Cu-Based Praseodymium-Modified γ-Al2O3 Oxygen Carrier for Chemical Looping Combustion Process Optimization
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of Oxygen Carrier
- (a)
- Pre-impregnation with the addition of Pr
- Pr was dissolved in deionized water to obtain a precursor solution.
- A Pr precursor solution was poured drop-by-drop to the γ-Al2O3 particles under continuous mixing in order to accomplish a deposition of 10 wt% Pr.
- At 100 °C for 48 h, the solution was dehydrated before being ground and then calcined in the muffle furnace for 4 h at 450 °C.
- (b)
- Impregnation with Cu addition in Step 2
- Cu was dissolved in deionized water to acquire a precursor solution.
- A Cu precursor solution was poured drop-by-drop to the Pr/γ-Al2O3 particles under continuous mixing in order to accomplish a deposition of 20 wt% Cu.
- The solution was dried for 48 h at 100 °C before being pulverized and calcined for 4 h at 450 °C in the muffle furnace. This yields an OC containing 20 wt% Cu, 10 wt% Pr, and the remainder γ-Al2O3, which is referred to as 20CuPA.
2.3. Characterization
2.4. CLC Experiments
2.5. Design of Experiments and Statistical Analysis
3. Results and Discussion
3.1. FESEM Analysis
3.2. TPR Analysis
3.3. XRD Analysis
3.4. CLC Cyclic Test
3.5. Parametric and Optimization Analysis
3.5.1. Regression Equation Development and Statistical Analysis
Effect of Process Parameters on Response
Parametric Analysis of Oxygen Transport Capacity Using 3D Response Surface Plot
3.5.2. Optimization of Process Parameters
3.6. Significance of Current Work
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tijani, M.M.; Aqsha, A.; Mahinpey, N. Synthesis and study of metal-based oxygen carriers (Cu, Co, Fe, Ni) and their interaction with supported metal oxides (Al2O3, CeO2, TiO2, ZrO2) in a chemical looping combustion system. Energy 2017, 138, 873–882. [Google Scholar] [CrossRef]
- Daneshmand-Jahromi, S.; Karami, D.; Mahinpey, N. Preparation of Aerogel-Supported Copper Oxide for the Methane Chemical Looping Combustion (CLC) Process. Ind. Eng. Chem. Res. 2021, 60, 8227–8235. [Google Scholar] [CrossRef]
- Qasim, M.; Ayoub, M.; Ghazali, N.A.; Aqsha, A.; Ameen, M. Recent Advances and Development of Various Oxygen Carriers for the Chemical Looping Combustion Process: A Review. Ind. Eng. Chem. Res. 2021, 60, 8621–8641. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, J.; Xuan, G.; Zhang, F.; Yang, L. Spatial evolution characteristics of active components of copper-iron based oxygen carrier in chemical looping combustion. Fuel 2021, 306, 121650. [Google Scholar] [CrossRef]
- Ghazali, N.A.; Aqsha, A.; Komiyama, M.; Qasim, M.; Mohd Yusoff, M.H.; Ayoub, M.; Ameen, M.; Tijani, M.M. Comparative Study on Ni/γ-Al2O3 Prepared via Ultrasonic Irradiation and Impregnation Approaches as an Oxygen Carrier in Chemical Looping Combustion. Ind. Eng. Chem. Res. 2021, 60, 13542–13552. [Google Scholar] [CrossRef]
- He, F.; Linak, W.P.; Deng, S.; Li, F. Particulate Formation from a Copper Oxide-Based Oxygen Carrier in Chemical Looping Combustion for CO2 Capture. Environ. Sci. Technol. 2017, 51, 2482–2490. [Google Scholar] [CrossRef]
- Qasim, M.; Ayoub, M.; Aqsha, A.; Ghazali, N.A. Investigation and Comparison for the Redox Behavior of Different Metal Oxides (Ni, Fe, Co, Cu, Ce, La, Pr) with and without Gamma-Alumina Support for the Chemical Looping Combustion. Solid State Technol. 2020, 63, 19450–19460. [Google Scholar]
