Design and Optimization of Critical-Raw-Material-Free Electrodes towards the Performance Enhancement of Microbial Fuel Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Half-Cell Tests: ORR Activity and Mechanism
2.2. Catalyst Integration into the Air Electrodes and Cell Testing
3. Materials and Methods
3.1. Electrocatalysts’ Synthesis and Air Cathode Assembly
3.2. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, J.; Shi, Y.; Xin, J.; Kong, S.; Wang, X. Application of Microbial Fuel Cells with Tungsten-Based Semiconductor Modified Electrode in the Treatment of Cr (VI) Pollutions. Biochem. Eng. J. 2023, 198, 109034. [Google Scholar] [CrossRef]
- Gao, J.Y.; Pu, K.B.; Bai, J.R.; Ma, P.C.; Cai, W.F.; Guo, K.; Chen, Q.Y.; Wang, Y.H. Boosted Biodegradation of Recalcitrant Bisphenol S by Mix-Cultured Microbial Fuel Cells under Micro-Aerobic Condition. Biochem. Eng. J. 2023, 197, 108968. [Google Scholar] [CrossRef]
- Kim, K.C.; Lin, X.; Liu, X.; Wang, L.; Li, C. Stimulation of Electron Transfer in Electricigens by MnxCoySz Heterostructure for the Enhanced Power Generation of Microbial Fuel Cell. Biochem. Eng. J. 2023, 200, 109089. [Google Scholar] [CrossRef]
- Roy, H.; Rahman, T.U.; Tasnim, N.; Arju, J.; Rafid, M.M.; Islam, M.R.; Pervez, M.N.; Cai, Y.; Naddeo, V.; Islam, M.S. Microbial Fuel Cell Construction Features and Application for Sustainable Wastewater Treatment. Membranes 2023, 13, 490. [Google Scholar] [CrossRef] [PubMed]
- Galvis E, A.R.; Leardini, F.; Ares, J.R.; Cuevas, F.; Fernandez, J.F. Simulation and Design of a Three-Stage Metal Hydride Hydrogen Compressor Based on Experimental Thermodynamic Data. Int. J. Hydrogen Energy 2018, 43, 6666–6676. [Google Scholar] [CrossRef]
- Jiménez-Arévalo, N.; Leardini, F.; Ferrer, I.J.; Ares, J.R.; Sánchez, C.; Saad Abdelnabi, M.M.; Betti, M.G.; Mariani, C. Ultrathin Transparent B–C–N Layers Grown on Titanium Substrates with Excellent Electrocatalytic Activity for the Oxygen Evolution Reaction. ACS Appl. Energy Mater. 2020, 3, 1922–1932. [Google Scholar] [CrossRef]
- Mecheri, B. Waste-to-Energy: Microbial Fuel Cells as an Innovation Platform for Sustainable Development. In Encyclopedia of Electrochemistry; Wiley: Hoboken, NJ, USA, 2021; pp. 1–24. [Google Scholar]
- Kamali, M.; Guo, Y.; Aminabhavi, T.M.; Abbassi, R.; Dewil, R.; Appels, L. Pathway towards the Commercialization of Sustainable Microbial Fuel Cell-Based Wastewater Treatment Technologies. Renew. Sustain. Energy Rev. 2023, 173, 113095. [Google Scholar] [CrossRef]
- Meylani, V.; Surahman, E.; Fudholi, A.; Almalki, W.H.; Ilyas, N.; Sayyed, R.Z. Biodiversity in Microbial Fuel Cells: Review of a Promising Technology for Wastewater Treatment. J. Environ. Chem. Eng. 2023, 11, 109503. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Al-Zaqri, N. A Pilot Trial in the Remediation of Pollutants Simultaneously with Bioenergy Generation through Microbial Fuel Cell. J. Environ. Chem. Eng. 2023, 11, 110643. [Google Scholar] [CrossRef]
- Bose, D.; Bhattacharya, R.; Mukherjee, A. Bibliometric Analysis of Research Trends in Microbial Fuel Cells for Wastewater Treatment. Biochem. Eng. J. 2024, 202, 109155. [Google Scholar] [CrossRef]
- Mejía-López, M.; Lastres, O.; Alemán-Ramirez, J.L.; Lobato-Peralta, D.R.; Verde, A.; Gámez, J.J.M.; de Paz, P.L.; Verea, L. Conductive Carbon-Polymer Composite for Bioelectrodes and Electricity Generation in a Sedimentary Microbial Fuel Cell. Biochem. Eng. J. 2023, 193, 108856. [Google Scholar] [CrossRef]
- Cai, J.; Qaisar, M.; Chen, B.; Wang, K.; Wang, R.; Lou, J. Deciphering the Roles of Suspended Sludge and Fixed Sludge at Electrode in Microbial Fuel Cell Accomplishing Sulfide-Based Autotrophic Denitrification. Biochem. Eng. J. 2023, 193, 108874. [Google Scholar] [CrossRef]
