Self-Assembled PDI-COOH/PDINH Supramolecular Composite Photocatalysts for Highly Efficient Photodegradation of Organic Pollutants
Abstract
:1. Introduction
2. Results
2.1. XRD Analysis
2.2. FT-IR Analysis
2.3. SEM Analysis
2.4. TEM Analysis
2.5. UV-Vis DRS
2.6. Photoelectrochemistry Analysis
3. Photocatalytic Performance
3.1. Photocatalytic Activity
3.2. Capture Experiment
3.3. Mechanism Analysis
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Preparation of Self-Assembled PDINH Supramolecules
4.3. Preparation of Self-Assembled PDI-COOH Supramolecules
4.4. Preparation of Self-Assembled PDI-COOH/PDINH Supramolecules
4.5. Photocatalytic Degradation
4.6. Characterization
4.7. Electrochemical Tests
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hou, Y.; Zhou, P.; Liu, F.; Tong, K.; Lu, Y.; Li, Z.; Liang, J.; Tong, M. Rigid covalent organic frameworks with thiazole linkage to boost oxygen activation for photocatalytic water purification. Nat. Commun. 2024, 15, 7350. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Dong, S.; Sheng, Y.; Liu, C.; Xind, F.; Di, Y.; Gan, Z. Highly efficient solar driven cogeneration of freshwater and electricity. J. Mater. Chem. A. 2023, 11, 1866–1876. [Google Scholar] [CrossRef]
- Yu, F.; Tian, F.; Zou, H.; Ye, Z.; Peng, C.; Huang, J.; Zheng, Y.; Zhang, Y.; Yang, Y.; Wei, X.; et al. ZnO/biochar nanocomposites via solvent free ball milling for enhanced adsorption and photocatalytic degradation of methylene blue. J. Hazard. Mater. 2021, 41, 125511. [Google Scholar] [CrossRef]
- Henrique, J.M.D.M.; Isidro, J.; Saez, C.; Dos Santos, E.V.; Rodrigo, M.A. Enhancing Electrokinetic Soil Flushing with Air Stripping for the Treatment of Soil Polluted with Phenol and O-Chlorophenol. Electrochim. Acta 2022, 432, 141189. [Google Scholar] [CrossRef]
- Wang, S.-J.; Zhang, X.-Y.; Su, D.; Yan, X.; Zhou, H.-L.; Xue, X.-M.; Wang, Y.-F.; Zhang, T. Enhanced photocatalytic reactions via plasmonic metal-semiconductor heterostructures combing with solid-liquid-gas interface. App. Catal. B-Environ. 2022, 306, 121102. [Google Scholar] [CrossRef]
- Zhu, Z.H.; Liu, Y.; Song, C.; Hu, Y.; Feng, G.; Tang, B.Z. Porphyrin-based two-dimensional layered metal–organic framework with sono-/photocatalytic activity for water decontamination. ACS. Nano 2021, 16, 1346–1357. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Li, Y.; Zhao, H.; Wang, J.; Huang, H.; Liu, Y.; Kang, Z. Converting water impurity in organic solvent into hydrogen and hydrogen peroxide by organic semiconductor photocatalyst. Appl. Catal. B-Environ. 2022, 305, 121047. [Google Scholar] [CrossRef]
- Yu, W.; Liu, X.; Pan, L.; Li, J.; Liu, J.; Zhang, J.; Li, P.; Chen, C.; Sun, Z. Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO2. Appl. Surf. Sci. 2014, 319, 107–112. [Google Scholar] [CrossRef]
- Lee, J.S.; You, K.H.; Park, C.B. Highly photoactive low bandgap TiO2 nanoparticles wrapped by graphene. Adv. Mater. 2012, 24, 1133. [Google Scholar] [CrossRef]