- Hossain, M.M.; de Lasa, H.I. Chemical-looping combustion (CLC) for inherent CO2 separations—A review. Chem. Eng. Sci. 2008, 63, 4433–4451. [Google Scholar] [CrossRef]
- Qasim, M.; Ayoub, M.; Aqsha, A.; Zulfiqar, M. Preparation of Metal Oxide-based Oxygen Carriers Supported with CeO2 and γ-Al2O3 for Chemical Looping Combustion. Chem. Eng. Technol. 2021, 44, 782–787. [Google Scholar] [CrossRef]
- Cho, P.; Mattisson, T.; Lyngfelt, A. Carbon Formation on Nickel and Iron Oxide-Containing Oxygen Carriers for Chemical-Looping Combustion. Ind. Eng. Chem. Res. 2005, 44, 668–676. [Google Scholar] [CrossRef]
- Chuang, S.Y.; Dennis, J.S.; Hayhurst, A.N.; Scott, S.A. Development and performance of Cu-based oxygen carriers for chemical-looping combustion. Combust. Flame 2008, 154, 109–121. [Google Scholar] [CrossRef]
- Forero, C.R.; Gayán, P.; de Diego, L.F.; Abad, A.; García-Labiano, F.; Adánez, J. Syngas combustion in a 500 Wth Chemical-Looping Combustion system using an impregnated Cu-based oxygen carrier. Fuel Process. Technol. 2009, 90, 1471–1479. [Google Scholar] [CrossRef]
- de Diego, L.F.; Garcı’a-Labiano, F.; Gayán, P.; Celaya, J.; Palacios, J.M.; Adánez, J. Operation of a 10kWth chemical-looping combustor during 200h with a CuO–Al2O3 oxygen carrier. Fuel 2007, 86, 1036–1045. [Google Scholar] [CrossRef]
- Adánez, J.; Gayán, P.; Celaya, J.; de Diego, L.F.; García-Labiano, F.; Abad, A. Chemical Looping Combustion in a 10 kWth Prototype Using a CuO/Al2O3 Oxygen Carrier: Effect of Operating Conditions on Methane Combustion. Ind. Eng. Chem. Res. 2006, 45, 6075–6080. [Google Scholar] [CrossRef]
- de Diego, L.F.; Gayán, P.; García-Labiano, F.; Celaya, J.; Abad, A.; Adánez, J. Impregnated CuO/Al2O3 Oxygen Carriers for Chemical-Looping Combustion: Avoiding Fluidized Bed Agglomeration. Energy Fuels 2005, 19, 1850–1856. [Google Scholar] [CrossRef]
- Cabello, A.; Gayán, P.; Abad, A.; de Diego, L.F.; García-Labiano, F.; Izquierdo, M.T.; Scullard, A.; Williams, G.; Adánez, J. Long-lasting Cu-based oxygen carrier material for industrial scale in Chemical Looping Combustion. Int. J. Greenh. Gas Control 2016, 52, 120–129. [Google Scholar] [CrossRef]
- Gayán, P.; Adánez-Rubio, I.; Abad, A.; de Diego, L.F.; García-Labiano, F.; Adánez, J. Development of Cu-based oxygen carriers for Chemical-Looping with Oxygen Uncoupling (CLOU) process. Fuel 2012, 96, 226–238. [Google Scholar] [CrossRef]
- Ryu, H.-J.; Bae, D.-H.; Jin, G.-T. Effect of temperature on reduction reactivity of oxygen carrier particles in a fixed bed chemical-looping combustor. Korean J. Chem. Eng. 2003, 20, 960–966. [Google Scholar] [CrossRef]
- Wang, B.; Ma, Q.; Wang, W.; Zhang, C.; Mei, D.; Zhao, H.; Zheng, C. Effect of Reaction Temperature on the Chemical Looping Combustion of Coal with CuFe2O4 Combined Oxygen Carrier. Energy Fuels 2017, 31, 5233–5245. [Google Scholar] [CrossRef]
- Cuadrat, A.; Abad, A.; García-Labiano, F.; Gayán, P.; de Diego, L.F.; Adánez, J. Effect of operating conditions in Chemical-Looping Combustion of coal in a 500 Wth unit. Int. J. Greenh. Gas Control 2012, 6, 153–163. [Google Scholar] [CrossRef]
- García-Labiano, F.; Adánez, J.; de Diego, L.F.; Gayán, P.; Abad, A. Effect of Pressure on the Behavior of Copper-, Iron-, and Nickel-Based Oxygen Carriers for Chemical-Looping Combustion. Energy Fuels 2006, 20, 26–33. [Google Scholar] [CrossRef]
- Qasim, M.; Ayoub, M.; Aqsha, A.; Ghazali, N.A.; Ullah, S.; Ando, Y.; Farrukh, S. Investigation on the Redox Properties of a Novel Cu-Based Pr-Modified Oxygen Carrier for Chemical Looping Combustion. ACS Omega 2022, 7, 40789–40798. [Google Scholar] [CrossRef] [PubMed]
