Iron(III) Sulfate-Mediated Synthesis of 2,5-Furandicarboxylic Acid Dimethyl Ester from Galactaric Acid
Abstract
:1. Introduction
2. Results
2.1. Screening for an Alternative Reaction Promoter
2.2. Multi-Gram Scale Reaction
3. Discussion
3.1. Iron(III) Sulfate Recycling
3.2. XRPD Analysis
3.3. Iron(III) Sulfate Leching
4. Materials and Methods
4.1. General
4.2. Synthesis of 2,5-Furandicarboxylic Acid Dimethyl Ester (FDME)
4.3. XRPD Analyses
4.4. Iron(III) Sulfate Leching Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kühlborn, J.; Groß, J.; Opatz, T. Making Natural Products from Renewable Feedstocks: Back to the Roots? Nat. Prod. Rep. 2020, 37, 380–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funk, M.; Ash, C. A Cleaner, Greener Future for Chemicals. Science 2020, 367, 378–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takkellapati, S.; Li, T.; Gonzalez, M.A. An Overview of Biorefinery-Derived Platform Chemicals from a Cellulose and Hemicellulose Biorefinery. Clean Technol. Environ. Policy 2018, 20, 1615–1630. [Google Scholar] [CrossRef] [PubMed]
- Trapasso, G.; Mazzi, G.; Chícharo, B.; Annatelli, M.; Dalla Torre, D.; Aricò, F. Multigram Synthesis of Pure HMF and BHMF. Org. Process Res. Dev. 2022, 26, 2830–2838. [Google Scholar] [CrossRef] [PubMed]
- Annatelli, M.; Trapasso, G.; Torre, D.D.; Pietrobon, L.; Redolfi-Bristol, D.; Aricò, F. A Green Synthesis of 5,5′-[Oxybis(Methylene)]Bis-2-Furfural: From By-Product to Attractive Bio-Based Platform Chemical. Adv. Sustain. Syst. 2022, 6, 2200297. [Google Scholar] [CrossRef]
- Trapasso, G.; Annatelli, M.; Dalla Torre, D.; Aricò, F. Synthesis of 2,5-Furandicarboxylic Acid Dimethyl Ester from Galactaric Acid via Dimethyl Carbonate Chemistry. Green Chem. 2022, 24, 2766–2771. [Google Scholar] [CrossRef]
- Kucherov, F.A.; Romashov, L.V.; Galkin, K.I.; Ananikov, V.P. Chemical Transformations of Biomass-Derived C6-Furanic Platform Chemicals for Sustainable Energy Research, Materials Science, and Synthetic Building Blocks. ACS Sustain. Chem. Eng. 2018, 6, 8064–8092. [Google Scholar] [CrossRef]
- Sathicq, A.G.; Annatelli, M.; Abdullah, I.; Romanelli, G.; Aricò, F. Alkyl Carbonate Derivatives of Furanics: A Family of Bio-Based Stable Compounds. Sustain. Chem. Pharm. 2021, 19, 100352. [Google Scholar] [CrossRef]
- Karlinskii, B.Y.; Ananikov, V.P. Catalytic C−H Functionalization of Unreactive Furan Cores in Bio-Derived Platform Chemicals. ChemSusChem 2021, 14, 558–568. [Google Scholar] [CrossRef]
- Musolino, M.; Andraos, J.; Aricò, F. An Easy Scalable Approach to HMF Employing DMC as Reaction Media: Reaction Optimization and Comparative Environmental Assessment. ChemistrySelect 2018, 3, 2359–2365. [Google Scholar] [CrossRef]
- Musolino, M.; Ginés-Molina, M.J.; Moreno-Tost, R.; Aricò, F. Purolite-Catalyzed Etherification of 2,5-Bis(Hydroxymethyl)Furan: A Systematic Study. ACS Sustain. Chem. Eng. 2019, 7, 10221–10226. [Google Scholar] [CrossRef]
- Dick, G.R.; Frankhouser, A.D.; Banerjee, A.; Kanan, M.W. A Scalable Carboxylation Route to Furan-2,5-Dicarboxylic Acid. Green Chem. 2017, 19, 2966–2972. [Google Scholar] [CrossRef]