- Yuan, J.; Huang, H.; Chatterjee, S.G.; Wang, Z.; Wang, S. Effective Factors for the Performance of a Co-Generation System for Bioethanol and Electricity Production via Microbial Fuel Cell Technology. Biochem. Eng. J. 2022, 178, 108309. [Google Scholar] [CrossRef]
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial Fuel Cells: Methodology and Technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef] [PubMed]
- Oliot, M.; Galier, S.; Roux de Balmann, H.; Bergel, A. Ion Transport in Microbial Fuel Cells: Key Roles, Theory and Critical Review. Appl. Energy 2016, 183, 1682–1704. [Google Scholar] [CrossRef]
- Rinaldi, A.; Mecheri, B.; Garavaglia, V.; Licoccia, S.; Di Nardo, P.; Traversa, E. Engineering Materials and Biology to Boost Performance of Microbial Fuel Cells: A Critical Review. Energy Environ. Sci. 2008, 1, 417–429. [Google Scholar] [CrossRef]
- Hassan, M.; Kanwal, S.; Singh, R.S.; Ali SA, M.; Anwar, M.; Zhao, C. Current Challenges and Future Perspectives Associated with Configuration of Microbial Fuel Cell for Simultaneous Energy Generation and Wastewater Treatment. Int. J. Hydrogen Energy 2023, 50, 323–350. [Google Scholar] [CrossRef]
- Qiu, S.; Guo, Z.; Naz, F.; Yang, Z.; Yu, C. An Overview in the Development of Cathode Materials for the Improvement in Power Generation of Microbial Fuel Cells. Bioelectrochemistry 2021, 141, 107834. [Google Scholar] [CrossRef]
- Borja-Maldonado, F.; López Zavala, M.Á. Contribution of Configurations, Electrode and Membrane Materials, Electron Transfer Mechanisms, and Cost of Components on the Current and Future Development of Microbial Fuel Cells. Heliyon 2022, 8, e09849. [Google Scholar] [CrossRef]
- Prasad, J.; Tripathi, R.K. Review on Improving Microbial Fuel Cell Power Management Systems for Consumer Applications. Energy Rep. 2022, 8, 10418–10433. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, C.; Zheng, Y.; Chen, S.; Zhao, F. Abiotic Oxygen Reduction Reaction Catalysts Used in Microbial Fuel Cells. ChemElectroChem 2014, 1, 1813–1821. [Google Scholar] [CrossRef]
- Lai, B.-L.; Liao, H.-X.; Zhou, S.-Q.; Wei, H.-X.; Li, A.-Y.; Li, N.; Liu, Z.-Q. Chalcogen-Modified Copper-Nitrogen Co-Doped Carbon as a Stable and Efficient Antimicrobial Cathode Catalyst for Microbial Fuel Cells. J. Environ. Chem. Eng. 2023, 11, 111076. [Google Scholar] [CrossRef]
- Wang, H.; Park, J.D.; Ren, Z.J. Practical Energy Harvesting for Microbial Fuel Cells: A Review. Environ. Sci. Technol. 2015, 49, 3267–3277. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Wang, W.; Chen, Y.; Wen, Q.; Li, X.; Lin, C.; Wang, J.; Xu, H.; Yang, L. Bio-Electrocatalyst Fe3O4/Fe@C Derived from M.O.F. as a High-Performance Bioanode in Single-Chamber Microbial Fuel Cell. Biochem. Eng. J. 2022, 187, 108611. [Google Scholar] [CrossRef]
- Kim, K.Y.; Rossi, R.; Regan, J.M.; Logan, B.E. Enumeration of Exoelectrogens in Microbial Fuel Cell Effluents Fed Acetate or Wastewater Substrates. Biochem. Eng. J. 2021, 165. [Google Scholar] [CrossRef]
- Cheng, P.; Yang, C.; Zhou, S.; Huang, J.; Liu, R.; Yan, B. Degradation Efficiency of Antibiotics by the Sewage-Fed Microbial Fuel Cells Depends on Gram-Staining Property of Exoelectrogens. Process Saf. Environ. Prot. 2023, 176, 421–429. [Google Scholar] [CrossRef]
- Heydorn, R.; Engel, C.; Krull, R.; Dohnt, K. Strategies for the Targeted Improvement of Anodic Electron Transfer in Microbial Fuel Cells. ChemBioEng Reviews 2019, 7, 4–17. [Google Scholar] [CrossRef]
