
- Phongboonchoo, Y.; Thouchprasitchai, N.; Pongstabodee, S. Hydrogen production with a low carbon monoxide content via methanol steam reforming over CuxCeyMgz/Al2O3 catalysts: Optimization and stability. Int. J. Hydrogen Energy 2017, 42, 12220–12235. [Google Scholar] [CrossRef]
- Zhao, T.; Shen, Q.; Andersson, M.; Li, S.; Yuan, J. Surface of high-entropy perovskite catalyst La(CoCuFeAlCe)0.2O3 (100): Experimental study of methanol steam reforming for hydrogen production and DFT mechanism research. Appl. Surf. Sci. 2025, 684, 161917. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Y.; Cui, X.; Wang, G.; Cen, Y.; Deng, T.; Yan, W.; Gao, J.; Zhu, S.; Olsbye, U.; et al. A highly stable copper-based catalyst for clarifying the catalytic roles of Cu0 and Cu+ species in methanol dehydrogenation. Angew. Chem. Int. Ed. 2018, 57, 1836–1840. [Google Scholar] [CrossRef]
- Ma, K.; Tian, Y.; Zhao, Z.J.; Cheng, Q.; Ding, T.; Zhang, J.; Zheng, L.; Jiang, Z.; Abe, T.; Tsubaki, N.; et al. Achieving efficient and robust catalytic reforming on dual-sites of Cu species. Chem. Sci. 2019, 10, 2578–2584. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, J.; Yang, T.; Zhang, Q.; Zhang, L. In-situ self-assembled Cu2O/ZnO core-shell catalysts synergistically enhance the durability of methanol steam reforming. Appl. Catal. A Gen. 2021, 616, 118072. [Google Scholar] [CrossRef]
- Jin, S.; Li, D.; Wang, Z.; Wang, Y.; Sun, L.; Zhu, M. Dynamics of the Cu/CeO2 catalyst during methanol steam reforming. Catal. Sci. Technol. 2022, 12, 7003–7009. [Google Scholar] [CrossRef]
- Burch, R.; Golunski, S.E.; Spencer, M.S. The role of copper and zinc oxide in methanol synthesis catalysts. J. Chem. Soc. Faraday Trans. 1990, 86, 2683–2691. [Google Scholar] [CrossRef]
- Grunwaldt, J.D.; Molenbroek, A.M.; Topsøe, N.Y.; Topsøe, H.; Clausen, B.S. In situ investigations of structural changes in Cu/ZnO catalysts. J. Catal. 2000, 194, 452–460. [Google Scholar] [CrossRef]
- Nakamura, J.; Choi, Y.; Fujitani, T. On the issue of the active site and the role of ZnO in Cu/ZnO methanol synthesis catalysts. Top. Catal. 2003, 22, 277–285. [Google Scholar] [CrossRef]
- Shishido, T.; Yamamoto, Y.; Morioka, H.; Takehira, K. Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming. J. Mol. Catal. A Chem. 2007, 268, 185–194. [Google Scholar] [CrossRef]
- Kurr, P.; Kasatkin, I.; Girgsdies, F.; Trunschke, A.; Schlögl, R.; Ressler, T. Microstructural characterization of Cu/ZnO/Al2O3 catalysts for methanol steam reforming—A comparative study. Appl. Catal. A Gen. 2008, 348, 153–164. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, M.; Jiang, C.; Zhang, L.; He, X.; Sun, X.; Lan, G.; Qiu, Y.; Li, Y. Tuning lattice strain of copper particles in Cu/ZnO/Al2O3 catalysts for methanol steam reforming. Energy Fuels 2024, 38, 15611–15621. [Google Scholar] [CrossRef]
- Miyao, K.; Onodera, H.; Takezawa, N. Highly active copper catalysts for steam reforming of methanol. catalysts derived from Cu/Zn/Al alloys. React. Kinet. Catal. Lett. 1994, 53, 379–383. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, L.; Xie, X.; Tong, Q.; Ouyang, G. Polydopamine modified ordered mesoporous carbon for synergistic enhancement of enrichment efficiency and mass transfer towards phenols. Anal. Chim. Acta 2020, 1095, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.M.; Mohamed, F.; Ashraf, A.M.; Shaban, M.; Aslam Parwaz Khan, A.; Asiri, A.M. Enhanced photoelectrochemical water splitting activity of carbon nanotubes@TiO2 nanoribbons in different electrolytes. Chemosphere 2020, 238, 124554. [Google Scholar] [CrossRef]
- Yang, Y.; Chiang, K.; Burke, N. Porous carbon-supported catalysts for energy and environmental applications: A short review. Catal. Today 2011, 178, 197–205. [Google Scholar] [CrossRef]
- Khani, Y.; Tahay, P.; Bahadoran, F.; Safari, N.; Soltanali, S.; Alavi, A. Synergic effect of heat and light on the catalytic reforming of methanol over Cu/x-TiO2(x=La, Zn, Sm, Ce) nanocatalysts. Appl. Catal. A Gen. 2020, 594, 117456. [Google Scholar] [CrossRef]