- Stadler, B.M.; Wulf, C.; Werner, T.; Tin, S.; de Vries, J.G. Catalytic Approaches to Monomers for Polymers Based on Renewables. ACS Catal. 2019, 9, 8012–8067. [Google Scholar] [CrossRef] [Green Version]
- Sajid, M.; Zhao, X.; Liu, D. Production of 2,5-Furandicarboxylic Acid (FDCA) from 5-Hydroxymethylfurfural (HMF): Recent Progress Focusing on the Chemical-Catalytic Routes. Green Chem. 2018, 20, 5427–5453. [Google Scholar] [CrossRef]
- Sakuta, R.; Nakamura, N. Production of Hexaric Acids from Biomass. Int. J. Mol. Sci. 2019, 20, 3660. [Google Scholar] [CrossRef] [Green Version]
- Dedes, G.; Karnaouri, A.; Topakas, E. Novel Routes in Transformation of Lignocellulosic Biomass to Furan Platform Chemicals: From Pretreatment to Enzyme Catalysis. Catalysts 2020, 10, 743. [Google Scholar] [CrossRef]
- Zhu, J.; Cai, J.; Xie, W.; Chen, P.-H.; Gazzano, M.; Scandola, M.; Gross, R.A. Poly(Butylene 2,5-Furan Dicarboxylate), a Biobased Alternative to PBT: Synthesis, Physical Properties, and Crystal Structure. Macromolecules 2013, 46, 796–804. [Google Scholar] [CrossRef]
- Eerhart, A.J.J.E.; Faaij, A.P.C.; Patel, M.K. Replacing Fossil Based PET with Biobased PEF; Process Analysis, Energy and GHG Balance. Energy Environ. Sci. 2012, 5, 6407. [Google Scholar] [CrossRef]
- Burgess, S.K.; Leisen, J.E.; Kraftschik, B.E.; Mubarak, C.R.; Kriegel, R.M.; Koros, W.J. Chain Mobility, Thermal, and Mechanical Properties of Poly(Ethylene Furanoate) Compared to Poly(Ethylene Terephthalate). Macromolecules 2014, 47, 1383–1391. [Google Scholar] [CrossRef]
- Burgess, S.K.; Kriegel, R.M.; Koros, W.J. Carbon Dioxide Sorption and Transport in Amorphous Poly(Ethylene Furanoate). Macromolecules 2015, 48, 2184–2193. [Google Scholar] [CrossRef]
- Chen, G.; van Straalen, N.M.; Roelofs, D. The Ecotoxicogenomic Assessment of Soil Toxicity Associated with the Production Chain of 2,5-Furandicarboxylic Acid (FDCA), a Candidate Bio-Based Green Chemical Building Block. Green Chem. 2016, 18, 4420–4431. [Google Scholar] [CrossRef]
- Joshi, A.S.; Alipourasiabi, N.; Kim, Y.-W.; Coleman, M.R.; Lawrence, J.G. Role of Enhanced Solubility in Esterification of 2,5-Furandicarboxylic Acid with Ethylene Glycol at Reduced Temperatures: Energy Efficient Synthesis of Poly(Ethylene 2,5-Furandicarboxylate). React. Chem. Eng. 2018, 3, 447–453. [Google Scholar] [CrossRef]
- De Jong, E.; Visser, H. (Roy) A.; Dias, A.S.; Harvey, C.; Gruter, G.-J.M. The Road to Bring FDCA and PEF to the Market. Polymers 2022, 14, 943. [Google Scholar] [CrossRef] [PubMed]
- De Jong, E.; Dam, M.A.; Sipos, L.; Gruter, G.J.M. Furandicarboxylic acid (FDCA), a versatile building block for a very interesting class of polyesters. In Biobased Monomers, Polymers and Materials; Smith, P.B., Gross, R., Eds.; ACS Symposium Series; ACS Publications: Washington, DC, USA, 2012; Volume 1105, pp. 1–13. [Google Scholar] [CrossRef]
- DuPont, ADM Eye Biobased Polyester. CEN Glob. Enterp. 2016, 94, 6. [CrossRef]
