Investigating the Potential of Green-Fabricated Zinc Oxide Nanoparticles to Inhibit the Foodborne Pathogenic Bacteria Isolated from Spoiled Fruits
Abstract
1. Introduction
2. Results and Discussion
2.1. Bacterial Isolation and Enzymatic Activities
2.2. Molecular Identification of β-Hemolysis Bacterial Isolates
2.3. Psidium Guajava-Mediated ZnO-NPs Synthesis
2.4. ZnO-NPs Characterization
2.4.1. Optical Characteristics
2.4.2. Morphological Analysis
2.4.3. Elemental Composition Analysis
2.4.4. Structural Features
2.4.5. DLS Analysis
2.5. Inhibition of the Growth of Foodnorne Pathogenic Bacteria Using Green-Synthesized ZnO-NPs
3. Materials and Methods
3.1. Sample Collection
3.2. Bacterial Isolation
3.3. Hydrolytic Enzyme Production
3.4. Hemolysis Test
3.5. Bacterial Identification
3.6. Green Synthesis of ZnO-NPs by Psidium Guajava
3.7. ZnO Nanoparticles Characterization
3.7.1. UV–Vis Analysis
3.7.2. Morphological and Elemental Component Detection
3.7.3. X-ray Diffraction Analysis
3.7.4. Dynamic Light Scattering (DLS)
3.8. Antibacterial Activity
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Sardella, D.; Muscat, A.; Brincat, J.-P.; Gatt, R.; Decelis, S.; Valdramidis, V. A comprehensive review of the pear fungal diseases. Int. J. Fruit Sci. 2016, 16, 351–377. [Google Scholar] [CrossRef]
- Fichant, A.; Lanceleur, R.; Hachfi, S.; Brun-Barale, A.; Blier, A.-L.; Firmesse, O.; Gallet, A.; Fessard, V.; Bonis, M. New Approach Methods to Assess the Enteropathogenic Potential of Strains of the Bacillus cereus Group, including Bacillus thuringiensis. Foods 2024, 13, 1140. [Google Scholar] [CrossRef] [PubMed]
- Kostoglou, D.; Simoni, M.; Vafeiadis, G.; Kaftantzis, N.-M.; Giaouris, E. Prevalence of Campylobacter spp., Salmonella spp., and Listeria monocytogenes, and Population Levels of Food Safety Indicator Microorganisms in Retail Raw Chicken Meat and Ready-To-Eat Fresh Leafy Greens Salads Sold in Greece. Foods 2023, 12, 4502. [Google Scholar] [CrossRef]
- Zmejkoski, D.Z.; Marković, Z.M.; Zdravković, N.M.; Trišić, D.D.; Budimir, M.D.; Kuzman, S.B.; Kozyrovska, N.O.; Orlovska, I.V.; Bugárová, N.; Petrović, Đ.Ž.; et al. Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent. RSC Adv. 2021, 11, 8559–8568. [Google Scholar] [CrossRef]
- Alpers, T.; Kerpes, R.; Frioli, M.; Nobis, A.; Hoi, K.I.; Bach, A.; Jekle, M.; Becker, T. Impact of Storing Condition on Staling and Microbial Spoilage Behavior of Bread and Their Contribution to Prevent Food Waste. Foods 2021, 10, 76. [Google Scholar] [CrossRef]
- Alegbeleye, O.; Odeyemi, O.A.; Strateva, M.; Stratev, D. Microbial spoilage of vegetables, fruits and cereals. Appl. Food Res. 2022, 2, 100122. [Google Scholar] [CrossRef]
- Zhao, P.; Ndayambaje, J.P.; Liu, X.; Xia, X. Microbial spoilage of fruits: A review on causes and prevention methods. Food Rev. Int. 2022, 38, 225–246. [Google Scholar] [CrossRef]
- Bajpai, V.K.; Kamle, M.; Shukla, S.; Mahato, D.K.; Chandra, P.; Hwang, S.K.; Kumar, P.; Huh, Y.S.; Han, Y.-K. Prospects of using nanotechnology for food preservation, safety, and security. J. Food Drug Anal. 2018, 26, 1201–1214. [Google Scholar] [CrossRef]
- Salem, S.S.; Fouda, A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biol. Trace Elem. Res. 2021, 199, 344–370. [Google Scholar] [CrossRef]
- Franco, D.; Calabrese, G.; Guglielmino, S.P.P.; Conoci, S. Metal-Based Nanoparticles: Antibacterial Mechanisms and Biomedical Application. Microorganisms 2022, 10, 1778. [Google Scholar] [CrossRef] [PubMed]