- He, H.; Dai, H.X.; Au, C.T. Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE = Ce, Pr) solid solutions. Catal. Today 2004, 90, 245–254. [Google Scholar] [CrossRef]
- Park, J.B.; Graciani, J.; Evans, J.; Stacchiola, D.; Senanayake, S.D.; Barrio, L.; Liu, P.; Sanz, J.F.; Hrbek, J.; Rodriguez, J.A. Gold, copper, and platinum nanoparticles dispersed on CeOx/TiO2(110) surfaces: High water-gas shift activity and the nature of the mixed-metal oxide at the nanometer level. J. Am. Chem. Soc. 2010, 132, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Pant, K.K. Activity and stability enhancement of copper–alumina catalysts using cerium and zinc promoters for the selective production of hydrogen via steam reforming of methanol. J. Power Sources 2006, 159, 139–143. [Google Scholar] [CrossRef]
- Men, Y.; Gnaser, H.; Zapf, R.; Hessel, V.; Ziegler, C. Parallel screening of Cu/CeO2/γ-Al2O3 catalysts for steam reforming of methanol in a 10-channel micro-structured reactor. Catal. Commun. 2004, 5, 671–675. [Google Scholar] [CrossRef]
- Liu, T.; Han, X.; Li, T.; Li, S.; Yin, C.; Wang, Y. Methanol steam reforming using Ce and La modified low-Cu catalysts for on-board hydrogen production. Mol. Catal. 2025, 570, 114663. [Google Scholar] [CrossRef]
- Agrell, J.; Birgersson, H.; Boutonnet, M.; Melián-Cabrera, I.; Navarro, R.M.; Fierro, J.L.G. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3. J. Catal. 2003, 219, 389–403. [Google Scholar] [CrossRef]
- Jeong, H.; Kim, K.I.; Kim, T.H.; Ko, C.H.; Park, H.C.; Song, I.K. Hydrogen production by steam reforming of methanol in a micro-channel reactor coated with Cu/ZnO/ZrO2/Al2O3 catalyst. J. Power Sources 2006, 159, 1296–1299. [Google Scholar] [CrossRef]
- Wu, G.-S.; Mao, D.-S.; Lu, G.-Z.; Cao, Y.; Fan, K.-N. The role of the promoters in Cu Based Catalysts for methanol steam reforming. Catal. Lett. 2009, 130, 177–184. [Google Scholar] [CrossRef]
- Lindström, B.; Pettersson, L.J. Steam reforming of methanol over copper-based monoliths: The effects of zirconia doping. J. Power Sources 2002, 106, 264–273. [Google Scholar] [CrossRef]
- Tong, W.; West, A.; Cheung, K.; Yu, K.-M.; Tsang, S.C.E. Dramatic effects of gallium promotion on methanol steam reforming Cu–ZnO catalyst for hydrogen production: Formation of 5 Å Copper Clusters from Cu–ZnGaOx. ACS Catal. 2013, 3, 1231–1244. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Kang, H.-F.; Hou, X.-N.; Qing, S.-J.; Zhang, L.; Gao, Z.-X.; Xiang, H.-W. Sustained release catalysis: Dynamic copper releasing from stoichiometric spinel CuAl2O4 during methanol steam reforming. Appl. Catal. B Environ. 2023, 323, 122043. [Google Scholar] [CrossRef]
- Wen, H.; Liu, Y.K.; Kong, A.; Zhou, C.; Wang, Z.; Guo, K.; Liu, D. Hydrolysis precipitation method for the preparation of Cu-ZnO@Al2O3 catalyst in methanol steam reforming. ChemistrySelect 2024, 9, e202304824. [Google Scholar] [CrossRef]
- Ahmadi, F.; Haghighi, M.; Ajamein, H. Sonochemically coprecipitation synthesis of CuO/ZnO/ZrO2/Al2O3 nanocatalyst for fuel cell grade hydrogen production via steam methanol reforming. J. Mol. Catal. A Chem. 2016, 421, 196–208. [Google Scholar] [CrossRef]
- Zhang, X.-R.; Wang, L.-C.; Yao, C.-Z.; Cao, Y.; Dai, W.-L.; He, H.-Y.; Fan, K.-N. A highly efficient Cu/ZnO/Al2O3 catalyst via gel-coprecipitation of oxalate precursors for low-temperature steam reforming of methanol. Catal. Lett. 2005, 102, 183–190. [Google Scholar] [CrossRef]
- Shishido, T.; Yamamoto, Y.; Morioka, H.; Takaki, K.; Takehira, K. Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol. Appl. Catal. A Gen. 2004, 263, 249–253. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, Z.; Li, D.; Wang, Y.; Lian, C.; Zhu, M. Alcohol-induced strong metal-support interactions in a supported copper/ZnO catalyst. Angew. Chem. Int. Ed. 2023, 62, e202301563. [Google Scholar] [CrossRef]
- Frank, B.; Jentoft, F.C.; Soerijanto, H.; Kröhnert, J.; Schlögl, R.; Schomäcker, R. Steam reforming of methanol over copper-containing catalysts: Influence of support material on microkinetics. J. Catal. 2007, 246, 177–192. [Google Scholar] [CrossRef]