- Li, M.; Zhou, M.; Tian, X.; Tan, C.; McDaniel, C.T.; Hassett, D.J.; Gu, T. Microbial Fuel Cell (M.F.C.) Power Performance Improvement through Enhanced Microbial Electrogenicity. Biotechnol. Adv. 2018, 36, 1316–1327. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, Z.; Gao, S.; Zhan, Y.; Wei, Z.; Liu, Y. The Efficient Congo Red Decolorization Coupled with Electricity Generation via G. Sulfurreducens Based on Microbial Fuel Cells. J. Environ. Chem. Eng. 2023, 11, 111296. [Google Scholar] [CrossRef]
- Ficca, V.C.A.; Santoro, C.; Marsili, E.; da Silva Freitas, W.; Serov, A.; Atanassov, P.; Mecheri, B. Sensing Nitrite by Iron-Nitrogen-Carbon Oxygen Reduction Electrocatalyst. Electrochim. Acta 2022, 402, 139514. [Google Scholar] [CrossRef]
- Yang, J.; Tian, J.; Zhao, Y.; Wu, Y.; Zhang, Y.; Zhao, K.; Li, S.; Wang, R.; Yang, Y.; Chen, J.; et al. Improving the Bioelectrochemical Performance of Microbial Fuel Cells Using Single-Atom Catalyst Nickel Combined with Graphitic Carbon Nitride as the Cathode Catalyst. Int. J. Hydrogen Energy 2024, 50, 1257–1266. [Google Scholar] [CrossRef]
- Antolini, E. Composite Materials for Polymer Electrolyte Membrane Microbial Fuel Cells. Biosens. Bioelectron. 2015, 69, 54–70. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Hou, Y.; Abu-Reesh, I.M.; Chen, J.; He, Z. Oxygen Reduction Reaction Catalysts Used in Microbial Fuel Cells for Energy-Efficient Wastewater Treatment: A Review. Mater. Horizons 2016, 3, 382–401. [Google Scholar] [CrossRef]
- Dai, Y.; Di, S.; Guo, Y.; Wang, F.; Wang, Z.; Zhu, H. Carbon Layers Derived from Zeolitic Imidazolate Framework Crystal Shells as a Protective Layer for Pt-Based Catalysts: Boosting Oxygen Reduction Catalytic Activity in Fuel Cells. Int. J. Hydrogen Energy 2024, 57, 1457–1465. [Google Scholar] [CrossRef]
- Zheng, S.; Chen, R.; Yang, J.; Guo, J.; An, W.; Tang, J. Biomass-Derived Nitrogen-Doped Carbons Activated by Zinc Halides for Electrocatalytic Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2024, 58, 333–340. [Google Scholar] [CrossRef]
- Costa de Oliveira, M.A.; Mecheri, B.; D’Epifanio, A.; Zurlo, F.; Licoccia, S. Optimization of PGM-Free Cathodes for Oxygen Reduction in Microbial Fuel Cells. Electrochim. Acta 2020, 334, 135650. [Google Scholar] [CrossRef]
- Iannaci, A.; Pepè Sciarria, T.; Mecheri, B.; Adani, F.; Licoccia, S.; D’Epifanio, A. Power Generation Using a Low-Cost Sulfated Zirconium Oxide Based Cathode in Single Chamber Microbial Fuel Cells. J. Alloys Compd. 2017, 693, 170–176. [Google Scholar] [CrossRef]
- Lei, G.; Wu, J.; Qin, L.; Wu, S.; Zhang, F.; Fan, X.; Peng, W.; Li, Y. Graphene Hydrogel Bridged Pyrolysis Strategy: Carbon Cladded Fe2N Nanoparticles in Graphene Matrix for Efficient Oxygen Reduction Reaction. Int. J. Hydrogen Energy 2024, 58, 1088–1097. [Google Scholar] [CrossRef]
- Trapero, J.R.; Horcajada, L.; Linares, J.J.; Lobato, J. Is Microbial Fuel Cell Technology Ready? An Economic Answer towards Industrial Commercialization. Appl. Energy 2017, 185, 698–707. [Google Scholar] [CrossRef]
- Rangraz, Y.; Heravi, M.M. Recent Advances in Metal-Free Heteroatom-Doped Carbon Heterogonous Catalysts. RSC Adv. 2021, 11, 23725–23778. [Google Scholar] [CrossRef]
- Ghasemi, M.; Shahgaldi, S.; Ismail, M.; Kim, B.H.; Yaakob, Z.; Daud, W.R.W. Activated Carbon Nanofibers as an Alternative Cathode Catalyst to Platinum in a Two-Chamber Microbial Fuel Cell. Int. J. Hydrogen Energy 2011, 36, 13746–13752. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Y.; Xu, M.; Asset, T.; Tieu, P.; Gili, A.; Kulkarni, D.; De Andrade, V.; De Carlo, F.; Barnard, H.S.; et al. Catalysts by Pyrolysis: Direct Observation of Chemical and Morphological Transformations Leading to Transition Metal-Nitrogen-Carbon Materials. Mater. Today 2021, 47, 53–68. [Google Scholar] [CrossRef]