- Onyeaka, H.; Passaretti, P.; Miri, T.; Al-Sharify, Z.T. The safety of nanomaterials in food production and packaging. Curr. Res. Food Sci. 2022, 5, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Couto, C.; Almeida, A. Metallic Nanoparticles in the Food Sector: A Mini-Review. Foods 2022, 11, 402. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, S.; Marković, Z.; Budimir, M.; Prekodravac, J.; Zmejkoski, D.; Kepić, D.; Bonasera, A.; Marković, B.T. Lights and Dots toward Therapy—Carbon-Based Quantum Dots as New Agents for Photodynamic Therapy. Pharmaceutics 2023, 15, 1170. [Google Scholar] [CrossRef]
- Fouda, A.; Alshallash, K.S.; Alghonaim, M.I.; Eid, A.M.; Alemam, A.M.; Awad, M.A.; Hamza, M.F. The Antimicrobial and Mosquitocidal Activity of Green Magnesium Oxide Nanoparticles Synthesized by an Aqueous Peel Extract of Punica granatum. Chemistry 2023, 5, 2009–2024. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Alshallash, K.S.; Eid, A.M.; Hassan, S.E.; Salih, M.; Hamza, M.F.; Fouda, A. Exploring the Antimicrobial, Antioxidant, and Antiviral Potential of Eco-Friendly Synthesized Silver Nanoparticles Using Leaf Aqueous Extract of Portulaca oleracea L. Pharmaceuticals 2024, 17, 317. [Google Scholar] [CrossRef]
- Hamk, M.; Akçay, F.A.; Avcı, A. Green synthesis of zinc oxide nanoparticles using Bacillus subtilis ZBP4 and their antibacterial potential against foodborne pathogens. Prep. Biochem. Biotechnol. 2023, 53, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Fouda, A.; Eid, A.M.; Abdelkareem, A.; Said, H.A.; El-Belely, E.F.; Alkhalifah, D.H.M.; Alshallash, K.S.; Hassan, S.E.-D. Phyco-synthesized zinc oxide nanoparticles using marine macroalgae, Ulva fasciata Delile, characterization, antibacterial activity, photocatalysis, and tanning wastewater treatment. Catalysts 2022, 12, 756. [Google Scholar] [CrossRef]
- Grasso, A.; Ferrante, M.; Moreda-Pineiro, A.; Arena, G.; Magarini, R.; Conti, G.O.; Cristaldi, A.; Copat, C. Dietary exposure of zinc oxide nanoparticles (ZnO-NPs) from canned seafood by single particle ICP-MS: Balancing of risks and benefits for human health. Ecotoxicol. Environ. Saf. 2022, 231, 113217. [Google Scholar] [CrossRef]
- Patel, M.; Firdaus, M.A.; Mishra, S. Influence of ZnO and CuO nanoparticle on the shelf life and physiochemical properties of guava (Psidium guajava) fruits and juice. CyTA-J. Food 2022, 20, 385–393. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Amarowicz, R.; Saurabh, V.; Nair, M.S.; Maheshwari, C.; Sasi, M.; Prajapati, U.; Hasan, M.; Singh, S. Guava (Psidium guajava L.) leaves: Nutritional composition, phytochemical profile, and health-promoting bioactivities. Foods 2021, 10, 752. [Google Scholar] [CrossRef] [PubMed]
- Jyoti, A.; Agarwal, M.; Tomar, R.S. Synergistic effect of Zinc Oxide Nanoparticles and Guava Leaf extract for Enhanced antimicrobial activity against Enterotoxigenic Escherichia coli. J. Biochem. Technol. 2020, 11, 17–23. [Google Scholar]
- Zayed, M.; Othman, H.; Ghazal, H.; Hassabo, A.G. Psidium guajava leave extract as reducing agent for synthesis of zinc oxide nanoparticles and its application to impart multifunctional properties for cellulosic fabrics. Biointerface Res. Appl. Chem. 2021, 11, 13535–13556. [Google Scholar]
- Saha, R.; Subramani, K.; Raju, S.A.K.P.M.; Rangaraj, S.; Venkatachalam, R. Psidium guajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics. Prog. Org. Coat. 2018, 124, 80–91. [Google Scholar] [CrossRef]
- Kim, A.L.; Park, S.; Hong, Y.K.; Shin, J.H.; Joo, S.H. Isolation and Characterization of Beneficial Bacteria from Food Process Wastes. Microorganisms 2021, 9, 1156. [Google Scholar] [CrossRef] [PubMed]