- Chen, S.; Kong, P.; Niu, H.; Liu, H.; Wang, X.; Zhang, J.; Li, R.; Guo, Y.; Peng, T. Co-porphyrin/Ru-pincer complex coupled polymer with Z-scheme molecular junctions and dual single-atom sites for visible light-responsive CO2 reduction. Chem. Eng. J. 2022, 431, 133357. [Google Scholar] [CrossRef]
- Mahler, B.; Hoepfner, V.; Liao, K.; Ozin, G.A. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: Applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14121–14127. [Google Scholar] [CrossRef] [PubMed]
- Tu, W.; Yong, Z.; Qi, L.; Tian, Z.; Gao, J.; Chen, X.; Zhang, H.; Liu, J.; Zou, Z. Robust hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 conversion into renewable fuels. Adv. Funct. Mater. 2012, 22, 1215–1221. [Google Scholar] [CrossRef]
- Peng, H.; Liu, Y.; Wang, Y.; Song, M.; Song, H.; Chen, P.; Yin, S.-F. Unraveling Rigidified Superexchange Couplings in Organic Donor–Acceptor Polymers for Boosting the Photocatalytic Reduction of Nitrate. ACS. Catal. 2024, 14, 2971–2980. [Google Scholar] [CrossRef]
- Yu, Y.; Yan, W.; Wang, X.; Li, P.; Gao, W.; Zou, H.; Wu, S.; Ding, K. Surface engineering for enormously enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4. Adv. Mater. 2018, 30, 1705060. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhang, X.; Wang, X.; Xing, D.; Huang, D.; Chen, H. The molecular structure design of conjugated microporous poly(dibenzo [b, d] thiophene 5,5-dioxide) for optimized photocatalytic NO removal. J. Catal. 2018, 357, 188–194. [Google Scholar] [CrossRef]
- Yu, X.; Hu, Y.; Shao, C.; Huang, W.; Li, Y. Polymer semiconductors: A unique platform for photocatalytic hydrogen peroxide production. Mater. Today 2023, 71, 152–173. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, Y.; Ni, Y.; Shi, F.; Guo, X.; Li, C. Hydroxylated organic semiconductors for efficient photovoltaics and photocatalytic hydrogen evolution. Energy Environ. Sci. 2023, 16, 4065–4072. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, P.; Liang, G.; Wen, X.; Huang, G.; Song, H.; Jiang, B.; Jin, S.; Xu, F.; Ding, X.; et al. Homogeneous–Heterogeneous Hybrid Artificial Photosynthesis Induced by Organic Semiconductors with Controlled Surface Architectures. Adv. Funct. Mater. 2023, 33, 2303335. [Google Scholar] [CrossRef]
- Yang, Y.; Li, D.; Cai, J.; Wang, H.; Guo, C.; Wen, S.; Li, W.; Wang, T.; Liu, D. Enhanced Photocatalytic Hydrogen Evolution from Organic Ternary Heterojunction Nanoparticles Featuring a Compact Alloy-Like Phase. Adv. Funct. Mater. 2023, 33, 2209643. [Google Scholar] [CrossRef]
- Liao, G.; Li, C.; Fang, B. Donor-acceptor organic semiconductor heterojunction nanoparticles for efficient photocatalytic H2 evolution. Matter 2022, 5, 1635–1637. [Google Scholar] [CrossRef]
- Haldar, S.; Roy, K.; Nandi, S.; Chakraborty, D.; Puthusseri, D.; Gawli, Y.; Ogale, S.; Vaidhyanathan, R. High and reversible lithium-ion storage in self-exfoliated triazole-tri formyl phloroglucinol-based covalent organic nanosheets. Adv. Energy Mater. 2018, 8, 1702170. [Google Scholar] [CrossRef]
- Kosco, J.; Gonzalez-Carrero, S.; Howells, C.T.; Fei, T.; Dong, Y.; Sougrat, R.; Harrison, G.T.; Firdaus, Y.; Sheelamanthula, R.; Purushothaman, B.; et al. Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. Nat. Energy 2022, 7, 340–351. [Google Scholar] [CrossRef]