- Quddus, M.R.; Hossain, M.M.; de Lasa, H.I. Ni based oxygen carrier over γ-Al2O3 for chemical looping combustion: Effect of preparation method on metal support interaction. Catal. Today 2013, 210, 124–134. [Google Scholar] [CrossRef]
- Inayat, M.; Sulaiman, S.A.; Inayat, A.; Shaik, N.B.; Gilal, A.R.; Shahbaz, M. Modeling and parametric optimization of air catalytic co-gasification of wood-oil palm fronds blend for clean syngas (H2+CO) production. Int. J. Hydrogen Energy 2020, 46, 30559–30580. [Google Scholar] [CrossRef]
- Yusup, S.; Khan, Z.; Ahmad, M.M.; Rashidi, N.A. Optimization of hydrogen production in in-situ catalytic adsorption (ICA) steam gasification based on Response Surface Methodology. Biomass Bioenergy 2014, 60, 98–107. [Google Scholar] [CrossRef]
- Gayán, P.; Forero, C.R.; Abad, A.; de Diego, L.F.; García-Labiano, F.; Adánez, J. Effect of Support on the Behavior of Cu-Based Oxygen Carriers during Long-Term CLC Operation at Temperatures above 1073 K. Energy Fuels 2011, 25, 1316–1326. [Google Scholar] [CrossRef]
- Huang, J.; Liu, W.; Hu, W.; Metcalfe, I.; Yang, Y.; Liu, B. Phase interactions in Ni-Cu-Al2O3 mixed oxide oxygen carriers for chemical looping applications. Appl. Energy 2019, 236, 635–647. [Google Scholar] [CrossRef]
- Siriwardane, R.; Riley, J.; Bayham, S.; Straub, D.; Tian, H.; Weber, J.; Richards, G. 50-kWth methane/air chemical looping combustion tests with commercially prepared CuO-Fe2O3-alumina oxygen carrier with two different techniques. Appl. Energy 2018, 213, 92–99. [Google Scholar] [CrossRef]
- Dai, J.; Hughey, L.; Whitty, K.J. Influence of fuel ash on the recoverability of copper from the spent material of chemical looping combustion. Fuel Process. Technol. 2020, 201, 106358. [Google Scholar] [CrossRef]
- Adánez-Rubio, I.; Bararpour, S.T.; Abad, A.; Gayán, P.; Williams, G.; Scullard, A.; Mahinpey, N.; Adánez, J. Performance Evaluation of a Cu-Based Oxygen Carrier Impregnated onto ZrO2 for Chemical-Looping Combustion (CLC). Ind. Eng. Chem. Res. 2020, 59, 7255–7266. [Google Scholar] [CrossRef]
- Skulimowska, A.; Di Felice, L.; Kamińska-Pietrzak, N.; Celińska, A.; Pławecka, M.; Hercog, J.; Krauz, M.; Aranda, A. Chemical looping with oxygen uncoupling (CLOU) and chemical looping combustion (CLC) using copper-enriched oxygen carriers supported on fly ash. Fuel Process. Technol. 2017, 168, 123–130. [Google Scholar] [CrossRef]
- Tian, X.; Su, M.; Zhao, H. Kinetics of redox reactions of CuO@ TiO2–Al2O3 for chemical looping combustion and chemical looping with oxygen uncoupling. Combust. Flame 2020, 213, 255–267. [Google Scholar] [CrossRef]
- Ma, J.; Mei, D.; Peng, W.; Tian, X.; Ren, D.; Zhao, H. On the high performance of a core-shell structured CaO-CuO/MgO@ Al2O3 material in calcium looping integrated with chemical looping combustion (CaL-CLC). Chem. Eng. J. 2019, 368, 504–512. [Google Scholar] [CrossRef]
- Luo, M.-F.; Fang, P.; He, M.; Xie, Y.-L. In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation. J. Mol. Catal. A Chem. 2005, 239, 243–248. [Google Scholar] [CrossRef]
- de Diego, L.F.; García-Labiano, F.; Adánez, J.; Gayán, P.; Abad, A.; Corbella, B.M.; María Palacios, J. Development of Cu-based oxygen carriers for chemical-looping combustion. Fuel 2004, 83, 1749–1757. [Google Scholar] [CrossRef]