- Hasan, N.; Zulkahar, I. Isolation and identification of bacteria from spoiled fruits. AIP Conf. Proc. 2018, 2018, 020073. [Google Scholar]
- Singh, V.; Jawandha, S.K.; Gill, P.P.S.; Gill, M.S. Suppression of fruit softening and extension of shelf life of pear by putrescine application. Sci. Hortic. 2019, 256, 108623. [Google Scholar] [CrossRef]
- Cordenunsi-Lysenko, B.R.; Nascimento, J.R.O.; Castro-Alves, V.C.; Purgatto, E.; Fabi, J.P.; Peroni-Okyta, F.H.G. The Starch Is (Not) Just Another Brick in the Wall: The Primary Metabolism of Sugars During Banana Ripening. Front. Plant Sci. 2019, 10, 391. [Google Scholar] [CrossRef]
- Bakry, M.M.; Salem, S.S.; Atta, H.M.; El-Gamal, M.S.; Fouda, A. Xylanase from thermotolerant Bacillus haynesii strain, synthesis, characterization, optimization using Box-Behnken Design, and biobleaching activity. Biomass Convers. Biorefinery 2024, 14, 9779–9792. [Google Scholar] [CrossRef]
- Chandra, P.; Enespa; Singh, R.; Arora, P.K. Microbial lipases and their industrial applications: A comprehensive review. Microb. Cell Factories 2020, 19, 169. [Google Scholar] [CrossRef]
- Hazards, E.; Panelo, B. Risks for public health related to the presence of Bacillus cereus and other Bacillus spp. including Bacillus thuringiensis in foodstuffs. EFSA J. 2016, 14, e04524. [Google Scholar] [CrossRef]
- Garbowska, M.; Berthold-Pluta, A.; Stasiak-Różańska, L.; Pluta, A.; Forsythe, S.; Stefańska, I. The Genotyping Diversity and Hemolytic Activity of Cronobacter spp. Isolated from Plant-Based Food Products in Poland. Foods 2023, 12, 3873. [Google Scholar] [CrossRef] [PubMed]
- Hemalata, V.; Virupakshaiah, D. Isolation and identification of food borne pathogens from spoiled food samples. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 1017–1025. [Google Scholar] [CrossRef]
- Ao, X.; Yan, J.; Chen, C.; Zhao, J.; Liu, S.; Zhao, K.; Chen, S.; He, L. Isolation and identification of the spoilage microorganisms in Sichuan homemade Paocai and their impact on quality and safety. Food Sci. Nutr. 2019, 7, 2939–2947. [Google Scholar] [CrossRef] [PubMed]
- Quereda, J.J.; Morón-García, A.; Palacios-Gorba, C.; Dessaux, C.; García-Del Portillo, F.; Pucciarelli, M.G.; Ortega, A.D. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021, 12, 2509–2545. [Google Scholar] [CrossRef]
- Kadariya, J.; Smith, T.C.; Thapaliya, D. Staphylococcus aureus and staphylococcal food-borne disease: An ongoing challenge in public health. BioMed Res. Int. 2014, 2014, 827965. [Google Scholar] [CrossRef]
- Śmiechowicz, J. The Rationale and Current Status of Endotoxin Adsorption in the Treatment of Septic Shock. J. Clin. Med. 2022, 11, 619. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Vasiljevic, Z.Z.; Auger, S.; Vidic, J. Metal oxide nanoparticles for safe active and intelligent food packaging. Trends Food Sci. Technol. 2021, 116, 655–668. [Google Scholar] [CrossRef]
- Begum, S.; Siddiqui, B.; Hassan, S.I. Triterpenoids from Psidium guajava leaves. Nat. Prod. Lett. 2002, 16, 173–177. [Google Scholar] [CrossRef]
- Abdel Wahab, S.; Hifawy, M.; El Gohary, H.; Isak, M. Study of carbohydrates, lipids, protein, flavonoids, vitamin C and biological activity of Psidium guajava L growing in Egypt. Egypt. J. Biomed. Sci. 2004, 16, 35–52. [Google Scholar]
- Patil, S.P.; Rane, P.M. Psidium guajava leaves assisted green synthesis of metallic nanoparticles: A review. Beni-Suef Univ. J. Basic Appl. Sci. 2020, 9, 60. [Google Scholar] [CrossRef]
- Karthik, P.; Jose, P.A.; Chellakannu, A.; Gurusamy, S.; Ananthappan, P.; Karuppathevan, R.; Vasantha, V.S.; Rajesh, J.; Ravichandran, S.; Sankarganesh, M. Green synthesis of MnO2 nanoparticles from Psidium guajava leaf extract: Morphological characterization, photocatalytic and DNA/BSA interaction studies. Int. J. Biol. Macromol. 2024, 258, 128869. [Google Scholar] [CrossRef] [PubMed]
