Enhancement of Carrier Migration by Monolayer MXene Structure in Ti3CN/TiO2 Heterojunction to Achieve Efficient Photothermal Synergistic Transformation of CO2
Abstract
:1. Introduction
2. Results and Discussioon
2.1. Analysis of Catalyst Morphology and Structure
2.1.1. SEM
2.1.2. XRD Crystal Structure Analysis
2.2. Performance Analysis of Photothermal Synergistic Transformation of CO2
2.2.1. Analysis of Photothermal Synergistic Transformation of CO2 Performance of mTOCN and dTOCN
2.2.2. Analysis of Photothermal Synergistic Effect of dTOCN
2.3. Analysis of Chemical Components and Photoelectrochemical Properties of mTOCN and dTOCN
2.3.1. XPS Chemical Component Analysis
2.3.2. Band Structure and Photoelectrochemical Characterization
2.3.3. Photocurrent Response Analysis
3. Materials and Methods
3.1. Catalyst Preparation
3.1.1. Multi-Layer and Single-Layer Ti3CN MXene
3.1.2. Ti3CN/TiO2 Heterojunction
3.2. Characterization Analysis Methods
3.3. Photothermal Catalyzed CO2 Reduction Experiment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Yang, Z.; Kadirova, Z.C.; Guo, M.; Fang, R.; He, J.; Yan, Y.; Ran, J. Photothermal functional material and structure for photothermal catalytic CO2 reduction: Recent advance, application and prospect. Coord. Chem. Rev. 2022, 473, 214794. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.; Fang, R.; Yan, Y.; Ran, J.; Zhang, L. A State-of-the-art review on action mechanism of photothermal catalytic reduction of CO2 in full solar spectrum. Chem. Eng. J. 2022, 429, 132322. [Google Scholar] [CrossRef]
- Lu, B.; Quan, F.; Sun, Z.; Jia, F.; Zhang, L. Photothermal reverse-water-gas-shift over Au/CeO2 with high yield and selectivity in CO2 conversion. Catal. Commun. 2019, 129, 105724. [Google Scholar] [CrossRef]
- Cao, Y.; Wei, Y.; Wan, W.; Liu, C.; Zhuang, C.; Gong, C.; Nan, L.; Zhang, Q.; Gao, H.; Chen, J.; et al. Photoelectrochemical reduction of CO2 catalyzed by a 3D core-shell NiMoO4@ZnO heterojunction with bicentre at the (111) plane and thermal electron assistance. J. Mater. Chem. A 2023, 11, 4230–4237. [Google Scholar] [CrossRef]
- Zhao, Y.; Que, M.; Chen, J.; Yang, C. MXenes as co-catalysts for the solar-driven photocatalytic reduction of CO2. J. Mater. Chem. C 2020, 8, 16258–16281. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Thomas, A.M.; Vidyasagar, D.; Rao, V.N.; Yoon, S.-G.; Kim, Y.-H.; Kim, S.-G.; Kim, M.-D. ZnO@Ti3C2Tx MXene Hybrid Composite-Based Schottky-Barrier-Coated SAW Sensor for Effective Detection of Sub-ppb-Level NH3 at Room Temperature under UV Illumination. ACS Mater. Lett. 2023, 5, 2739–2746. [Google Scholar] [CrossRef]
- Qiu, J.; Guo, M.; Yang, Z.; Wang, Z.; Fang, R.; He, J.; Ran, J. Substitution and oxygen vacancy double defects on Bi2MoO6 induced efficient conversion of CO2 and highly selective production of CH4. Appl. Surf. Sci. 2023, 617, 156605. [Google Scholar] [CrossRef]
- Kannan, K.; Sliem, M.H.; Abdullah, A.M.; Sadasivuni, K.K.; Kumar, B. Fabrication of ZnO-Fe-MXene Based Nanocomposites for Efficient CO2 Reduction. Catalysts 2020, 10, 549. [Google Scholar] [CrossRef]