- Takahashi, K.; Kobayashi, H.; Takezawa, N. On the difference in reaction pathways of steam reforming of methanol over copper-silica and platinum-silica catalysts. Chem. Lett. 1985, 14, 759–762. [Google Scholar] [CrossRef]
- Takezawa, N.; Iwasa, N. Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals. Catal. Today 1997, 36, 45–56. [Google Scholar] [CrossRef]
- Lin, S.; Johnson, R.S.; Smith, G.K.; Xie, D.; Guo, H. Pathways for methanol steam reforming involving adsorbed formaldehyde and hydroxyl intermediates on Cu(111): Density functional theory studies. Phys. Chem. Chem. Phys. 2011, 13, 9622–9631. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Xie, D.; Guo, H. Methyl formate pathway in methanol steam reforming on copper: Density functional calculations. ACS Catal. 2011, 1, 1263–1271. [Google Scholar] [CrossRef]
- Takahachi, K.; Takezawa, N.; Kobayashi, H. The mechanism of steam reforming of methanol over a copper-silica catalyst. Appl. Catal. 1982, 2, 363–366. [Google Scholar] [CrossRef]
- Takahashi, K.; Takezawa, N.; Kobayashi, H. Mechanism of formation of methyl formate from formaldehyde over copper catalysts. Chem. Lett. 1983, 12, 1061–1064. [Google Scholar] [CrossRef]
- Hu, S.; Li, W.-X. Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts. Science 2021, 374, 1360–1365. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Lu, P.; Cao, Z.; Campbell, C.T.; Xia, Y. The physical chemistry and materials science behind sinter-resistant catalysts. Chem. Soc. Rev. 2018, 47, 4314–4331. [Google Scholar] [CrossRef] [PubMed]
- Prieto, G.; Tüysüz, H.; Duyckaerts, N.; Knossalla, J.; Wang, G.-H.; Schüth, F. Hollow Nano- and Microstructures as Catalysts. Chem. Rev. 2016, 116, 14056–14119. [Google Scholar] [CrossRef] [PubMed]
- Siriruang, C.; Charojrochkul, S.; Toochinda, P. Hydrogen production from methanol-steam reforming at low temperature over Cu–Zn/ZrO2-doped Al2O3. Monatsh. Chem.-Chem. Mon. 2016, 147, 1143–1151. [Google Scholar] [CrossRef]
- Thattarathody, R.; Artoul, M.; Digilov, R.M.; Sheintuch, M. Pressure, Diffusion, and S/M ratio effects in methanol steam reforming kinetics. Ind. Eng. Chem. Res. 2018, 57, 3175–3186. [Google Scholar] [CrossRef]
- Słowik, G.; Rotko, M.; Ryczkowski, J.; Greluk, M. Hydrogen production from methanol steam reforming over Fe-modified Cu/CeO2 catalysts. Molecules 2024, 29, 3963. [Google Scholar] [CrossRef]
- Tonelli, F.; Gorriz, O.; Tarditi, A.; Cornaglia, L.; Arrúa, L.; Cristina Abello, M. Activity and stability of a CuO/CeO2 catalyst for methanol steam reforming. Int. J. Hydrogen Energy 2015, 40, 13379–13387. [Google Scholar] [CrossRef]
- Wang, H.; Fang, Z.; Wang, Y.; Meng, K.; Sun, S. The study of strong metal-support interaction enhanced PdZn alloy nanocatalysts for methanol steam reforming. J. Alloys Compd. 2024, 986, 174006. [Google Scholar] [CrossRef]
- Liu, L.; Lin, Y.; Hu, Y.; Lin, Z.; Lin, S.; Du, M.; Zhang, L.; Zhang, X.-h.; Lin, J.; Zhang, Z.; et al. ZnAl2O4 spinel-supported PdZnβ catalyst with parts per million Pd for methanol steam reforming. ACS Catal. 2022, 12, 2714–2721. [Google Scholar] [CrossRef]
- Tang, J.; Qi, Y.; Zhang, R.; Cai, F. Promoting effect of Zn on Pd/MoC catalyst for the hydrogen production from methanol steam reforming. Catal. Lett. 2024, 154, 4768–4779. [Google Scholar] [CrossRef]
- Wang, C.; Ouyang, M.; Li, M.; Lee, S.; Flytzani-Stephanopoulos, M. Low-coordinated Pd catalysts supported on Zn1Zr1Ox composite oxides for selective methanol steam reforming. Appl. Catal. A Gen. 2019, 580, 81–92. [Google Scholar] [CrossRef]
- Pérez-Hernández, R.; Avendaño, A.D.; Rubio, E.; Rodríguez-Lugo, V. Hydrogen production by methanol steam reforming over Pd/ZrO2-TiO2 catalysts. Top. Catal. 2011, 54, 572–578. [Google Scholar] [CrossRef]
- Zhang, J.; Men, Y.; Wang, Y.; Liao, L.; Liu, S.; Wang, J.; An, W. Morphology effect of Pd/In2O3/CeO2 catalysts on methanol steam reforming for hydrogen production. Int. J. Hydrogen Energy 2024, 51, 1185–1199. [Google Scholar] [CrossRef]