- Chamkouri, N.; Koolivand, Z.; Niazvand, F.; Mojaddami, A. Phytochemical analysis, characterization, and biosynthesis of gold nanoparticles, zinc oxide nanoparticles, and gold-zinc oxide nanocomposites from Phoenix dactylifera L. seeds: Biological evaluation. Inorg. Chem. Commun. 2023, 156, 111146. [Google Scholar] [CrossRef]
- Eid, A.M.; Fouda, A.; Niedbała, G.; Hassan, S.E.-D.; Salem, S.S.; Abdo, A.M.; Hetta, H.F.; Shaheen, T.I. Endophytic Streptomyces laurentii Mediated Green Synthesis of Ag-NPs with Antibacterial and Anticancer Properties for Developing Functional Textile Fabric Properties. Antibiotics 2020, 9, 641. [Google Scholar] [CrossRef]
- El-Belely, E.F.; Farag, M.M.S.; Said, H.A.; Amin, A.S.; Azab, E.; Gobouri, A.A.; Fouda, A. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Arthrospira platensis (Class: Cyanophyceae) and Evaluation of their Biomedical Activities. Nanomaterials 2021, 11, 95. [Google Scholar] [CrossRef]
- Hameed, H.; Waheed, A.; Sharif, M.S.; Saleem, M.; Afreen, A.; Tariq, M.; Kamal, A.; Al-Onazi, W.A.; Al Farraj, D.A.; Ahmad, S.; et al. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles from Green Algae and Their Assessment in Various Biological Applications. Micromachines 2023, 14, 928. [Google Scholar] [CrossRef]
- Mani, V.M.; Nivetha, S.; Sabarathinam, S.; Barath, S.; Das, M.A.; Basha, S.; Elfasakhany, A.; Pugazhendhi, A. Multifunctionalities of mycosynthesized zinc oxide nanoparticles (ZnONPs) from Cladosporium tenuissimum FCBGr: Antimicrobial additives for paints coating, functionalized fabrics and biomedical properties. Prog. Org. Coat. 2022, 163, 106650. [Google Scholar] [CrossRef]
- Vera, J.; Herrera, W.; Hermosilla, E.; Díaz, M.; Parada, J.; Seabra, A.B.; Tortella, G.; Pesenti, H.; Ciudad, G.; Rubilar, O. Antioxidant Activity as an Indicator of the Efficiency of Plant Extract-Mediated Synthesis of Zinc Oxide Nanoparticles. Antibiotics 2023, 12, 784. [Google Scholar] [CrossRef] [PubMed]
- Vasile, O.R.; Serdaru, I.; Andronescu, E.; Truşcă, R.; Surdu, V.A.; Oprea, O.; Ilie, A.; Vasile, B.Ş. Influence of the size and the morphology of ZnO nanoparticles on cell viability. Comptes Rendus Chim. 2015, 18, 1335–1343. [Google Scholar] [CrossRef]
- Hassan, S.E.; Fouda, A.; Saied, E.; Farag, M.M.S.; Eid, A.M.; Barghoth, M.G.; Awad, M.A.; Hamza, M.F.; Awad, M.F. Rhizopus oryzae-Mediated Green Synthesis of Magnesium Oxide Nanoparticles (MgO-NPs): A Promising Tool for Antimicrobial, Mosquitocidal Action, and Tanning Effluent Treatment. J. Fungi 2021, 7, 372. [Google Scholar] [CrossRef]
- Naiel, B.; Fawzy, M.; Halmy, M.W.A.; Mahmoud, A.E.D. Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: Characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Sci. Rep. 2022, 12, 20370. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, F.N.; Abaker, Z.M.; Makawi, S.Z. Phytochemical Substances—Mediated Synthesis of Zinc Oxide Nanoparticles (ZnO NPS). Inorganics 2023, 11, 328. [Google Scholar] [CrossRef]
- Naseer, M.; Aslam, U.; Khalid, B.; Chen, B. Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci. Rep. 2020, 10, 9055. [Google Scholar] [CrossRef]
- Meena, P.L.; Poswal, K.; Surela, A.K. Facile synthesis of ZnO nanoparticles for the effective photodegradation of malachite green dye in aqueous solution. Water Environ. J. 2022, 36, 513–524. [Google Scholar] [CrossRef]