- Yang, J.; Miao, H.; Jing, J.; Zhu, Y.; Choi, W. Photocatalytic activity enhancement of PDI supermolecule via π-π action and energy level adjusting with graphene quantum dots. Appl. Catal. B Environ. 2021, 281, 119547. [Google Scholar] [CrossRef]
- Ding, H.; Wang, Z.; Kong, K.; Feng, S.; Xu, L.; Ye, H.; Wu, W.; Gong, X.; Hua, J. Efficient and stable photocatalytic H2 evolution by self-assembly of zirconium(iv) coordination with perylene diamide supramolecules under visible light irradiation. J. Mater. Chem. A 2021, 3, 7675–7683. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, Y.; Liu, X.; Zhao, X.; Hu, Y.; Yang, Z.; Yang, C.; Yuan, Z.; Chen, Y. Layer-by-layer solution-processed organic solar cells with perylene diamides as acceptors. Acs. Appl. Mater. Inter. 2021, 13, 29876–29884. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Hirsch, A.; Kumar, S. Perylene diimide-based chemosensors emerging in recent years: From design to sensing. Trac-Trend. Anal. Chem. 2021, 138, 116237. [Google Scholar] [CrossRef]
- Chen, P.; Blaney, L.; Cagnetta, G.; Huang, J.; Wang, B.; Wang, Y.; Deng, S.; Yu, G. Degradation of ofloxacin by perylene diimide supramolecular nanofiber sunlight-driven photocatalysis. Environ. Sci. Technol. 2019, 53, 1564–1575. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Tan, Z.A.; Domercq, B.; An, Z.; Zhang, X.; Barlow, S.; Li, Y.; Zhu, D.; Kippelen, B.; Marder, S.R. A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J. Am. Chem. Soc. 2007, 129, 7246–7247. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Z.; Ye, L.; Zhan, C.; Hou, J.; Zhang, S.; Jiang, B.; Zhao, Y.; Huang, J.; Zhang, S.; et al. A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03% efficiency. Adv. Mater. 2013, 25, 5791–5797. [Google Scholar] [CrossRef]
- Yukruk, F.; Dogan, A.L.; Canpinar, H.; Guc, D.; Akkaya, E.U. Water-soluble green perylene diimide (PDI) dyes as potential sensitizers for photodynamic therapy. Org. Lett. 2005, 7, 2885–2887. [Google Scholar] [CrossRef]
- Yan, R.; Wang, M.; Shan, M.; Tang, H. Preparation of a novel type-II FePc/PDINH heterojunction photocatalyst via electrostatic interactions for highly efficient phenol degradation. Appl. Surf. Sci. 2023, 639, 158257. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Q.; Yu, L.; Sun, J.; Fan, L.; Xu, Q. Organic-inorganic complex nanoflake photocatalyst PDINH/Bi2WO6 with increased visible light catalytic performance. J. Phys. Chem. Lett 2022, 787, 139232. [Google Scholar] [CrossRef]
- Zheng, S.; Du, H.; Yang, L.; Tan, M.; Li, N.; Fu, Y.; Hao, D.; Wang, Q. PDINH bridged NH2-UiO-66 (Zr) Z-scheme heterojunction for promoted photocatalytic Cr (VI) reduction and antibacterial activity. J. Hazard. 2023, 447, 130849. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, D.; Li, N.; Xu, Q.; Li, H.; Lu, J. Efficient photocatalytic hydrogen peroxide production induced by the strong internal electric field of all-organic S-scheme heterojunction. J. Colloid. Interf. Sci. 2023, 633, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lv, X.; Zhang, Q.; Huang, B.; Wang, P.; Qin, X.; Zhang, X.; Dai, Y. Self-assembled supramolecular system PDINH on TiO2 surface enhances hydrogen production. J. Colloid Interf. Sci. 2018, 525, 136–142. [Google Scholar] [CrossRef]