- Mierczynski, P.; Vasilev, K.; Mierczynska, A.; Maniukiewicz, W.; Maniecki, T.P. Highly selective Pd–Cu/ZnAl2O4 catalyst for hydrogen production. Appl. Catal. A Gen. 2014, 479, 26–34. [Google Scholar] [CrossRef]
- Azenha, C.; Lagarteira, T.; Mateos-Pedrero, C.; Mendes, A. Production of hydrogen from methanol steam reforming using CuPd/ZrO2 catalysts—Influence of the catalytic surface on methanol conversion and CO selectivity. Int. J. Hydrogen Energy 2021, 46, 17490–17499. [Google Scholar] [CrossRef]
- Liu, X.; Men, Y.; Wang, J.; He, R.; Wang, Y. Remarkable support effect on the reactivity of Pt/In2O3/MOx catalysts for methanol steam reforming. J. Power Sources 2017, 364, 341–350. [Google Scholar] [CrossRef]
- Shanmugam, V.; Neuberg, S.; Zapf, R.; Pennemann, H.; Kolb, G. Hydrogen production over highly active Pt based catalyst coatings by steam reforming of methanol: Effect of support and co-support. Int. J. Hydrogen Energy 2020, 45, 1658–1670. [Google Scholar] [CrossRef]
- Ma, Y.; Guan, G.; Shi, C.; Zhu, A.; Hao, X.; Wang, Z.; Kusakabe, K.; Abudula, A. Low-temperature steam reforming of methanol to produce hydrogen over various metal-doped molybdenum carbide catalysts. Int. J. Hydrogen Energy 2014, 39, 258–266. [Google Scholar] [CrossRef]
- Cai, F.; Ibrahim, J.J.; Fu, Y.; Kong, W.; Zhang, J.; Sun, Y. Low-temperature hydrogen production from methanol steam reforming on Zn-modified Pt/MoC catalysts. Appl. Catal. B Environ. 2020, 264, 118500. [Google Scholar] [CrossRef]
- Gu, X.-K.; Qiao, B.; Huang, C.; Ding, W.; Sun, K.; Zhan, E.; Zhang, T.; Liu, J.; Li, W.-X. Supported single Pt1/Au1 atoms for methanol steam reforming. ACS Catal. 2014, 4, 3886–3890. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, S.; Liu, X.; Luo, H.; Huang, C.; Zhou, H.; Wu, Z.; Li, J.; Wang, H.; Sun, Y. Maximizing the synergistic effect between Pt0 and Ptδ+ in a confined Pt-based catalyst for durable hydrogen production. Appl. Catal. B Environ. 2022, 316, 121669. [Google Scholar] [CrossRef]
- Tahay, P.; Khani, Y.; Jabari, M.; Bahadoran, F.; Safari, N. Highly porous monolith/TiO2 supported Cu, Cu-Ni, Ru, and Pt catalysts in methanol steam reforming process for H2 generation. Appl. Catal. A Gen. 2018, 554, 44–53. [Google Scholar] [CrossRef]
- Aouad, S.; Gennequin, C.; Mrad, M.; Tidahy, H.L.; Estephane, J.; Aboukaïs, A.; Abi-Aad, E. Steam reforming of methanol over ruthenium impregnated ceria, alumina and ceria-alumina catalysts. Int. J. Energy Res. 2016, 40, 1287–1292. [Google Scholar] [CrossRef]
- Chen, L.; Qi, Z.; Peng, X.; Chen, J.-L.; Pao, C.-W.; Zhang, X.; Dun, C.; Young, M.; Prendergast, D.; Urban, J.J.; et al. Insights into the mechanism of methanol steam reforming tandem reaction over CeO2 supported single-site catalysts. J. Am. Chem. Soc. 2021, 143, 12074–12081. [Google Scholar] [CrossRef]
- Iwasa, N.; Kudo, S.; Takahashi, H.; Masuda, S.; Takezawa, N. Highly selective supported Pd catalysts for steam reforming of methanol. Catal. Lett. 1993, 19, 211–216. [Google Scholar] [CrossRef]
- Iwasa, N.; Masuda, S.; Ogawa, N.; Takezawa, N. Steam reforming of methanol over Pd/ZnO: Effect of the formation of PdZn alloys upon the reaction. Appl. Catal. A Gen. 1995, 125, 145–157. [Google Scholar] [CrossRef]
- Iwasa, N.; Ogawa, N.; Masuda, S.; Takezawa, N. Selective PdZn alloy formation in the reduction of Pd/ZnO catalysts. Bull. Chem. Soc. Jpn. 1998, 71, 1451–1455. [Google Scholar] [CrossRef]
- Iwasa, N.; Mayanagi, T.; Nomura, W.; Arai, M.; Takezawa, N. Effect of Zn addition to supported Pd catalysts in the steam reforming of methanol. Appl. Catal. A Gen. 2003, 248, 153–160. [Google Scholar] [CrossRef]
- Iwasa, N.; Nomura, W.; Mayanagi, T.; Fujita, S.; Arai, M.; Takezawa, N. Hydrogen production by steam reforming of methanol. J. Chem. Eng. Jpn. 2004, 37, 286–293. [Google Scholar] [CrossRef]
- Halevi, B.; Peterson, E.J.; DeLaRiva, A.; Jeroro, E.; Lebarbier, V.M.; Wang, Y.; Vohs, J.M.; Kiefer, B.; Kunkes, E.; Havecker, M.; et al. Aerosol-Derived Bimetallic Alloy Powders: Bridging the Gap. J. Phys. Chem. C 2010, 114, 17181–17190. [Google Scholar] [CrossRef]