- Mustapha, S.; Ndamitso, M.; Abdulkareem, A.; Tijani, J.; Shuaib, D.; Mohammed, A.; Sumaila, A. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 2019, 10, 045013. [Google Scholar] [CrossRef]
- Tomaszewska, E.; Soliwoda, K.; Kadziola, K.; Tkacz-Szczesna, B.; Celichowski, G.; Cichomski, M.; Szmaja, W.; Grobelny, J. Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J. Nanomater. 2013, 2013, 60. [Google Scholar] [CrossRef]
- Eid, A.M.; Fouda, A.; Hassan, S.E.-D.; Hamza, M.F.; Alharbi, N.K.; Elkelish, A.; Alharthi, A.; Salem, W.M. Plant-based copper oxide nanoparticles; biosynthesis, characterization, antibacterial activity, tanning wastewater treatment, and heavy metals sorption. Catalysts 2023, 13, 348. [Google Scholar] [CrossRef]
- Abdelbaky, A.S.; Abd El-Mageed, T.A.; Babalghith, A.O.; Selim, S.; Mohamed, A.M. Green synthesis and characterization of ZnO nanoparticles using Pelargonium odoratissimum (L.) aqueous leaf extract and their antioxidant, antibacterial and anti-inflammatory activities. Antioxidants 2022, 11, 1444. [Google Scholar] [CrossRef] [PubMed]
- Fouda, A.; Saied, E.; Eid, A.M.; Kouadri, F.; Alemam, A.M.; Hamza, M.F.; Alharbi, M.; Elkelish, A.; Hassan, S.E. Green Synthesis of Zinc Oxide Nanoparticles Using an Aqueous Extract of Punica granatum for Antimicrobial and Catalytic Activity. J. Funct. Biomater. 2023, 14, 205. [Google Scholar] [CrossRef]
- Iqbal, J.; Abbasi, B.A.; Yaseen, T.; Zahra, S.A.; Shahbaz, A.; Shah, S.A.; Uddin, S.; Ma, X.; Raouf, B.; Kanwal, S. Green synthesis of zinc oxide nanoparticles using Elaeagnus angustifolia L. leaf extracts and their multiple in vitro biological applications. Sci. Rep. 2021, 11, 20988. [Google Scholar] [CrossRef]
- Pochapski, D.J.; Carvalho dos Santos, C.; Leite, G.W.; Pulcinelli, S.H.; Santilli, C.V. Zeta Potential and Colloidal Stability Predictions for Inorganic Nanoparticle Dispersions: Effects of Experimental Conditions and Electrokinetic Models on the Interpretation of Results. Langmuir 2021, 37, 13379–13389. [Google Scholar] [CrossRef]
- Gupta, V.; Trivedi, P. Chapter 15—In vitro and in vivo characterization of pharmaceutical topical nanocarriers containing anticancer drugs for skin cancer treatment. In Lipid Nanocarriers for Drug Targeting; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2018; pp. 563–627. [Google Scholar]
- Bhattacharjee, S. DLS and zeta potential–what they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Albarakaty, F.M.; Alzaban, M.I.; Alharbi, N.K.; Bagrwan, F.S.; Abd El-Aziz, A.R.M.; Mahmoud, M.A. Zinc oxide Nanoparticles, Biosynthesis, characterization and their potent photocatalytic degradation, and antioxidant activities. J. King Saud Univ.-Sci. 2023, 35, 102434. [Google Scholar] [CrossRef]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; Viswanathan, K.; Kasi, G.; Thanakkasaranee, S.; Sadeghi, K.; Seo, J. ZnO nanostructures in active antibacterial food packaging: Preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges. Food Rev. Int. 2022, 38, 537–565. [Google Scholar] [CrossRef]
- Jin, T.; Sun, D.; Su, J.; Zhang, H.-w.; Sue, H.J. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis, and Escherichia coli O157:H7. J. Food Sci. 2009, 74, M46–M52. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhu, L.; Lin, D. Toxicity of ZnO nanoparticles to Escherichia coli: Mechanism and the influence of medium components. Environ. Sci. Technol. 2011, 45, 1977–1983. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Xu, D.; Ren, D.; Zeng, K.; Wu, X. Green synthesis of zinc oxide nanoparticles using Citrus sinensis peel extract and application to strawberry preservation: A comparison study. LWT 2020, 126, 109297. [Google Scholar] [CrossRef]