- Dong, F.; Wu, M.; Chen, Z.; Liu, X.; Zhang, G.; Qiao, J.; Sun, S. Atomically Dispersed Transition Metal-Nitrogen-Carbon Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries: Recent Advances and Future Perspectives. Nanomicro Lett. 2022, 14, 36. [Google Scholar] [CrossRef]
- Zhang, W.; Lai, W.; Cao, R. Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems. Chem. Rev. 2017, 117, 3717–3797. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Meng, H.; Morales, D.M.; Zeng, F.; Zhu, J.; Wang, B.; Risch, M.; Xu, Z.J.; Petit, T. Nitrogen-Rich Carbonaceous Materials for Advanced Oxygen Electrocatalysis: Synthesis, Characterization, and Activity of Nitrogen Sites. Adv. Funct. Mater. 2022, 32, 2204137. [Google Scholar] [CrossRef]
- Da Silva Freitas, W.; D’Epifanio, A.; Lo Vecchio, C.; Gatto, I.; Baglio, V.; Ficca, V.C.A.; Placidi, E.; Mecheri, B. Tailoring M.O.F. Structure via Iron Decoration to Enhance O.R.R. in Alkaline Polymer Electrolyte Membrane Fuel Cells. Chem. Eng. J. 2023, 465, 142987. [Google Scholar] [CrossRef]
- Kumar, R.; Mooste, M.; Ahmed, Z.; Zekker, I.; Käärik, M.; Marandi, M.; Leis, J.; Kikas, A.; Otsus, M.; Treshchalov, A.; et al. Catalyzing Oxygen Reduction by Morphologically Engineered ZIF-Derived Carbon Composite Catalysts in Dual-Chamber Microbial Fuel Cells. J. Environ. Chem. Eng. 2024, 12, 112242. [Google Scholar] [CrossRef]
- Yin, X.; Chung, H.T.; Martinez, U.; Lin, L.; Artyushkova, K.; Zelenay, P. PGM-Free O.R.R. Catalysts Designed by Templating PANI-Type Polymers Containing Functional Groups with High Affinity to Iron. J. Electrochem. Soc. 2019, 166, F3240. [Google Scholar] [CrossRef]
- Ricciardi, B.; Mecheri, B.; da Silva Freitas, W.; Ficca, V.C.A.; Placidi, E.; Gatto, I.; Carbone, A.; Capasso, A.; D’Epifanio, A. Porous Iron-Nitrogen-Carbon Electrocatalysts for Anion Exchange Membrane Fuel Cells (AEMFC). ChemElectroChem 2023, 10, e202201115. [Google Scholar] [CrossRef]
- Osmieri, L. Transition Metal–Nitrogen–Carbon (M–N–C) Catalysts for Oxygen Reduction Reaction. Insights on Synthesis and Performance in Polymer Electrolyte Fuel Cells. ChemEngineering 2019, 3, 16. [Google Scholar] [CrossRef]
- Santoro, C.; Serov, A.; Gokhale, R.; Rojas-Carbonell, S.; Stariha, L.; Gordon, J.; Artyushkova, K.; Atanassov, P. A Family of Fe-N-C Oxygen Reduction Electrocatalysts for Microbial Fuel Cell (MFC.) Application: Relationships between Surface Chemistry and Performances. Appl. Catal. B 2017, 205, 24–33. [Google Scholar] [CrossRef]
- Shao, M.; Chang, Q.; Dodelet, J.P.; Chenitz, R. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem. Rev. 2016, 116, 3594–3657. [Google Scholar] [CrossRef] [PubMed]
- Mecheri, B.; Gokhale, R.; Santoro, C.; Oliveira, M.; D’Epifanio, A.; Licoccia, S.; Serov, A.; Artyushkova, K.; Atanassov, P. Oxygen Reduction Reaction Electrocatalysts Derived from Iron Salt and Benzimidazole and Aminobenzimidazole Precursors and Their Application in Microbial Fuel Cell Cathodes. ACS Appl. Energy Mater. 2018, 1, 5755–5765. [Google Scholar] [CrossRef] [PubMed]
- Santoro, C.; Serov, A.; Stariha, L.; Kodali, M.; Gordon, J.; Babanova, S.; Bretschger, O.; Artyushkova, K.; Atanassov, P. Iron Based Catalysts from Novel Low-Cost Organic Precursors for Enhanced Oxygen Reduction Reaction in Neutral Media Microbial Fuel Cells. Energy Environ. Sci. 2016, 9, 2346–2353. [Google Scholar] [CrossRef]
- Aysla Costa De Oliveira, M.; D’Epifanio, A.; Ohnuki, H.; Mecheri, B. Platinum Group Metal-Free Catalysts for Oxygen Reduction Reaction: Applications in Microbial Fuel Cells. Catalysts 2020, 10, 475. [Google Scholar] [CrossRef]