- Peterson, E.J.; Halevi, B.; Kiefer, B.; Spilde, M.N.; Datye, A.K.; Peterson, J.; Daemen, L.; Llobet, A.; Nakotte, H. Aerosol synthesis and Rietveld analysis of tetragonal (β1) PdZn. J. Alloys Compd. 2011, 509, 1463–1470. [Google Scholar] [CrossRef]
- Halevi, B.; Peterson, E.J.; Roy, A.; DeLariva, A.; Jeroro, E.; Gao, F.; Wang, Y.; Vohs, J.M.; Kiefer, B.; Kunkes, E.; et al. Catalytic reactivity of face centered cubic PdZnα for the steam reforming of methanol. J. Catal. 2012, 291, 44–54. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, J.; Dagle, V.L.; Halevi, B.; Datye, A.K.; Wang, Y. Influence of ZnO facets on Pd/ZnO catalysts for methanol steam reforming. ACS Catal. 2014, 4, 2379–2386. [Google Scholar] [CrossRef]
- Föttinger, K.; van Bokhoven, J.A.; Nachtegaal, M.; Rupprechter, G. Dynamic structure of a working methanol steam reforming catalyst: In situ Quick-EXAFS on Pd/ZnO nanoparticles. J. Phys. Chem. Lett. 2011, 2, 428–433. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Xu, H. Interaction between Pd and ZnO during reduction of Pd/ZnO catalyst for steam reforming of methanol to hydrogen. Chin. J. Catal. 2006, 27, 217–222. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Xu, H.; Bai, X. Reduction of Pd/ZnO catalyst and its catalytic activity for steam reforming of methanol. Chin. J. Catal. 2007, 28, 234–238. [Google Scholar] [CrossRef]
- Karim, A.; Conant, T.; Datye, A. The role of PdZn alloy formation and particle size on the selectivity for steam reforming of methanol. J. Catal. 2006, 243, 420–427. [Google Scholar] [CrossRef]
- Dagle, R.A.; Chin, Y.-H.; Wang, Y. The effects of PdZn crystallite size on methanol steam reforming. Top. Catal. 2007, 46, 358–362. [Google Scholar] [CrossRef]
- Lim, K.H.; Chen, Z.-X.; Neyman, K.M.; Rösch, N. Comparative theoretical study of formaldehyde decomposition on PdZn, Cu, and Pd surfaces. J. Phys. Chem. B 2006, 110, 14890–14897. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, M.; Zhu, Q.; Xiao, D.; Ma, D. Ensemble effect for single-atom, small cluster and nanoparticle catalysts. Nat. Catal. 2022, 5, 766–776. [Google Scholar] [CrossRef]
- Haghofer, A.; Föttinger, K.; Girgsdies, F.; Teschner, D.; Knop-Gericke, A.; Schlögl, R.; Rupprechter, G. In situ study of the formation and stability of supported Pd2Ga methanol steam reforming catalysts. J. Catal. 2012, 286, 13–21. [Google Scholar] [CrossRef]
- Azenha, C.S.R.; Mateos-Pedrero, C.; Queirós, S.; Concepción, P.; Mendes, A. Innovative ZrO2-supported CuPd catalysts for the selective production of hydrogen from methanol steam reforming. Appl. Catal. B Environ. 2017, 203, 400–407. [Google Scholar] [CrossRef]
- Ruano, D.; Pabón, B.M.; Azenha, C.; Mateos-Pedrero, C.; Mendes, A.; Pérez-Dieste, V.; Concepción, P. Influence of the ZrO2 crystalline phases on the nature of active sites in PdCu/ZrO2 catalysts for the methanol steam reforming reaction—An in situ spectroscopic study. Catalysts 2020, 10, 1005. [Google Scholar] [CrossRef]
- Matsumura, Y. Enhancement in activity of Pd-Zn catalyst for methanol steam reforming by coprecipitation on zirconia support. Appl. Catal. A Gen. 2013, 468, 350–358. [Google Scholar] [CrossRef]
- Barrios, C.E.; Bosco, M.V.; Baltanás, M.A.; Bonivardi, A.L. Hydrogen production by methanol steam reforming: Catalytic performance of supported-Pd on zinc-cerium oxides’ nanocomposites. Appl. Catal. B Environ. 2015, 179, 262–275. [Google Scholar] [CrossRef]
- Penner, S.; Lorenz, H.; Jochum, W.; Stöger-Pollach, M.; Wang, D.; Rameshan, C.; Klötzer, B. Pd/Ga2O3 methanol steam reforming catalysts: Part I. morphology, composition and structural aspects. Appl. Catal. A Gen. 2009, 358, 193–202. [Google Scholar] [CrossRef]
- Lorenz, H.; Penner, S.; Jochum, W.; Rameshan, C.; Klötzer, B. Pd/Ga2O3 methanol steam reforming catalysts: Part II. catalytic selectivity. Appl. Catal. A Gen. 2009, 358, 203–210. [Google Scholar] [CrossRef]
- Föttinger, K.; Rupprechter, G. In situ spectroscopy of complex surface reactions on supported Pd-Zn, Pd-Ga, and Pd(Pt)-Cu nanoparticles. Acc. Chem. Res. 2014, 47, 3071–3079. [Google Scholar] [CrossRef]