- Imade, E.E.; Ajiboye, T.O.; Fadiji, A.E.; Onwudiwe, D.C.; Babalola, O.O. Green synthesis of zinc oxide nanoparticles using plantain peel extracts and the evaluation of their antibacterial activity. Sci. Afr. 2022, 16, e01152. [Google Scholar] [CrossRef]
- Hamza, M.F.; Fouda, A.; Wei, Y.; El Aassy, I.E.; Alotaibi, S.H.; Guibal, E.; Mashaal, N.M. Functionalized biobased composite for metal decontamination–Insight on uranium and application to water samples collected from wells in mining areas (Sinai, Egypt). Chem. Eng. J. 2022, 431, 133967. [Google Scholar] [CrossRef]
- Applerot, G.; Perkas, N.; Amirian, G.; Girshevitz, O.; Gedanken, A. Coating of glass with ZnO via ultrasonic irradiation and a study of its antibacterial properties. Appl. Surf. Sci. 2009, 256, S3–S8. [Google Scholar] [CrossRef]
- Al-Odayni, A.-B.; Saeed, W.S.; Abdu, N.A.Y. Phyto-mediated synthesis of ZnO NPs using guava leaf extract: Characterization, antibacterial activity, and hemolysis effect. Biomass Convers. Biorefinery 2023. [Google Scholar] [CrossRef]
- Lallo da Silva, B.; Abuçafy, M.P.; Berbel Manaia, E.; Oshiro Junior, J.A.; Chiari-Andréo, B.G.; Pietro, R.C.R.; Chiavacci, L.A. Relationship Between Structure and Antimicrobial Activity of Zinc Oxide Nanoparticles: An Overview. Int. J. Nanomed. 2019, 14, 9395–9410. [Google Scholar] [CrossRef] [PubMed]
- Saied, E.; Eid, A.M.; Hassan, S.E.-D.; Salem, S.S.; Radwan, A.A.; Halawa, M.; Saleh, F.M.; Saad, H.A.; Saied, E.M.; Fouda, A. The catalytic activity of biosynthesized magnesium oxide nanoparticles (MgO-NPs) for inhibiting the growth of pathogenic microbes, tanning effluent treatment, and chromium ion removal. Catalysts 2021, 11, 821. [Google Scholar] [CrossRef]
- Fouda, A.; Awad, M.A.; Al-Faifi, Z.E.; Gad, M.E.; Al-Khalaf, A.A.; Yahya, R.; Hamza, M.F. Aspergillus flavus-mediated green synthesis of silver nanoparticles and evaluation of their antibacterial, anti-candida, acaricides, and photocatalytic activities. Catalysts 2022, 12, 462. [Google Scholar] [CrossRef]
- Rauf, M.A.; Oves, M.; Rehman, F.U.; Khan, A.R.; Husain, N. Bougainvillea flower extract mediated zinc oxide’s nanomaterials for antimicrobial and anticancer activity. Biomed. Pharmacother. 2019, 116, 108983. [Google Scholar]
- Ramya, V.; Kalaiselvi, V.; Kannan, S.K.; Shkir, M.; Ghramh, H.A.; Ahmad, Z.; Nithiya, P.; Vidhya, N. Facile Synthesis and Characterization of Zinc Oxide Nanoparticles Using Psidium guajava leaf Extract and Their Antibacterial Applications. Arab. J. Sci. Eng. 2022, 47, 909–918. [Google Scholar] [CrossRef]
- Pasquet, J.; Chevalier, Y.; Pelletier, J.; Couval, E.; Bouvier, D.; Bolzinger, M.-A. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 263–274. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef]
- Ariffin, H.; Abdullah, N.; Umi Kalsom, M.; Shirai, Y.; Hassan, M. Production and characterization of cellulase by Bacillus pumilus EB3. Int. J. Eng. Technol. 2006, 3, 47–53. [Google Scholar]
- Gómez-Villegas, P.; Vigara, J.; Romero, L.; Gotor, C.; Raposo, S.; Gonçalves, B.; Léon, R. Biochemical Characterization of the Amylase Activity from the New Haloarchaeal Strain Haloarcula sp. HS Isolated in the Odiel Marshlands. Biology 2021, 10, 337. [Google Scholar] [CrossRef] [PubMed]
- Bakry, M.M.; Salem, S.S.; Atta, H.M.; El-Gamal, M.S.; Fouda, A. Statistical optimization of xylanase production using Box-Behnken Design and its application in paper bleaching. Egypt. J. Chem. 2023, 66, 371–383. [Google Scholar] [CrossRef]
- Soeka, Y. Bacillus subtilis C2 producing lipase isolated from bulk shrimp paste in Samarinda East Kalimantan. IOP Conf. Ser. Earth Environ. Sci. 2020, 572, 012007. [Google Scholar] [CrossRef]