- Reddy Samala, N.; Friedman, A.; Elbaz, L.; Grinberg, I. Identification of a Durability Descriptor for Molecular Oxygen Reduction Reaction Catalysts. J. Phys. Chem. Lett. 2024, 15, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, N.; Tylus, U.; Jia, Q.; Mukerjee, S. Activity Descriptor Identification for Oxygen Reduction on Nonprecious Electrocatalysts: Linking Surface Science to Coordination Chemistry. J. Am. Chem. Soc. 2013, 135, 15443–15449. [Google Scholar] [CrossRef] [PubMed]
- Artyushkova, K.; Serov, A.; Rojas-Carbonell, S.; Atanassov, P. Chemistry of Multitudinous Active Sites for Oxygen Reduction Reaction in Transition Metal–Nitrogen–Carbon Electrocatalysts. J. Phys. Chem. C 2015, 119, 25917–25928. [Google Scholar] [CrossRef]
- Erable, B.; Oliot, M.; Lacroix, R.; Bergel, A.; Serov, A.; Kodali, M.; Santoro, C.; Atanassov, P. Iron-Nicarbazin Derived Platinum Group Metal-Free Electrocatalyst in Scalable-Size Air-Breathing Cathodes for Microbial Fuel Cells. Electrochim. Acta 2018, 277, 127–135. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, S.; Liu, H.; Li, L.; Guo, R. Fe-N-C-Based Cathode Catalyst Enhances Redox Reaction Performance of Microbial Fuel Cells: Azo Dyes Degradation Accompanied by Electricity Generation. J. Environ. Chem. Eng. 2023, 11, 109264. [Google Scholar] [CrossRef]
- Jaouen, F.; Marcotte, S.; Dodelet, J.-P.; Lindbergh, G. Oxygen Reduction Catalysts for Polymer Electrolyte Fuel Cells from the Pyrolysis of Iron Acetate Adsorbed on Various Carbon Supports. J. Phys. Chem. B 2003, 107, 1376–1386. [Google Scholar] [CrossRef]
- Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M.T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of Catalytic Sites for Oxygen Reduction in Iron- and Nitrogen-Doped Graphene Materials. Nat. Mater. 2015, 14, 937–942. [Google Scholar] [CrossRef] [PubMed]
- Ficca, V.C.A.; Santoro, C.; Placidi, E.; Arciprete, F.; Serov, A.; Atanassov, P.; Mecheri, B. Exchange Current Density as an Effective Descriptor of Poisoning of Active Sites in Platinum Group Metal-Free Electrocatalysts for Oxygen Reduction Reaction. ACS Catal. 2023, 13, 2162–2175. [Google Scholar] [CrossRef]
- Liu, S.-H.; Lin, W.-H.; Lin, C.-W. Increasing Power Output and Isopropanol Biodegradation by Trickle-Bed Microbial Fuel Cells by Optimizing Air Relative Humidity and Oxygen Flux at Cathode. J. Environ. Chem. Eng. 2023, 11, 110343. [Google Scholar] [CrossRef]
- Tremouli, A.; Pandis, P.K.; Kamperidis, T.; Argirusis, C.; Stathopoulos, V.N.; Lyberatos, G. Performance Comparison of Different Cathode Strategies on Air-Cathode Microbial Fuel Cells: Coal Fly Ash as a Cathode Catalyst. Water 2023, 15, 862. [Google Scholar] [CrossRef]
- Andersen, S.M.; Dhiman, R.; Larsen, M.J.; Skou, E. Importance of Electrode Hot-Pressing Conditions for the Catalyst Performance of Proton Exchange Membrane Fuel Cells. Appl. Catal. B 2015, 172–173, 82–90. [Google Scholar] [CrossRef]
- Majlan, E.H.; Rohendi, D.; Daud, W.R.W.; Husaini, T.; Haque, M.A. Electrode for Proton Exchange Membrane Fuel Cells: A Review. Renew. Sustain. Energy Rev. 2018, 89, 117–134. [Google Scholar] [CrossRef]
- Osmieri, L.; Meyer, Q. Recent Advances in Integrating Platinum Group Metal-Free Catalysts in Proton Exchange Membrane Fuel Cells. Curr. Opin. Electrochem. 2022, 31, 100847. [Google Scholar] [CrossRef]
- Kolajo, O.O.; Pandit, C.; Thapa, B.S.; Pandit, S.; Mathuriya, A.S.; Gupta, P.K.; Jadhav, D.A.; Lahiri, D.; Nag, M.; Upadhye, V.J. Impact of Cathode Biofouling in Microbial Fuel Cells and Mitigation Techniques. Biocatal. Agric. Biotechnol. 2022, 43, 102408. [Google Scholar] [CrossRef]