- Rameshan, C.; Lorenz, H.; Armbrüster, M.; Kasatkin, I.; Klötzer, B.; Götsch, T.; Ploner, K.; Penner, S. Impregnated and Co-precipitated Pd-Ga2O3, Pd-In2O3 and Pd-Ga2O3-In2O3 catalysts: Influence of the microstructure on the CO2 selectivity in methanol steam reforming. Catal. Lett. 2018, 148, 3062–3071. [Google Scholar] [CrossRef]
- Iwasa, N.; Mayanagi, T.; Ogawa, N.; Sakata, K.; Takezawa, N. New catalytic functions of Pd-Zn, Pd-Ga, Pd-In, Pt-Zn, Pt-Ga and Pt-In alloys in the conversions of methanol. Catal. Lett. 1998, 54, 119–123. [Google Scholar] [CrossRef]
- Davis, J.L.; Barteau, M.A. Spectroscopic identification of alkoxide, aldehyde, and acyl intermediates in alcohol decomposition on Pd(111). Surf. Sci. 1990, 235, 235–248. [Google Scholar] [CrossRef]
- Iwasa, N.; Takezawa, N. New supported Pd and Pt alloy catalysts for steam reforming and dehydrogenation of methanol. Top. Catal. 2003, 22, 215–224. [Google Scholar] [CrossRef]
- Conant, T.; Karim, A.M.; Lebarbier, V.; Wang, Y.; Girgsdies, F.; Schlogl, R.; Datye, A. Stability of bimetallic Pd–Zn catalysts for the steam reforming of methanol. J. Catal. 2008, 257, 64–70. [Google Scholar] [CrossRef]
- Chen, Z.-X.; Neyman, K.M.; Lim, K.H.; Rösch, N. CH3O decomposition on PdZn(111), Pd(111), and Cu(111). A Theoretical Study. Langmuir 2004, 20, 8068–8077. [Google Scholar] [CrossRef]
- Chen, Z.-X.; Lim, K.H.; Neyman, K.M.; Rösch, N. Effect of steps on the decomposition of CH3O at PdZn alloy surfaces. J. Phys. Chem. B 2005, 109, 4568–4574. [Google Scholar] [CrossRef]
- Gu, X.-K.; Li, W.-X. First-principles study on the origin of the different selectivities for methanol steam reforming on Cu(111) and Pd(111). J. Phys. Chem. C 2010, 114, 21539–21547. [Google Scholar] [CrossRef]
- Jeroro, E.; Vohs, J.M. Zn modification of the reactivity of Pd(111) toward methanol and formaldehyde. J. Am. Chem. Soc. 2008, 130, 10199–10207. [Google Scholar] [CrossRef] [PubMed]
- Suwa, Y.; Ito, S.-i.; Kameoka, S.; Tomishige, K.; Kunimori, K. Comparative study between Zn–Pd/C and Pd/ZnO catalysts for steam reforming of methanol. Appl. Catal. A Gen. 2004, 267, 9–16. [Google Scholar] [CrossRef]
- Liu, S.; Takahashi, K.; Fuchigami, K.; Uematsu, K. Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst deactivation. Appl. Catal. A Gen. 2006, 299, 58–65. [Google Scholar] [CrossRef]
- Penner, S.; Jenewein, B.; Gabasch, H.; Klötzer, B.; Wang, D.; Knop-gericke, A.; Schlögl, R.; Hayek, K. Growth and structural stability of well-ordered PdZn alloy nanoparticles. J. Catal. 2006, 241, 14–19. [Google Scholar] [CrossRef]
- Liu, D.; Men, Y.; Wang, J.; Kolb, G.; Liu, X.; Wang, Y.; Sun, Q. Highly active and durable Pt/In2O3/Al2O3 catalysts in methanol steam reforming. Int. J. Hydrogen Energy 2016, 41, 21990–21999. [Google Scholar] [CrossRef]
- Liao, L.; Men, Y.; Wang, Y.; Xu, S.; Wu, S.; Wang, J.; Yan, Z.; Miao, X. Unravelling the morphology effect of Pt/In2O3 catalysts for highly efficient hydrogen production by methanol steam reforming. Fuel 2024, 372, 132221. [Google Scholar] [CrossRef]
- Deng, Y.; Ge, Y.; Xu, M.; Yu, Q.; Xiao, D.; Yao, S.; Ma, D. Molybdenum carbide: Controlling the geometric and electronic structure of noble metals for the activation of O-H and C-H bonds. Acc. Chem. Res. 2019, 52, 3372–3383. [Google Scholar] [CrossRef]
- Lin, L.; Zhou, W.; Gao, R.; Yao, S.; Zhang, X.; Xu, W.; Zheng, S.; Jiang, Z.; Yu, Q.; Li, Y.-W.; et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83. [Google Scholar] [CrossRef]
- Wang, X.; Li, D.; Gao, Z.; Guo, Y.; Zhang, H.; Ma, D. The nature of interfacial catalysis over Pt/NiAl2O4 for hydrogen production from methanol reforming reaction. J. Am. Chem. Soc. 2023, 145, 905–918. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.-Y.; Wang, Y.-F.; Zhang, R.-X.; Gao, Z.-H.; Huang, W.; Liu, L.; Zuo, Z.-J. Theoretical insight into hydrogen production from methanol steam reforming on Pt(111). Mol. Catal. 2022, 532, 112745. [Google Scholar] [CrossRef]
- Hu, P.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. Reusable homogeneous catalytic system for hydrogen production from methanol and water. ACS Catal. 2014, 4, 2649–2652. [Google Scholar] [CrossRef]