- Abad, A.; Adánez, J.; García-Labiano, F.; de Diego, L.F.; Gayán, P. Modeling of the chemical-looping combustion of methane using a Cu-based oxygen-carrier. Combust. Flame 2010, 157, 602–615. [Google Scholar] [CrossRef]
- Liu, G.; Lisak, G. Cu-based oxygen carriers for chemical looping processes: Opportunities and challenges. Fuel 2023, 342, 127828. [Google Scholar] [CrossRef]
- Inayat, M.; Sulaiman, S.A.; Kurnia, J.C. Catalytic co-gasification of coconut shells and oil palm fronds blends in the presence of cement, dolomite, and limestone: Parametric optimization via Box Behnken Design. J. Energy Inst. 2019, 92, 871–882. [Google Scholar] [CrossRef]
Oxygen Carriers | Cu-Contents (wt%) | Pr-Contents (wt%) | γAl2O3 (wt%) | |||
---|---|---|---|---|---|---|
Theoretical | Actual | Theoretical | Actual | Theoretical | Actual | |
20CuPA-fresh | 20 | 19.9 | 10 | 9.8 | 70 | 70.2 |
20CuPA-used | 20 | 21.6 | 10 | 8.24 | 70 | 70.1 |
Code | Factor | −α | −1 | 0 | +1 | +α |
---|---|---|---|---|---|---|
A | Time, min | 0.58 | 1 | 2 | 3 | 3.41 |
B | Temperature, °C | 768.93 | 800 | 875 | 950 | 981.06 |
Run | Process Parameters | Response | ||
---|---|---|---|---|
Time (A), min | Temperature (B), °C | Actual | Predicted | |
1 | 2 | 875 | 0.0540 | 0.0537 |
2 | 0.58 | 875 | 0.0360 | 0.0368 |
3 | 3.41 | 875 | 0.0523 | 0.0518 |
4 | 2 | 875 | 0.0539 | 0.0537 |
5 | 3 | 950 | 0.0518 | 0.0525 |
6 | 2 | 768.93 | 0.0543 | 0.0522 |
7 | 2 | 875 | 0.0535 | 0.0537 |
8 | 1 | 950 | 0.0390 | 0.0388 |
9 | 2 | 981.06 | 0.0490 | 0.0484 |
10 | 2 | 875 | 0.0530 | 0.0537 |
11 | 2 | 875 | 0.0543 | 0.0537 |
12 | 3 | 800 | 0.0546 | 0.0542 |
13 | 1 | 800 | 0.0480 | 0.0467 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 0.0004 | 5 | 0.0001 | 112.69 | <0.0001 | significant |
A-Time | 0.0002 | 1 | 0.0002 | 292.01 | <0.0001 | |
B-Temperature | 0.0000 | 1 | 0.0000 | 60.33 | 0.0001 | |
AB | 9.61 × 10−6 | 1 | 9.6 × 10−6 | 12.46 | 0.0096 | |
A2 | 0.0002 | 1 | 0.0002 | 197.72 | <0.0001 | |
B2 | 6.04 × 10−6 | 1 | 6.04 × 10−6 | 7.84 | 0.0265 | |
Residual | 5.4 × 10−6 | 7 | 7.71 × 10−7 | |||
Lack of Fit | 4.38 × 10−6 | 3 | 1.46 × 10−6 | 5.78 | 0.0616 | not significant |
Pure Error | 1.01 × 10−6 | 4 | 2.53 × 10−7 | |||
Cor Total | 0.0004 | 12 |
Confirmation Runs | Time (min) | Temperature (°C) | OTC (mg of O2/mg of OC) | Percentage Error (%) | |
---|---|---|---|---|---|
Predicted | Experimental | ||||
Run 1 | 3 | 800 | 0.054 | 0.0541 | 0.18 |
Run 2 | 3 | 800 | 0.054 | 0.0546 | 1.11 |
Run 3 | 3 | 800 | 0.054 | 0.0551 | 2.03 |
Standard deviation | - | - | - | 0.0004 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qasim, M.; Osman, N.B.; Ayoub, M.; Aqsha, A. Cu-Based Praseodymium-Modified γ-Al2O3 Oxygen Carrier for Chemical Looping Combustion Process Optimization. Catalysts 2024, 14, 801. https://doi.org/10.3390/catal14110801
Qasim M, Osman NB, Ayoub M, Aqsha A. Cu-Based Praseodymium-Modified γ-Al2O3 Oxygen Carrier for Chemical Looping Combustion Process Optimization. Catalysts. 2024; 14(11):801. https://doi.org/10.3390/catal14110801
Chicago/Turabian StyleQasim, Muhammad, Noridah Binti Osman, Muhammad Ayoub, and Aqsha Aqsha. 2024. "Cu-Based Praseodymium-Modified γ-Al2O3 Oxygen Carrier for Chemical Looping Combustion Process Optimization" Catalysts 14, no. 11: 801. https://doi.org/10.3390/catal14110801
APA StyleQasim, M., Osman, N. B., Ayoub, M., & Aqsha, A. (2024). Cu-Based Praseodymium-Modified γ-Al2O3 Oxygen Carrier for Chemical Looping Combustion Process Optimization. Catalysts, 14(11), 801. https://doi.org/10.3390/catal14110801