- Gorbanev, Y.Y.; Kegnæs, S.; Riisager, A. Selective Aerobic Oxidation of 5-Hydroxymethylfurfural in Water Over Solid Ruthenium Hydroxide Catalysts with Magnesium-Based Supports. Catal. Lett. 2011, 141, 1752–1760. [Google Scholar] [CrossRef]
- Gao, T.; Yin, Y.; Fang, W.; Cao, Q. Highly Dispersed Ruthenium Nanoparticles on Hydroxyapatite as Selective and Reusable Catalyst for Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid under Base-Free Conditions. Mol. Catal. 2018, 450, 55–64. [Google Scholar] [CrossRef]
- Siankevich, S.; Mozzettini, S.; Bobbink, F.; Ding, S.; Fei, Z.; Yan, N.; Dyson, P.J. Influence of the Anion on the Oxidation of 5-Hydroxymethylfurfural by Using Ionic-Polymer-Supported Platinum Nanoparticle Catalysts. ChemPlusChem 2018, 83, 19–23. [Google Scholar] [CrossRef]
- Ait Rass, H.; Essayem, N.; Besson, M. Selective Aerobic Oxidation of 5-HMF into 2,5-Furandicarboxylic Acid with Pt Catalysts Supported on TiO2-and ZrO2-Based Supports. ChemSusChem 2015, 8, 1206–1217. [Google Scholar] [CrossRef]
- Bonincontro, D.; Lolli, A.; Storione, A.; Gasparotto, A.; Berti, B.; Zacchini, S.; Dimitratos, N.; Albonetti, S. Pt and Pt/Sn Carbonyl Clusters as Precursors for the Synthesis of Supported Metal Catalysts for the Base-Free Oxidation of HMF. Appl. Catal. A Gen. 2019, 588, 117279. [Google Scholar] [CrossRef]
- Siyo, B.; Schneider, M.; Radnik, J.; Pohl, M.-M.; Langer, P.; Steinfeldt, N. Influence of Support on the Aerobic Oxidation of HMF into FDCA over Preformed Pd Nanoparticle Based Materials. Appl. Catal. A Gen. 2014, 478, 107–116. [Google Scholar] [CrossRef]
- Wan, X.; Zhou, C.; Chen, J.; Deng, W.; Zhang, Q.; Yang, Y.; Wang, Y. Base-Free Aerobic Oxidation of 5-Hydroxymethyl-Furfural to 2,5-Furandicarboxylic Acid in Water Catalyzed by Functionalized Carbon Nanotube-Supported Au–Pd Alloy Nanoparticles. ACS Catal. 2014, 4, 2175–2185. [Google Scholar] [CrossRef]
- Buonerba, A.; Impemba, S.; Litta, A.D.; Capacchione, C.; Milione, S.; Grassi, A. Aerobic Oxidation and Oxidative Esterification of 5-Hydroxymethylfurfural by Gold Nanoparticles Supported on Nanoporous Polymer Host Matrix. ChemSusChem 2018, 11, 3139–3149. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.; Gupta, D.; Abu-Omar, M.M.; Modak, A.; Bhaumik, A. Porphyrin-Based Porous Organic Polymer-Supported Iron(III) Catalyst for Efficient Aerobic Oxidation of 5-Hydroxymethyl-Furfural into 2,5-Furandicarboxylic Acid. J. Catal. 2013, 299, 316–320. [Google Scholar] [CrossRef]
- Tong, X.; Yu, L.; Chen, H.; Zhuang, X.; Liao, S.; Cui, H. Highly Efficient and Selective Oxidation of 5-Hydroxymethylfurfural by Molecular Oxygen in the Presence of Cu-MnO2 Catalyst. Catal. Commun. 2017, 90, 91–94. [Google Scholar] [CrossRef]
- Lie, W.H.; Deng, C.; Yang, Y.; Tsounis, C.; Wu, K.-H.; Hioe, M.V.C.; Bedford, N.M.; Wang, D.-W. High Yield Electrooxidation of 5-Hydroxymethyl Furfural Catalysed by Unsaturated Metal Sites in CoFe Prussian Blue Analogue Films. Green Chem. 2021, 23, 4333–4337. [Google Scholar] [CrossRef]
- Wei, T.; Liu, W.; Zhang, S.; Liu, Q.; Luo, J.; Liu, X. A Dual-Functional Bi-Doped Co3O4 Nanosheet Array towards High Efficiency 5-Hydroxymethylfurfural Oxidation and Hydrogen Production. Chem. Commun. 2023, 59, 442–445. [Google Scholar] [CrossRef]