- Li, D.; Liu, J.; Qu, Y.; Wang, H.; Feng, Y. Analysis of the Effect of Biofouling Distribution on Electricity Output in Microbial Fuel Cells. RSC Adv. 2016, 6, 27494–27500. [Google Scholar] [CrossRef]
- Wu, X.; Cheng, Y.; Veder, J.P.; Jiang, S.P. An Efficient Bio-Inspired Oxygen Reduction Reaction Catalyst: MnOx Nanosheets Incorporated Iron Phthalocyanine Functionalized Graphene. Energy Environ. Mater. 2021, 4, 474–480. [Google Scholar] [CrossRef]
- Ma, Y.; Li, J.; Liao, X.; Luo, W.; Huang, W.; Meng, J.; Chen, Q.; Xi, S.; Yu, R.; Zhao, Y.; et al. Heterostructure Design in Bimetallic Phthalocyanine Boosts Oxygen Reduction Reaction Activity and Durability. Adv. Funct. Mater. 2020, 30, 1–8. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, K.; Liu, X. Effect of Elevated Annealing Temperature on Electrical Conductivity and Magnetic Properties of Iron Phthalocyanine Polymer. J. Polym. Res. 2016, 23, 48. [Google Scholar] [CrossRef]
- Yang, H.; Chen, X.; Chen, W.-T.; Wang, Q.; Cuello, N.C.; Nafady, A.; Al-Enizi, A.M.; Waterhouse, G.I.N.; Goenaga, G.A.; Zawodzinski, T.A.; et al. Tunable Synthesis of Hollow Metal–Nitrogen–Carbon Capsules for Efficient Oxygen Reduction Catalysis in Proton Exchange Membrane Fuel Cells. ACS Nano 2019, 13, 8087–8098. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Kibena-Põldsepp, E.; Kozlova, J.; Rähn, M.; Treshchalov, A.; Kikas, A.; Kisand, V.; Aruväli, J.; Tamm, A.; Douglin, J.C.; et al. Bifunctional Oxygen Electrocatalysis on Mixed Metal Phthalocyanine-Modified Carbon Nanotubes Prepared via Pyrolysis. ACS Appl. Mater. Interfaces 2021, 13, 41507–41516. [Google Scholar] [CrossRef] [PubMed]
- Sing, K.S.W. Adsorption Methods for the Characterization of Porous Materials. Adv. Colloid Interface Sci. 1998, 76–77, 3–11. [Google Scholar] [CrossRef]
- Xu, H.; Wang, D.; Yang, P.; Du, L.; Lu, X.; Li, R.; Liu, L.; Zhang, J.; An, M. A Hierarchically Porous Fe-N-C Synthesized by Dual Melt-Salt-Mediated Template as Advanced Electrocatalyst for Efficient Oxygen Reduction in Zinc-Air Battery. Appl. Catal. B 2022, 305, 121040. [Google Scholar] [CrossRef]
- Kramm, U.I.; Lefèvre, M.; Larouche, N.; Schmeisser, D.; Dodelet, J.-P. Correlations between Mass Activity and Physicochemical Properties of Fe/N/C Catalysts for the ORR in PEM Fuel Cell via 57Fe Mössbauer Spectroscopy and Other Techniques. J. Am. Chem. Soc. 2014, 136, 978–985. [Google Scholar] [CrossRef] [PubMed]
- da Silva Freitas, W.; D’Epifanio, A.; Ficca, V.C.A.; Placidi, E.; Arciprete, F.; Mecheri, B. Tailoring Active Sites of Iron-Nitrogen-Carbon Catalysts for Oxygen Reduction in Alkaline Environment: Effect of Nitrogen-Based Organic Precursor and Pyrolysis Atmosphere. Electrochim. Acta 2021, 391, 138899. [Google Scholar] [CrossRef]
- Santoro, C.; Kodali, M.; Herrera, S.; Serov, A.; Ieropoulos, I.; Atanassov, P. Power Generation in Microbial Fuel Cells Using Platinum Group Metal-Free Cathode Catalyst: Effect of the Catalyst Loading on Performance and Costs. J. Power Sources 2018, 378, 169–175. [Google Scholar] [CrossRef]
- Kodali, M.; Santoro, C.; Serov, A.; Kabir, S.; Artyushkova, K.; Matanovic, I.; Atanassov, P. Air Breathing Cathodes for Microbial Fuel Cell Using Mn-, Fe-, Co- and Ni-Containing Platinum Group Metal-Free Catalysts. Electrochim. Acta 2017, 231, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Carbonell, S.; Artyushkova, K.; Serov, A.; Santoro, C.; Matanovic, I.; Atanassov, P. Effect of PH on the Activity of Platinum Group Metal-Free Catalysts in Oxygen Reduction Reaction. ACS Catal. 2018, 8, 3041–3053. [Google Scholar] [CrossRef]