- Peng, C.; Yang, X.; Li, Y.; Yu, H.; Wang, H.; Peng, F. Hybrids of Two-Dimensional Ti3C2 and TiO2 Exposing {001} Facets toward Enhanced Photocatalytic Activity. ACS Appl. Mater. Interfaces 2016, 8, 6051–6060. [Google Scholar] [CrossRef]
- Syuy, A.V.; Shtarev, D.S.; Kozlova, E.A.; Kurenkova, A.Y.; Zhurenok, A.V.; Shtareva, A.V.; Gurin, M.S.; Tselikov, G.I.; Tikhonowski, G.V.; Arsenin, A.; et al. Photocatalytic Activity of TiNbC-Modified TiO2 during Hydrogen Evolution and CO2 Reduction. Appl. Sci. 2023, 13, 9410. [Google Scholar] [CrossRef]
- Low, J.; Zhang, L.; Tong, T.; Shen, B.; Yu, J. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 2018, 361, 255–266. [Google Scholar] [CrossRef]
- Wei, Y.; Duan, R.; Zhang, Q.; Cao, Y.; Wang, J.; Wang, B.; Wan, W.; Liu, C.; Chen, J.; Gao, H.; et al. Photoelectrocatalytic reduction of CO2 catalyzed by TiO2/TiN nanotube heterojunction: Nitrogen assisted active hydrogen mech-anism. Chin. J. Catal. 2023, 47, 243–253. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, F.; Lei, S.; Wei, Y.; Zhao, D.; Gao, Y.; Ma, X.; Li, S.; Chang, S.; Wang, M.; et al. In situ grown two-dimensional TiO2/Ti3CN MXene heterojunction rich in Ti3+ species for highly efficient photoelectrocatalytic CO2 reduction. Chem. Eng. J. 2023, 452, 139392. [Google Scholar] [CrossRef]
- Xu, D.; Li, Z.; Li, L.; Wang, J. Insights into the Photothermal Conversion of 2D MXene Nanomaterials: Synthesis, Mechanism, and Applications. Adv. Funct. Mater. 2020, 30, 2000712. [Google Scholar] [CrossRef]
- Iqbal, A.; Shahzad, F.; Hantanasirisakul, K.; Kim, M.-K.; Kwon, J.; Hong, J.; Kim, H.; Kim, D.; Gogotsi, Y.; Koo, C.M. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 2020, 369, 446. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Xiong, P.; Wang, H.; Wu, Z. Boosted CO2 photoreduction performance on Ru-Ti3CN MXene-TiO2 photocatalyst synthesized by non-HF Lewis acidic etching method. J. Colloid Interface Sci. 2022, 619, 179–187. [Google Scholar] [CrossRef]
- Jindata, W.; Hantanasirisakul, K.; Eknapakul, T.; Denlinger, J.D.; Sangphet, S.; Chaiyachad, S.; Jaisuk, C.; Rasritat, A.; Sawasdee, T.; Nakajima, H.; et al. Spectroscopic signature of negative electronic compressibility from the Ti core-level of titanium carbonitride MXene. Appl. Phys. Rev. 2021, 8, 021401. [Google Scholar] [CrossRef]
- Fang, R.; Yang, Z.; Kadirova, Z.C.; He, Z.; Wang, Z.; Ran, J.; Zhang, L. High-efficiency photoreduction of CO2 to solar fuel on alkali intercalated Ultra-thin g-C3N4 nanosheets and enhancement mechanism investigation. Appl. Surf. Sci. 2022, 598, 153848. [Google Scholar] [CrossRef]
- Pandey, M.; Thygesen, K.S. Two-Dimensional MXenes as Catalysts for Electrochemical Hydrogen Evolution: A Computational Screening Study. J. Phys. Chem. C 2017, 121, 13593–13598. [Google Scholar] [CrossRef]
- Handoko, A.D.; Steinmann, S.N.; Seh, Z.W. Theory-guided materials design: Two-dimensional MXenes in electro- and photocatalysis. Nanoscale Horiz. 2019, 4, 809–827. [Google Scholar] [CrossRef]