- Yasmin, I.; Saeed, M.; Khan, W.A.; Khaliq, A.; Chughtai, M.F.J.; Iqbal, R.; Tehseen, S.; Naz, S.; Liaqat, A.; Mehmood, T.; et al. In vitro Probiotic Potential and Safety Evaluation (Hemolytic, Cytotoxic Activity) of Bifidobacterium Strains Isolated from Raw Camel Milk. Microorganisms 2020, 8, 354. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.; Bryant, J.; Madsen, E.; Ghiorse, W. Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 1999, 65, 4715–4724. [Google Scholar] [CrossRef] [PubMed]
- Disha, S.A.; Hossain, M.S.; Habib, M.L.; Ahmed, S. Calculation of crystallite sizes of pure and metals doped hydroxyapatite engaging Scherrer method, Halder-Wagner method, Williamson-Hall model, and size-strain plot. Results Mater. 2024, 21, 100496. [Google Scholar] [CrossRef]
- Fouda, A.; Eid, A.M.; Guibal, E.; Hamza, M.F.; Hassan, S.E.; Alkhalifah, D.H.M.; El-Hossary, D. Green Synthesis of Gold Nanoparticles by Aqueous Extract of Zingiber officinale: Characterization and Insight into Antimicrobial, Antioxidant, and In Vitro Cytotoxic Activities. Appl. Sci. 2022, 12, 12879. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Fouda, A.; Hassan, S.E.-D.; Eid, A.M.; Abdel-Rahman, M.A.; Hamza, M.F. Light enhanced the antimicrobial, anticancer, and catalytic activities of selenium nanoparticles fabricated by endophytic fungal strain, Penicillium crustosum EP-1. Sci. Rep. 2022, 12, 11834. [Google Scholar] [CrossRef]
Isolation Source | Code | Gram Reaction | Cell Shape | Enzymatic Activity: | Hemolysis | |||
---|---|---|---|---|---|---|---|---|
Cellulase | Amylase | Xylanase | Lipase | |||||
Strawberries | S1 | + | Bacilli | − | + | − | − | γ-hemolysis |
S2 | + | Cocci | ++ | ++ | + | − | α-hemolysis | |
S3 | + | Cocci, clusters | +++ | +++ | ++ | +++ | β-hemolysis | |
S4 | − | Rods | − | − | − | + | α-hemolysis | |
S5 | − | Rods | +++ | +++ | ++ | ++ | β-hemolysis | |
S6 | + | Bacilli | ++ | +++ | ++ | + | α-hemolysis | |
S7 | − | Rods | + | − | − | + | γ-hemolysis | |
S8 | − | Rods | ++ | +++ | ++ | +++ | β-hemolysis | |
S9 | − | Rods | ++ | ++ | ++ | − | α-hemolysis | |
S10 | + | Cocci, clusters | +++ | +++ | +++ | +++ | β-hemolysis | |
S11 | + | Bacilli | +++ | +++ | +++ | +++ | β-hemolysis | |
S12 | + | Bacilli | ++ | +++ | ++ | − | γ-hemolysis | |
Apples | A13 | − | Rods | − | ++ | − | − | α-hemolysis |
A14 | + | Bacilli | ++ | +++ | +++ | ++ | β-hemolysis | |
A15 | − | Rods | ++ | ++ | ++ | +++ | α-hemolysis | |
A16 | − | Rods | ++ | +++ | ++ | +++ | β-hemolysis | |
A17 | + | Cocci | ++ | ++ | ++ | + | α-hemolysis | |
A18 | + | Rods | +++ | ++ | ++ | ++ | β-hemolysis | |
A19 | + | Cocci | ++ | ++ | ++ | ++ | α-hemolysis | |
A20 | − | Bacilli | − | − | − | − | γ-hemolysis | |
A21 | − | Rods | + | ++ | + | − | γ-hemolysis | |
A22 | + | Cocci | ++ | - | ++ | − | γ-hemolysis | |
Bananas | B23 | − | Rods | − | + | + | ++ | α-hemolysis |
B24 | + | Bacilli | +++ | +++ | +++ | ++ | β-hemolysis | |
B25 | + | Bacilli | +++ | +++ | +++ | +++ | β-hemolysis | |
B26 | − | Bacilli | − | − | − | + | γ-hemolysis | |
B27 | − | Rods | ++ | +++ | ++ | ++ | β-hemolysis | |
B28 | + | Cocci | ++ | ++ | + | − | α-hemolysis | |
B29 | + | Cocci | + | − | + | − | α-hemolysis | |
B30 | + | Bacilli | +++ | +++ | +++ | ++ | γ-hemolysis | |
B31 | − | Rods | ++ | +++ | ++ | +++ | β-hemolysis | |
B32 | + | Bacilli | +++ | +++ | +++ | − | α-hemolysis | |
B33 | − | Rods | − | ++ | ++ | − | α-hemolysis |
Bacterial Strain | Homolog Sequence | Identity Percentage (%) | NCBI Accession Number | Accession Number of the Obtained Strain |