- Hidalgo, D.; Sacco, A.; Hernández, S.; Tommasi, T. Electrochemical and Impedance Characterization of Microbial Fuel Cells Based on 2D and 3D Anodic Electrodes Working with Seawater Microorganisms under Continuous Operation. Bioresour. Technol. 2015, 195, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Pant, D.; Van Bogaert, G.; Diels, L.; Vanbroekhoven, K. A Review of the Substrates Used in Microbial Fuel Cells (M.F.C.s) for Sustainable Energy Production. Bioresour. Technol. 2010, 101, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Yu, H.; Wang, X.; Zhou, Q.; Feng, J. A Novel Structure of Scalable Air-Cathode without Nafion and Pt by Rolling Activated Carbon and PTFE as Catalyst Layer in Microbial Fuel Cells. Water Res. 2012, 46, 5777–5787. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhou, S.; Xu, M. Graphene Oxide Supported Magnesium Oxide as an Efficient Cathode Catalyst for Power Generation and Wastewater Treatment in Single Chamber Microbial Fuel Cells. Chem. Eng. J. 2017, 328, 106–116. [Google Scholar] [CrossRef]
- Birry, L.; Mehta, P.; Jaouen, F.; Dodelet, J.P.; Guiot, S.R.; Tartakovsky, B. Application of Iron-Based Cathode Catalysts in a Microbial Fuel Cell. Electrochim. Acta 2011, 56, 1505–1511. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, Y.S.; Liu, Z.M. Pyrolysis of Iron Phthalocyanine on Activated Carbon as Highly Efficient Non-Noble Metal Oxygen Reduction Catalyst in Microbial Fuel Cells. Chem. Eng. J. 2019, 361, 416–427. [Google Scholar] [CrossRef]
- Jiang, P.Y.; Xiao, Z.H.; Li, S.H.; Luo, Z.N.; Qiu, R.; Wu, H.; Li, N.; Liu, Z.Q. Sulfuration of Fe–N/C Porous Nanosheets as Bifunctional Catalyst with Remarkable Biocompatibility for High-Efficient Microbial Fuel Cells. J. Power Sources 2021, 512. [Google Scholar] [CrossRef]
- Shahbazi Farahani, F.; Mecheri, B.; Majidi, M.R.; Placidi, E.; D’Epifanio, A. Carbon-Supported Fe/Mn-Based Perovskite-Type Oxides Boost Oxygen Reduction in Bioelectrochemical Systems. Carbon 2019, 145, 716–724. [Google Scholar] [CrossRef]
- Yuan, H.; Deng, L.; Qi, Y.; Kobayashi, N.; Tang, J. Nonactivated and Activated Biochar Derived from Bananas as Alternative Cathode Catalyst in Microbial Fuel Cells. Sci. World J. 2014, 2014, 832850. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Han, W.; Du, W.; Huang, Z.; Jiang, Y.; Zhang, Y. Ordered Mesoporous Carbon with Atomically Dispersed Fe-Nx as Oxygen Reduction Reaction Electrocatalyst in Air-Cathode Microbial Fuel Cells. J. Power Sources 2020, 469, 228184. [Google Scholar] [CrossRef]
- Iannaci, A.; Ingle, S.; Domínguez, C.; Longhi, M.; Merdrignac-Conanec, O.; Ababou-Girard, S.; Barrière, F.; Colavita, P.E. Nanoscaffold Effects on the Performance of Air-Cathodes for Microbial Fuel Cells: Sustainable Fe/N-Carbon Electrocatalysts for the Oxygen Reduction Reaction under Neutral PH Conditions. Bioelectrochemistry 2021, 142, 107937. [Google Scholar] [CrossRef] [PubMed]
- Iannaci, A.; Mecheri, B.; D’Epifanio, A.; Lázaro Elorri, M.J.; Licoccia, S. Iron–Nitrogen-Functionalized Carbon as Efficient Oxygen Reduction Reaction Electrocatalyst in Microbial Fuel Cells. Int. J. Hydrogen Energy 2016, 41, 19637–19644. [Google Scholar] [CrossRef]
- Kodali, M.; Gokhale, R.; Santoro, C.; Serov, A.; Artyushkova, K.; Atanassov, P. High Performance Platinum Group Metal-Free Cathode Catalysts for Microbial Fuel Cell (MFC). J. Electrochem. Soc. 2017, 164, H3041–H3046. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Mecheri, B.; D’Epifanio, A.; Pepé Sciarria, T.; Adani, F.; Licoccia, S. Iron Chelates as Low-Cost and Effective Electrocatalyst for Oxygen Reduction Reaction in Microbial Fuel Cells. Int. J. Hydrogen Energy 2014, 39, 6462–6469. [Google Scholar] [CrossRef]