- Yang, S.; Deng, X.; Chen, P.; Li, G.; Wang, Q.; Wang, Q.; Yin, S. Bridges engineering manipulated exciton dissociation and charge separation in small acceptors of PDI supramolecular for boosting photocatalytic nitrogen fixation. Chem. Eng. J. 2022, 441, 136084. [Google Scholar] [CrossRef]
- Tang, R.; Gong, D.; Deng, Y.; Xiong, S.; Deng, J.; Li, L.; Zhou, Z.; Zheng, J.; Su, L.; Yang, L. π-π Stacked step-scheme PDI/g-C3N4/TiO2@Ti3C2 photocatalyst with enhanced visible photocatalytic degradation towards atrazine via peroxymonosulfate activation. Chem. Eng. J. 2022, 427, 131809. [Google Scholar] [CrossRef]
- Ji, Q.; Du, K.; Zhu, J.; Ye, X.; Li, H.; Cheng, X.; Liu, Y.; Xu, Z.; Zuo, G.; Li, S. Acid-tailored self-assembled perylene diimide is supramolecular for visible-light-driven activation of peroxymonosulfate towards efficient degradation of iohexol. Chem. Eng. J. 2023, 462, 142116. [Google Scholar] [CrossRef]
- Würthner, F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. Chem. Commun. 2004, 35, 1564–1579. [Google Scholar] [CrossRef]
- Xu, Y.; Luo, X.; Wang, F.; Xiang, W.; Zhou, C.; Huang, W.; Lu, K.; Li, S.; Zhou, M.; Yang, K. Novel PDI-NH/PDI-COOH Supramolecular Junction for Enhanced Visible-Light Photocatalytic Phenol Degradation. Molecules 2024, 29, 4196. [Google Scholar] [CrossRef]
- Wang, J.; Liu, D.; Zhu, Y.; Zhou, S.; Guan, S. Supramolecular packing dominant photocatalytic oxidation and anticancer performance of PDI. Appl. Catal. B. 2018, 231, 251–261. [Google Scholar] [CrossRef]
- Li, W.; Zhang, H.; Huang, S.; Xu, J.; Liu, L.; Li, J.; Jing, J.; Zhu, Y. Electron-Enriched Supramolecular PDI-SiO2 Promoting PDS Activation for Enhanced Photocatalytic Advanced Oxidation. Appl. Catal. B Environ. 2024, 340, 123262. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, G.; He, Z.; Jia, Z.; Ma, S.; Chen, D.; Li, Y. Self-Assembled PDI-COOH/PDINH Supramolecular Composite Photocatalysts for Highly Efficient Photodegradation of Organic Pollutants. Catalysts 2024, 14, 696. https://doi.org/10.3390/catal14100696
Zhou G, He Z, Jia Z, Ma S, Chen D, Li Y. Self-Assembled PDI-COOH/PDINH Supramolecular Composite Photocatalysts for Highly Efficient Photodegradation of Organic Pollutants. Catalysts. 2024; 14(10):696. https://doi.org/10.3390/catal14100696
Chicago/Turabian StyleZhou, Guodong, Zetian He, Zeyu Jia, Shiqing Ma, Daimei Chen, and Yilei Li. 2024. "Self-Assembled PDI-COOH/PDINH Supramolecular Composite Photocatalysts for Highly Efficient Photodegradation of Organic Pollutants" Catalysts 14, no. 10: 696. https://doi.org/10.3390/catal14100696
APA StyleZhou, G., He, Z., Jia, Z., Ma, S., Chen, D., & Li, Y. (2024). Self-Assembled PDI-COOH/PDINH Supramolecular Composite Photocatalysts for Highly Efficient Photodegradation of Organic Pollutants. Catalysts, 14(10), 696. https://doi.org/10.3390/catal14100696