A Novel MoS2/TiO2/Graphene Nanohybrid for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation
Abstract
:1. Introduction
2. Results
2.1. Microstructure Characterization
2.2. Photoelectrochemical Behavior
2.3. Hydrogen (H2) Evolution Behavior
3. Materials and Methods
3.1. Preparation of Photocatalysts
3.2. Synthesis
3.3. Characterization
3.4. Photocatalytic Hydrogen Evolution Tests
3.5. Photoelectrochemical (PEC) Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jang, D.; Choi, S.; Kwon, N.H.; Jang, K.Y.; Lee, S.; Lee, T.W.; Hwang, S.J.; Kim, H.; Kim, J.; Park, S. Water-Assisted Formation of Amine-Bridged Carbon Nitride: A Structural Insight into the Photocatalytic Performance for H2 Evolution under Visible Light. Appl. Catal. B Environ. 2022, 310, 121313. [Google Scholar] [CrossRef]
- Zou, Y.; Yang, B.; Liu, Y.; Ren, Y.; Ma, J.; Zhou, X.; Cheng, X.; Deng, Y. Controllable Interface-Induced Co-Assembly toward Highly Ordered Mesoporous Pt@TiO2/g-C3N4 Heterojunctions with Enhanced Photocatalytic Performance. Adv. Funct. Mater. 2018, 28, 1806214. [Google Scholar] [CrossRef]
- Hayat, A.; Sohail, M.; Jery, A.E.; Al-Zaydi, K.M.; Raza, S.; Ali, H.; Al-Hadeethi, Y.; Taha, T.A.; Din, I.U.; Khan, M.A.; et al. Recent advances in ground-breaking conjugated microporous polymers-based materials, their synthesis, modification and potential applications. Mater. Today 2023, 64, 180. [Google Scholar] [CrossRef]
- Samaniego-Benitez, J.E.; Jimenez-Rangel, K.; Lartundo-Rojas, L.; García-García, A.; Mantilla, A. Enhanced Photocatalytic H2 Production over g-C3N4/NiS Hybrid Photocatalyst. Mater. Lett. 2021, 290, 129476. [Google Scholar] [CrossRef]
- Chen, L.J.; Chuang, Y.J. Directly electrospinning growth of single crystal Cu2ZnSnS4 nanowires film for high performance thin film solar cell. J. Power Sources 2013, 241, 259. [Google Scholar] [CrossRef]
- Shen, L.; Qi, S.; Jin, Y.; Li, C.; Cheng, J.; Wang, H.; Ma, H.; Li, L. α-NiS-β-NiS Growth on Cd0.5Zn0.5S Formed Schottky Heterojunctions for Enhanced Photocatalytic Hydrogen Production. New J. Chem. 2022, 46, 17469–17478. [Google Scholar] [CrossRef]
- Mo, Z.; Xu, H.; Chen, Z.; She, X.; Song, Y.; Lian, J.; Zhu, X.; Yan, P.; Lei, Y.; Yuan, S.; et al. Construction of MnO2/Monolayer g-C3N4 with Mn Vacancies for Z-Scheme Overall Water Splitting. Appl. Catal. B Environ. 2019, 241, 452–460. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Xiao, Z.; Liu, S.; Hu, J.; Long, X.; Wu, L.; Sun, C.; Chen, K.; Jiao, F. Construction of Z-Scheme Heterojunction of (BiO)2CO3/ZnFe-LDH for Enhanced Photocatalytic Degradation of Tetracycline. J. Alloys Compd. 2022, 900, 163450. [Google Scholar] [CrossRef]
- Liu, H.Y.; Niu, C.G.; Guo, H.; Liang, C.; Huang, D.W.; Zhang, L.; Yang, Y.Y.; Li, L. In Suit Constructing 2D/1D MgIn2S4/CdS Heterojunction System with Enhanced Photocatalytic Activity towards Treatment of Wastewater and H2 Production. J. Colloid Interface Sci. 2020, 576, 264–279. [Google Scholar] [CrossRef]
- Chen, L.J.; Chuang, Y.J.; Chen, C. Surface passivation assisted lasing emission in the quantum dots doped cholesteric liquid crystal resonating cavity with polymer template. RSC Adv. 2014, 4, 18600. [Google Scholar] [CrossRef]
- Qiu, Y.P.; Shi, Q.; Zhou, L.L.; Chen, M.H.; Chen, C.; Tang, P.P.; Walker, G.S.; Wang, P. Ni Pt Nanoparticles Anchored onto Hierarchical Nanoporous N-Doped Carbon as an Efficient Catalyst for Hydrogen Generation from Hydrazine Monohydrate. ACS Appl. Mater. Interfaces 2020, 12, 18617–18624. [Google Scholar] [CrossRef]
- Jiang, K.; Xu, K.; Zou, S.; Cai, W.B. B-doped Pd catalyst: Boosting room-temperature hydrogen production from formic acidformate solutions. J. Am. Chem. Soc. 2014, 136, 4861–4864. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Xie, L.; Liang, Y.Y.; Hong, G.S.; Dai, H.J. MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayat, A.; Sohail, M.; Jery, A.E.; Al-Zaydi, K.M.; Raza, S.; Ali, H.; Ajmal, Z.; Zada, A.; Taha, T.A.; Din, I.; et al. Recent advances, properties, fabrication and opportunities in two-dimensional materials for their potential sustainable applications. Energy Storage Mater. 2023, 59, 102780. [Google Scholar] [CrossRef]