- Nisa, K.U.; da Silva Freitas, W.; Montero, J.; D’Epifanio, A.; Mecheri, B. Development and Optimization of Air-Electrodes for Rechargeable Zn–Air Batteries. Catalysts 2023, 13, 1319. [Google Scholar] [CrossRef]
- Mecheri, B.; Iannaci, A.; D’Epifanio, A.; Auri, A.; Licoccia, S. Carbon-Supported Zirconium Oxide as a Cathode for Microbial Fuel Cell Applications. ChemPlusChem 2016, 81, 80–85. [Google Scholar] [CrossRef]
- Costa de Oliveira, M.A.; Mecheri, B.; D’Epifanio, A.; Placidi, E.; Arciprete, F.; Valentini, F.; Perandini, A.; Valentini, V.; Licoccia, S. Graphene oxide nanoplatforms to enhance catalytic performance of iron phthalocyanine for oxygen reduction reaction in bioelectrochemical systems. J. Power Sources 2017, 356, 381–388. [Google Scholar] [CrossRef]
- Milev, A.S.; Tran, N.; Kannangara, G.S.K.; Wilson, M.A.; Avramov, I. Polymorphic transformation of iron-phthalocyanine and the effect on carbon nanotube synthesis. J. Phys. Chem. C. 2008, 112, 5339–5347. [Google Scholar] [CrossRef]
- Yu, X.; Lai, S.; Xin, S.; Chen, S.; Zhang, X.; She, X.; Zhan, T.; Zhao, X.; Yang, D. Coupling of iron phthalocyanine at carbon defect site via π-π stacking for enhanced oxygen reduction reaction. Appl. Catal. B Environ. 2021, 280, 119437. [Google Scholar] [CrossRef]
- Hof, D.D.; Dinsmore, J.A.; Barber, S.; Suhr, R.; Sco, T.R. Scofield, Structural properties and UV to NIR absorption spectra of metal-free phthalocyanine (H2Pc) thin films. Fiz. A 2006, 3, 147–164. [Google Scholar]
- Gambou-Bosca, A.; Bélanger, D. Chemical Mapping and Electrochemical Performance of Manganese Dioxide/Activated Carbon Based Composite Electrode for Asymmetric Electrochemical Capacitor. J. Electrochem. Soc. 2015, 162, A5115–A5123. [Google Scholar]
Rct (Ohm) | Rd (Ohm) | ||
---|---|---|---|
CP-cathode (day 0) | Aged CP-cathode | CP-cathode (day 0) | Aged CP-cathode |
0.88 ± 0.01 | 1.58 ± 0.07 | 14.22 ± 1.2 | 200 ± 3.0 |
CC-cathode (day 0) | Aged CC-cathode | CC-cathode (day 0) | Aged CC-cathode |
2.46 ± 0.2 | 3.80 ± 0.9 | 41.80 ± 2.0 | 342 ± 4.20 |
Aging Time | Open-Circuit Voltage (V) | PDmax (mWm−2) | Power Loss (%) | |||
---|---|---|---|---|---|---|
CP-cathode | CC-cathode | CP-cathode | CC-cathode | CP-cathode | CC-cathode | |
Day 0 | 0.69 | 0.66 | 1028 | 619 | - | - |
Day 20 | 0.68 | 0.65 | 967 | 652 | 5.93 | - |
Day 40 | 0.67 | 0.65 | 940 | 646 | 2.79 | 1.00 |
Day 60 | 0.63 | 0.64 | 887 | 600 | 5.63 | 7.12 |
Day 90 | 0.63 | 0.59 | 616 | 412 | 30.5 | 31.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nisa, K.U.; da Silva Freitas, W.; D’Epifanio, A.; Mecheri, B. Design and Optimization of Critical-Raw-Material-Free Electrodes towards the Performance Enhancement of Microbial Fuel Cells. Catalysts 2024, 14, 385. https://doi.org/10.3390/catal14060385
Nisa KU, da Silva Freitas W, D’Epifanio A, Mecheri B. Design and Optimization of Critical-Raw-Material-Free Electrodes towards the Performance Enhancement of Microbial Fuel Cells. Catalysts. 2024; 14(6):385. https://doi.org/10.3390/catal14060385
Chicago/Turabian StyleNisa, Khair Un, Williane da Silva Freitas, Alessandra D’Epifanio, and Barbara Mecheri. 2024. "Design and Optimization of Critical-Raw-Material-Free Electrodes towards the Performance Enhancement of Microbial Fuel Cells" Catalysts 14, no. 6: 385. https://doi.org/10.3390/catal14060385
APA StyleNisa, K. U., da Silva Freitas, W., D’Epifanio, A., & Mecheri, B. (2024). Design and Optimization of Critical-Raw-Material-Free Electrodes towards the Performance Enhancement of Microbial Fuel Cells. Catalysts, 14(6), 385. https://doi.org/10.3390/catal14060385