- Liu, X.; Chen, T.; Xue, Y.; Fan, J.; Shen, S.; Hossain, M.S.A.A.; Amin, M.A.; Pan, L.; Xu, X.; Yamauchi, Y. Nanoarchitectonics of MXene/semiconductor heterojunctions toward artificial photosynthesis via photocatalytic CO2 reduction. Coord. Chem. Rev. 2022, 459, 214440. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Kim, S.J.; Seo, D.; Chae, Y.; Anayee, M.; Lee, Y.; Gogotsi, Y.; Ahn, C.W.; Jung, H.-T. Etching Mechanism of Monoatomic Aluminum Layers during MXene Synthesis. Chem. Mater. 2021, 33, 6346–6355. [Google Scholar] [CrossRef]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TX MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- Shekhirev, M.; Shuck, C.E.; Sarycheva, A.; Gogotsi, Y. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Prog. Mater. Sci. 2021, 120, 100757. [Google Scholar] [CrossRef]
- Syuy, A.; Shtarev, D.; Lembikov, A.; Gurin, M.; Kevorkyants, R.; Tselikov, G.; Arsenin, A.; Volkov, V. Effective Method for the Determination of the Unit Cell Parameters of New MXenes. Materials 2022, 15, 8798. [Google Scholar] [CrossRef] [PubMed]
- Khazaei, M.; Arai, M.; Sasaki, T.; Ranjbar, A.; Liang, Y.; Yunoki, S. OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials. Phys. Rev. B 2015, 92, 075411. [Google Scholar] [CrossRef]
- He, J.; Yang, Z.; Wang, Z.; Fang, R.; Gu, L.; Yan, Y.; Ran, J. Systematic study of H2 production from photothermal reforming of α-cellulose over atomically thin Bi2MoO6. Energy Convers. Manag. 2023, 277, 116605. [Google Scholar] [CrossRef]
- Halim, J.; Cook, K.M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M.W. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl. Surf. Sci. 2016, 362, 406–417. [Google Scholar] [CrossRef]
- Liu, N.; Yu, L.; Liu, B.; Yu, F.; Li, L.; Xiao, Y.; Yang, J.; Ma, J. Ti3C2-MXene Partially Derived Hierarchical 1D/2D TiO2/Ti3C2 Heterostructure Electrode for High-Performance Capacitive Deionization. Adv. Sci. 2023, 10, 2204041. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Zhou, Y.; Zhang, S.; Huang, H.; Zhang, C.; Zheng, X.; Chu, X.; Zhang, H.; Yang, W.; Chen, J. Tailoring Ti3CNTx MXene an acid molecular scissor. Nano Energy 2021, 85, 106007. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, C.; Guo, M.; Wang, Z.; He, J.; Qiu, J.; Guo, Y.; Yan, Y.; Ran, J.; Yang, Z. Enhancement of Carrier Migration by Monolayer MXene Structure in Ti3CN/TiO2 Heterojunction to Achieve Efficient Photothermal Synergistic Transformation of CO2. Catalysts 2024, 14, 35. https://doi.org/10.3390/catal14010035
Zhu C, Guo M, Wang Z, He J, Qiu J, Guo Y, Yan Y, Ran J, Yang Z. Enhancement of Carrier Migration by Monolayer MXene Structure in Ti3CN/TiO2 Heterojunction to Achieve Efficient Photothermal Synergistic Transformation of CO2. Catalysts. 2024; 14(1):35. https://doi.org/10.3390/catal14010035
Chicago/Turabian StyleZhu, Chenxuan, Mingnv Guo, Ziqi Wang, Jiang He, Jiaqi Qiu, Yuxuan Guo, Yunfei Yan, Jingyu Ran, and Zhongqing Yang. 2024. "Enhancement of Carrier Migration by Monolayer MXene Structure in Ti3CN/TiO2 Heterojunction to Achieve Efficient Photothermal Synergistic Transformation of CO2" Catalysts 14, no. 1: 35. https://doi.org/10.3390/catal14010035