- Nielsen, M.; Alberico, E.; Baumann, W.; Drexler, H.-J.; Junge, H.; Gladiali, S.; Beller, M. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature 2013, 495, 85–89. [Google Scholar] [CrossRef]
- Rodriguez-Lugo, R.E.; Trincado, M.; Vogt, M.; Tewes, F.; Santiso-Quinones, G.; Grützmacher, H. A homogeneous transition metal complex for clean hydrogen production from methanol-water mixtures. Nat. Chem. 2013, 5, 342–347. [Google Scholar] [CrossRef]
- Schwarz, C.H.; Agapova, A.; Junge, H.; Haumann, M. Immobilization of a selective Ru-pincer complex for low temperature methanol reforming–Material and process improvements. Catal. Today 2020, 342, 178–186. [Google Scholar] [CrossRef]
- Lytkina, A.A.; Mironova, E.Y.; Orekhova, N.V.; Ermilova, M.M.; Yaroslavtsev, A.B. Ru-Containing catalysts for methanol and ethanol steam reforming in conventional and membrane reactors. Inorg. Mater. 2019, 55, 547–555. [Google Scholar] [CrossRef]
- Lytkina, A.A.; Orekhova, N.V.; Ermilova, M.M.; Petriev, I.S.; Baryshev, M.G.; Yaroslavtsev, A.B. Ru-Rh based catalysts for hydrogen production via methanol steam reforming in conventional and membrane reactors. Int. J. Hydrogen Energy 2019, 44, 13310–13322. [Google Scholar] [CrossRef]
- Lytkina, A.A.; Orekhova, N.V.; Ermilova, M.M.; Belenov, S.V.; Guterman, V.E.; Efimov, M.N.; Yaroslavtsev, A.B. Bimetallic carbon nanocatalysts for methanol steam reforming in conventional and membrane reactors. Catal. Today 2016, 268, 60–67. [Google Scholar] [CrossRef]
Catalysts | Temperature (°C) | CH3OH Conversion (%) | CO Selectivity (%) | H2 Yield (mmol g−1 h−1) | Reaction Conditions | Stability | Ref. |
---|---|---|---|---|---|---|---|
Cu5-Al | 240 | 98 | 1.3 b | 187.2 | H2 pretreatment; feed rate = 0.048 mL h−1; H2O/CH3OH = 1.5 | \ | [13] |
Cu/Cu(Al)Ox | 240 | 99.5 | 1 b | 398.88 | H2 pretreatment; feed rate = 2.4 mL h−1; H2O/CH3OH = 2 | 240 °C, 100 h, 14% drop in CH3OH conversion | [12] |
Cu/Al2O3 | 250 | 89.7 | 0.9 a | 531.36 | H2 pretreatment; WHSV = 10.56 h−1; H2O/CH3OH = 1 | 200 °C, 100 h, 10% drop in H2 production rate | [14] |
CuZnAl | 350 | 98 | 0 | 60.02 | GHSV = 15,500 h−1; H2O/CH3OH = 2 | \ | [15] |
CuZnO/γ-Al2O3/Al | 275 | 100 | 3.34 a | 3580 | GHSV = 4000 mL g−1 h−1; H2O/CH3OH = 2 | 275 °C, 100 h, 10% drop in CH3OH conversion | [16] |
Cu/ZnO/Al2O3 | 225 | 67 | 0.07 a | \ | CH3OH/H2O/H2 pretreatment; WHSV = 6 h−1; H2O/CH3OH = 1.3 | 225 °C, 40 h, 10% drop in CH3OH conversion | [17] |
Cu/ZnO/Al2O3 | 240 | 90 | 0 | \ | H2 pretreatment; GHSV = 10,000 cm3 g−1 h−1; H2O/CH3OH = 1.5 | 240 °C, 90 h, 30% drop in CH3OH conversion | [18] |
Cu/SiO2 | 280 | 80 | \ | 105 | GHSV = 300 kg L−1 s−1; H2O/CH3OH = 1.5 | \ | [19] |
Cu-MCM-41 | 250 | 72.3 | 0.8 b | \ | H2 pretreatment; GHSV = 2838 h−1; H2O/CH3OH = 3 | 250 °C, 48 h, no drop | [20] |
CeCuZn/CNTs | 300 | 94.2 | 2.6 a | H2 yield = 98.2% | H2 pretreatment; WHSV = 7.5 h−1; H2O/CH3OH = 2 | 300 °C, 48 h, 7% drop in CH3OH conversion | [21] |
Cu/Ce-Cu(BDC) | 250 | 99 | 2 a | H2 yield = 97% | WHSV = 9.2 h−1; H2O/CH3OH = 2 | 250 °C, 32 h, 7% drop in CH3OH conversion | [22] |
CuO/CeO2 | 260 | 100 | 2.4 a | \ | H2 pretreatment; GHSV = 800 h−1; H2O/CH3OH = 1.2 | \ | [23] |
CuO/ZnO/CeO2/ Al2O3 | 200 | 100 | 0 | \ | H2 pretreatment; GHSV = 10,000 cm3 g−1 h−1; H2O/CH3OH = 1.5 | 200 °C, 24 h, no drop | [24] |
ZrO2/Cu | 200 | 32 | 0 | 190 | H2 pretreatment; WHSV = 10 h−1; H2O/CH3OH = 1.0 | 200 °C, 200 h, no drop | [7] |
Cu/ZnO/ZrO2 | 250 | 88.6 | 0 | 12,600 mmol gCu−1 h−1 | H2 pretreatment; H2O/CH3OH = 1.0 | \ | [25] |
Cu/Ce1−xZrxO2 | 240 | 23 | 0 | 316 | H2 pretreatment; WHSV = 27 h−1; H2O/CH3OH = 1.5 | 240 °C, 90 h, no drop | [26] |
CuO/ZnO/CeO2-ZrO2 | 240 | 95 | 0.46 a | 1836 mL g−1 h−1 | H2 pretreatment; GHSV = 1200 h−1; H2O/CH3OH = 1.2 | 230–260 °C, 360 h, no drop | [27] |
Cu/ZnO/CeO2/ ZrO2/SBA-15 | 300 | 95.2 | 1.4 b | H2 yield = 90% | H2 pretreatment; WHSV = 43.68 h−1; H2O/CH3OH = 2 | 300 °C, 60 h, 12% drop in CH3OH conversion | [28] |
CuZnGaOx | 150 | 22.5 | 0 | 393.6 mL g−1 h−1 | H2 pretreatment; feed rate = 6 mL h−1; H2O/CH3OH = 2 | \ | [29] |