- Singh, R.; Dutta, S. A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts. Fuel 2018, 220, 607. [Google Scholar] [CrossRef]
- Shaikh, Z.A.; Laghari, A.A.; Litvishko, O.; Litvishko, V.; Kalmykova, T.; Meynkhard, A. Liquid-Phase Deposition Synthesis of ZIF-67-Derived Synthesis of Co3O4@TiO2 Composite for Efficient Electrochemical Water Splitting. Metals 2021, 11, 420. [Google Scholar] [CrossRef]
- Li, X.Y.; Shao, J.; Li, J.; Zhang, L.; Qu, Q.T.; Zheng, H.H. Ordered mesoporous MoO2 as a high-performance anode material for aqueous supercapacitors. J. Power Sources 2013, 237, 80–83. [Google Scholar] [CrossRef]
- Ghodke, N.P.; Rayaprol, S.; Bhoraskar, S.V.; Mathe, V.L. Catalytic hydrolysis of sodium borohydride solution for hydrogen production using thermal plasma synthesized nickel nanoparticles. Int. J. Hydrog. Energy 2020, 45, 16591–16605. [Google Scholar] [CrossRef]
- Chen, L.J.; Lee, C.R.; Chuang, Y.J.; Wu, Z.H.; Chen, C. Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Quantum Rods with High-Performance Solar Cell Application. J. Phys. Chem. Lett. 2016, 7, 5028. [Google Scholar] [CrossRef]
- Teng, W.; Wang, Y.M.; Lin, Q.; Zhu, H.; Tang, Y.B.; Li, X.Y. Synthesis of MoS2/TiO2 nanophotocatalyst and its enhanced visible light driven photocatalytic performance. J. Nanosci. Nanotechnol. 2019, 19, 3519. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Ling, Q.; Liu, Y.F.; Wang, H.; Zhu, Y.F. Photocatalytic H2 evolution on MoS2-TiO2 catalysts synthesized mechanochemistry. Phys. Chem. Chem. Phys. 2014, 2, 933. [Google Scholar] [CrossRef]
- Tien, T.M.; Chen, E.L. S-Scheme System of MoS2/Co3O4 Nanocomposites for Enhanced Photocatalytic Hydrogen Evolution and Methyl Violet Dye Removal under Visible Light Irradiation. Coatings 2023, 13, 80. [Google Scholar] [CrossRef]
- Xiang, Q.; Yu, J.; Jaroniec, M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 6575–6578. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Yao, Z.; Wang, X. Graphene-based nanomaterials for catalysis. Ind. Eng. Chem. Res. 2017, 56, 3477–3502. [Google Scholar] [CrossRef]
- Chen, L.J.; Lee, C.R.; Chuang, Y.J.; Chen, C. Compositionally controlled band gap and photoluminescence of ZnSSe nanofibers by electrospinning. CrystEngComm 2015, 17, 4434. [Google Scholar] [CrossRef]
- Chen, L.J. Tunable photoluminescence emission from Cadmium Tellurium nanorods with ethylenediamine template-assistance at a low temperature. Mater. Lett. 2013, 101, 83. [Google Scholar] [CrossRef]
- Tien, T.M.; Chuang, Y.; Chen, E.L. Z-scheme driven of MoS2/Co3O4 nano-heterojunction for efficient photocatalysis hydrogen evolution and Rhodamine B degradation. J. Photochem. Photobiol. A Chem. 2023, 444, 114986. [Google Scholar] [CrossRef]
- Shaybanizadeh, S.; Chermahini, A.N.; Luque, R. Boron nitride nanosheets supported highly homogeneous bimetallic AuPd alloy nanoparticles catalyst for hydrogen production from formic acid. Nanotechnology 2022, 33, 27. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.E.; Hong, S.; Choi, S.; Kim, C.; Ji, S.G.; Lee, S.A.; Yang, J.E.; Lee, T.H.; Sohn, W.; Kim, J.Y.; et al. Boosting unassisted alkaline solar water splitting using silicon photocathode with TiO2 nanorods decorated by edge-rich MoS2 nanoplates. Small 2021, 17, e2103457. [Google Scholar] [CrossRef]
- Tien, T.M.; Chung, Y.J.; Huang, C.T.; Chen, E.L. WSSe Nanocomposites for Enhanced Photocatalytic Hydrogen Evolution and Methylene Blue Removal under Visible-Light Irradiation. Materials 2022, 15, 5616. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Li, W.; Yang, Q.; Hou, Q.; Wei, L.; Liu, L.; Huang, F.; Ju, M. Enhancement of photocatalytic performance with the use of noble-metal-decorated TiO2 nanocrystals as highly active catalysts for aerobic oxidation under visible-light irradiation. Appl. Catal. B 2017, 210, 352–367. [Google Scholar] [CrossRef]