---|---|---|---|---|
S3 | Staphylococcus aureus | 99.33% | NR115606 | PP683392 |
S5 | Salmonella enterica | 99.21% | NR074910 | PP683393 |
S8 | Escherichia coli | 99.08% | NR024570 | PP683394 |
S10 | Staphylococcus aureus | 98.83% | NR115606 | PP683395 |
S11 | Bacillus subtilis | 98.76% | NR027552 | PP683396 |
A14 | Bacillus cereus | 98.72% | NR115526 | PP683397 |
A16 | Pseudomonas syringae | 98.93% | NR117820 | PP683398 |
A18 | Listeria monocytogenes | 98.56% | NR044823 | PP683399 |
B24 | Bacillus subtilis | 98.25% | NR027552 | PP683400 |
B25 | Bacillus cereus | 98.88% | NR115526 | PP683401 |
B27 | Escherichia coli | 98.23% | NR024570 | PP683402 |
B31 | Salmonella enterica | 98.66% | NR074910 | PP683403 |
Bacterial Strain | ZnO-NPs Concentration (µg mL−1)/Inhibition Zone (mm) | |||||
---|---|---|---|---|---|---|
200 | 100 | 50 | 25 | 12.5 | 6.25 | |
Staphylococcus aureus S3 | 15.7 ± 0.6 | 13.3 ± 0.6 | 11.3 ± 0.6 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Salmonella enterica S5 | 20.3 ± 0.6 | 18.2 ± 0.3 | 13.7 ± 0.6 | 11.7 ± 0.6 | 12.7 ± 0.5 | 0.0 ± 0.0 |
Escherichia coli S8 | 21.7 ± 0.6 | 19.3 ± 0.6 | 17.7 ± 0.6 | 15.3 ± 0.6 | 13.3 ± 0.6 | 0.0 ± 0.0 |
Staphylococcus aureus S10 | 15.3 ± 0.6 | 13.0 ± 1.0 | 11.7 ± 0.6 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Bacillus subtilis S11 | 18.3 ± 0.6 | 14.7± 0.6 | 13.0 ± 1.0 | 11.3 ± 0.6 | 9.0 ± 1.0 | 0.0 ± 0.0 |
Bacillus cereus A14 | 17.0 ± 1.0 | 15.0 ± 1.0 | 14.0 ± 1.0 | 12.0 ± 1.0 | 0.0 ± 0.0 | 0.0 ± 0.0 |
Pseudomonas syringae A16 | 22.5± 1.0 | 21.0 ± 1.0 | 18.0 ± 1.0 | 15.0 ± 1.1 | 12.5 ± 1.0 | 0.0 ± 0.0 |
Listeria monocytogenes A18 | 18.0 ± 1.0 | 15.3 ± 0.6 | 13.7 ± 0.6 | 12.3 ± 0.6 | 9.7 ± 0.6 | 0.0 ± 0.0 |
Bacillus subtilis B24 | 18.0 ± 1.0 | 14.3 ± 0.6 | 12.7 ± 0.6 | 11.3 ± 0.6 | 8.7 ± 1.2 | 0.0 ± 0.0 |
Bacillus cereus B25 | 17.0 ± 1.0 | 14.0 ± 1.0 | 11.7 ± 1.2 | 10.7 ± 0.6 | 8.3 ± 0.6 | 0.0 ± 0.0 |
Escherichia coli B27 | 21.7 ± 0.6 | 20.0 ± 1.0 | 18.0 ± 1.0 | 14.7 ± 1.2 | 12.3 ± 0.6 | 0.0 ± 0.0 |
Salmonella enterica B31 | 20.7 ± 0.6 | 18.3 ± 0.6 | 16.3 ± 0.6 | 13.7 ± 0.6 | 11.3 ± 1.2 | 0.0 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fouda, A.; Abdel-Rahman, M.A.; Eid, A.M.; Selim, S.; Ejaz, H.; Alruwaili, M.; Manni, E.; Almuhayawi, M.S.; Al Jaouni, S.K.; Hassan, S.E.-D. Investigating the Potential of Green-Fabricated Zinc Oxide Nanoparticles to Inhibit the Foodborne Pathogenic Bacteria Isolated from Spoiled Fruits. Catalysts 2024, 14, 427. https://doi.org/10.3390/catal14070427
Fouda A, Abdel-Rahman MA, Eid AM, Selim S, Ejaz H, Alruwaili M, Manni E, Almuhayawi MS, Al Jaouni SK, Hassan SE-D. Investigating the Potential of Green-Fabricated Zinc Oxide Nanoparticles to Inhibit the Foodborne Pathogenic Bacteria Isolated from Spoiled Fruits. Catalysts. 2024; 14(7):427. https://doi.org/10.3390/catal14070427
Chicago/Turabian StyleFouda, Amr, Mohammed Ali Abdel-Rahman, Ahmed M. Eid, Samy Selim, Hasan Ejaz, Muharib Alruwaili, Emad Manni, Mohammed S. Almuhayawi, Soad K. Al Jaouni, and Saad El-Din Hassan. 2024. "Investigating the Potential of Green-Fabricated Zinc Oxide Nanoparticles to Inhibit the Foodborne Pathogenic Bacteria Isolated from Spoiled Fruits" Catalysts 14, no. 7: 427. https://doi.org/10.3390/catal14070427
APA StyleFouda, A., Abdel-Rahman, M. A., Eid, A. M., Selim, S., Ejaz, H., Alruwaili, M., Manni, E., Almuhayawi, M. S., Al Jaouni, S. K., & Hassan, S. E.-D. (2024). Investigating the Potential of Green-Fabricated Zinc Oxide Nanoparticles to Inhibit the Foodborne Pathogenic Bacteria Isolated from Spoiled Fruits. Catalysts, 14(7), 427. https://doi.org/10.3390/catal14070427