CuGaZn | 200 | \ | 0.2 a | 118.1 | H2 pretreatment; WHSV = 6 h−1; H2O/CH3OH = 1.3 | 200 °C, 24 h, no drop | [30] |
CuZnGaZr | 250 | 42.9 | 0.3 | 10,620 mL g−1 h−1 | GHSV = 2200 h−1; H2O/CH3OH = 1 | 275 °C, 44 h, 7% drop in CH3OH conversion | [31] |
Cu/MgAl2O4 | 300 | 96 | 2.8 b | \ | H2 pretreatment; WHSV = 8.5 h−1; H2O/CH3OH = 1 | 200 °C, 30 h, 4% drop in CH3OH conversion | [32] |
Mg/Cu-Al spinel | 255 | 96.5 | 3.8 a | H2 yield = 96.54% | WHSV = 2.28 h−1; H2O/CH3OH = 2.27 | 255 °C, 500 h, no drop | [33] |
CuZnAlMg | 200 | 68.5 | 0.88 a | 172 | H2 pretreatment; WHSV = 3.84 h−1; H2O/CH3OH = 1 | 350 °C, 8 h, 18% drop in CH3OH conversion | [34] |
CuCeMg/Al | 250 | 100 | 0.29 c | H2 yield = 29.1% | H2 pretreatment; feed rate = 1 mL h−1; H2O/CH3OH = 1 | 250 °C, 72 h, no drop | [35] |
La(CoCuFeAlCe)0.2O3 | 600 | 98.9 | 8 c | 436.8 | LHSV = 20 h−1; H2O/CH3OH = 4 | 600 °C, 50 h, no drop | [36] |
Catalysts | Temperature (°C) | CH3OH Conversion (%) | CO Selectivity (%) | H2 Yield (mmol g−1 h−1) | Reaction Conditions | Stability | Ref. |
---|---|---|---|---|---|---|---|
Pd/ZnO | 400 | 94 | 0.5 a | 1628 | H2 pretreatment; GHSV = 12,000 h−1; H2O/CH3OH = 1.2 | \ | [82] |
Pd/ZnAl2O4 | 250 | 35 | 3.0 a | 41.04 | H2 pretreatment; Pmethanol = 6.4 mol%; H2O/CH3OH = 1.1 | 250 °C, 100 h, no drop | [83] |
ZnPd/MoC | 160 | 40.3 | 0.9 b | 68.9 | CH4/H2 pretreatment; feed rate = 1.2 mL h−1; H2O/CH3OH = 3 | 240 °C, 170 h, initial deactivation only | [84] |
Pd/Zn1Zr1Ox | 330 | 46 | 0 | \ | H2 pretreatment; GHSV = 17,000 h−1; H2O/CH3OH = 1.3 | 330 °C, 30 h, no drop | [85] |
Pd/ZrO2-TiO2 | 300 | 98 | 37 c | \ | H2 pretreatment; GHSV = 30,000 h−1; H2O/CH3OH = 0.16 | \ | [86] |
Pd/In2O3/CeO2 | 375 | 96 | 1.3 c | 250 | H2 pretreatment; GHSV = 13,809.6 h−1; H2O/CH3OH = 1.4 | 400 °C, 30 h, no drop | [87] |
Pd-Cu/ZnAl2O4 | 240 | 100 | \ | H2 yield = 84% | H2 pretreatment; GHSV = 2400 h−1 | \ | [88] |
CuPd/ZrO2 | 220 | 63 | 5 a | 86.3 | H2 pretreatment; GHSV = 295 mol g−1 h−1; H2O/CH3OH = 1.4 | 240 °C, 80 h, no drop | [89] |
Pt/In2O3/CeO2 | 325 | 98.7 | 2.6 a | 333 | feed rate = 1.2 mL h−1; H2O/CH3OH = 1.4 | 325 °C, 32 h, no drop | [90] |
Pt/In2O3/CeO2 | 350 | 99.9 | 2.5 c | H2 yield = 64.7% | WHSV = 99,500 mL g−1 h−1; H2O/CH3OH = 1.4 | 350 °C, 100 h, 8% drop in CH3OH conversion | [91] |
Pt/MoC | 200 | 100 | 3 c | \ | CH4/H2 pretreatment; WHSV = 9000 cm3 g−1 h−1; H2O/CH3OH = 1 | 200 °C, 20 h, no drop | [92] |
Zn-Pt/MoC | 160 | 65.9 | \ | 106.9 | Carburizing treatment; feed rate = 1.2 mL h−1; H2O/CH3OH = 3 | 120 °C, 25 h, 4% drop in CH3OH conversion | [93] |
Pt1/ZnO | 390 | 43 | \ | \ | WHSV = 55,200 cm3 g−1 h−1; H2O/CH3OH = 1.5 | \ | [94] |
Pt-K@S-1 | 250 | 15 | <1.9% c | 4308 | H2 pretreatment; WHSV = 45 h−1; H2O/CH3OH = 3 | 400 °C, 50 h, no drop | [95] |
Ru/TiO2 | 300 | 98.9 | 5.4 b | \ | H2 pretreatment; WHSV = 1.8 h−1; H2O/CH3OH = 1.2 | \ | [96] |
RuCe | 400 | 98 | 0.13 c | 882 mmol cm−3 h−1 | feed rate = 3.47 mL h−1; H2O/CH3OH = 2 | 400 °C, 115 h, no drop | [97] |
Ru1/CeO2 | 350 | 25.6 | 2.2 a | 139.6 | feed rate = 3 mL h−1; H2O/CH3OH = 3 | 350 °C, 72 h, no drop | [98] |
Rh1/CeO2 | 350 | 21 | 36 a | 100 | feed rate = 3 mL h−1; H2O/CH3OH = 3 | \ | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Liu, D.; Wang, Y.; Zhao, L.; Xu, G.; Yu, Y.; He, H. Recent Advances in Methanol Steam Reforming Catalysts for Hydrogen Production. Catalysts 2025, 15, 36. https://doi.org/10.3390/catal15010036
Zhang M, Liu D, Wang Y, Zhao L, Xu G, Yu Y, He H. Recent Advances in Methanol Steam Reforming Catalysts for Hydrogen Production. Catalysts. 2025; 15(1):36. https://doi.org/10.3390/catal15010036
Chicago/Turabian StyleZhang, Mengyuan, Diru Liu, Yiying Wang, Lin Zhao, Guangyan Xu, Yunbo Yu, and Hong He. 2025. "Recent Advances in Methanol Steam Reforming Catalysts for Hydrogen Production" Catalysts 15, no. 1: 36. https://doi.org/10.3390/catal15010036
APA StyleZhang, M., Liu, D., Wang, Y., Zhao, L., Xu, G., Yu, Y., & He, H. (2025). Recent Advances in Methanol Steam Reforming Catalysts for Hydrogen Production. Catalysts, 15(1), 36. https://doi.org/10.3390/catal15010036