- Adnan, R.H.; Madridejos, J.M.L.; Alotabi, A.S.; Metha, G.F.; Andersson, G.G. A review of state of the art in phosphine ligated gold clusters and application in catalysis. Adv. Sci. 2022, 9, 2105692. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.J.; Chuang, Y.J. Quaternary Semiconductor Derived and formation mechanism by non-vacuum Route from Solvothermal Nanostructures for High-Performance application. Mater. Lett. 2013, 91, 372. [Google Scholar] [CrossRef]
- Zhong, W.; Gao, D.; Yu, H.; Fan, J.; Yu, J. Novel amorphous nicus H2 -evolution cocatalyst: Optimizing surface hydrogen desorption for efficient photocatalytic activity. Chem. Eng. J. 2021, 419, 129652. [Google Scholar] [CrossRef]
- Chuang, Y.J.; Liao, J.D.; Chen, L.J. Polyvinylbutyral-assisted synthesis and characterization of mesoporous silica nanofibers by electrospinning route. J. Compos. Mater. 2012, 46, 227. [Google Scholar] [CrossRef]
- Chen, L.J.; Chuang, Y.J. Hydrothermal Synthesis and Characterization of Hexagonal Zinc Oxide Nanorods with a Hexamethylenetetramine (HMTA) Template-assisted at a Low Temperature. Mater. Lett. 2012, 68, 460–462. [Google Scholar] [CrossRef]
- Kadam, S.R.; Enyashin, A.N.; Houben, L.; Bar-Ziv, R.; Bar-Sadan, M. Ni-WSe2 nanostructures as efficient catalysts for electrochemical hydrogen evolution reaction (HER) in acidic and alkaline media. J. Mater. Chem. A 2020, 8, 1403–1416. [Google Scholar] [CrossRef]
- Guan, X.; Zong, S.; Tian, L.; Zhang, Y.; Shi, J. Construction of SrTiO3-LaCrO3 solid solutions with consecutive band structures for photocatalytic H2 evolution under visible light irradiation. Catalysts 2022, 12, 1123. [Google Scholar] [CrossRef]
- Wang, C.; Li, N.; Wang, Q.; Tang, Z. Hybrid nanomaterials based on graphene and gold nanoclusters for efficient electrocatalytic reduction of oxygen. Nanoscale Res. Lett. 2016, 11, 336. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Li, D.; Yang, Y.; Liu, H.; Chen, J.; Wang, H. Preparation of Au/reduced graphene oxide/hydrogenated TiO2 nanotube arrays ternary composites for visible-light-driven photoelectrochemical water splitting. J. Alloys Compd. 2016, 661, 380–388. [Google Scholar] [CrossRef]
- Si, J.; Yu, L.; Wang, Y.; Huang, Z.; Homewood, K.; Gao, Y. Colour centre controlled formation of stable sub-nanometer transition metal clusters on TiO2 nanosheet for high efficient H2 production. Appl. Surf. Sci. 2020, 511, 145577. [Google Scholar] [CrossRef]
- Mondal, A.; Prabhakaran, A.; Gupta, S.; Subramanian, V.R. Boosting photocatalytic activity using reduced graphene oxide (rGO)/semiconductor nanocomposites: Issues and future scope. ACS Omega 2021, 6, 8734–8743. [Google Scholar] [CrossRef]
- Chen, L.J. Synthesis and optical properties of lead-free cesium germanium halide perovskite quantum rods. RSC Adv. 2018, 18, 18396. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.; Cui, X.; Cui, Y.; Fan, X.; Li, Z.; Ba, K.; Jia, G.; Zhang, H.; Zhang, H. Favorable energy band alignment of TiO2 anatase/rutile heterophase homojunctions yields photocatalytic hydrogen evolution with quantum efficiency exceeding 45.6%. Adv. Energy Mater. 2022, 12, 2200298. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tien, T.-M.; Chen, E.L. A Novel MoS2/TiO2/Graphene Nanohybrid for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Catalysts 2023, 13, 1152. https://doi.org/10.3390/catal13081152
Tien T-M, Chen EL. A Novel MoS2/TiO2/Graphene Nanohybrid for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Catalysts. 2023; 13(8):1152. https://doi.org/10.3390/catal13081152
Chicago/Turabian StyleTien, Tsung-Mo, and Edward L. Chen. 2023. "A Novel MoS2/TiO2/Graphene Nanohybrid for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation" Catalysts 13, no. 8: 1152. https://doi.org/10.3390/catal13081152
APA StyleTien, T.-M., & Chen, E. L. (2023). A Novel MoS2/TiO2/Graphene Nanohybrid for Enhanced Photocatalytic Hydrogen Evolution under Visible Light Irradiation. Catalysts, 13(8), 1152. https://doi.org/10.3390/catal13081152