- Chai, X.; Jiang, K.; Wang, J.; Ren, Z.; Liu, X.; Chen, L.; Zhuang, X.; Wang, T. Efficient Catalytic Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over Ruthenium Cluster-Embedded Ni(OH)2 Catalyst. ChemSusChem 2022, 15, e202200863. [Google Scholar] [CrossRef]
- Koopman, F.; Wierckx, N.; de Winde, J.H.; Ruijssenaars, H.J. Efficient Whole-Cell Biotransformation of 5-(Hydroxymethyl)Furfural into FDCA, 2,5-Furandicarboxylic Acid. Bioresour. Technol. 2010, 101, 6291–6296. [Google Scholar] [CrossRef] [PubMed]
- Hossain, G.S.; Yuan, H.; Li, J.; Shin, H.; Wang, M.; Du, G.; Chen, J.; Liu, L. Metabolic Engineering of Raoultella Ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural. Appl. Environ. Microbiol. 2017, 83, e02312–e02316. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.; Kuo, Y.; Liu, Y.; Tsai, S. Green Conversion of 5-hydroxymethylfurfural to Furan-2,5-dicarboxylic Acid by Heterogeneous Expression of 5-hydroxymethylfurfural Oxidase in Pseudomonas Putida S12. Microb. Biotechnol. 2020, 13, 1094–1102. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, C.; Konnerth, J.; Sailer-Kronlachner, W.; Solt, P.; Rosenau, T.; Herwijnen, H.W.G. Current Situation of the Challenging Scale-Up Development of Hydroxymethylfurfural Production. ChemSusChem 2020, 13, 3544–3564. [Google Scholar] [CrossRef] [PubMed]
- Senatore, A.; Dalena, F.; Sola, A.; Marino, A.; Valletta, V.; Basile, A. First-Generation Feedstock for Bioenergy Production. In Second and Third Generation of Feedstocks; Elsevier: Amsterdam, The Netherlands, 2019; pp. 35–57. [Google Scholar]
- Kim, M.; Su, Y.; Fukuoka, A.; Hensen, E.J.M.; Nakajima, K. Aerobic Oxidation of 5-(Hydroxymethyl)Furfural Cyclic Acetal Enables Selective Furan-2,5-dicarboxylic Acid Formation with CeO2-Supported Gold Catalyst. Angew. Chem. Int. Ed. 2018, 57, 8235–8239. [Google Scholar] [CrossRef] [PubMed]
- Van Strien, N.; Rautiainen, S.; Asikainen, M.; Thomas, D.A.; Linnekoski, J.; Niemelä, K.; Harlin, A. A Unique Pathway to Platform Chemicals: Aldaric Acids as Stable Intermediates for the Synthesis of Furandicarboxylic Acid Esters. Green Chem. 2020, 22, 8271–8277. [Google Scholar] [CrossRef]
- Kiely, D.E.; Chen, L.; Lin, T.H. Hydroxylated Nylons Based on Unprotected Esterified D-Glucaric Acid by Simple Condensation Reactions. J. Am. Chem. Soc. 1994, 116, 571–578. [Google Scholar] [CrossRef]
- Kiely, D.E.; Chen, L.; Lin, T.H. Synthetic Polyhydroxypolyamides from Galactaric, Xylaric, D-Glucaric, and D-Mannaric Acids and Alkylenediamine Monomers—Some Comparisons. J. Polym. Sci. A Polym. Chem. 2000, 38, 594–603. [Google Scholar] [CrossRef]
- Muñoz-Guerra, S. Carbohydrate-Based Polyamides and Polyesters: An Overview Illustrated with Two Selected Examples. High Perform. Polym. 2012, 24, 9–23. [Google Scholar] [CrossRef] [Green Version]
- Lavilla, C.; Alla, A.; de Ilarduya, A.M.; Benito, E.; García-Martín, M.G.; Galbis, J.A.; Muñoz-Guerra, S. Carbohydrate-Based Copolyesters Made from Bicyclic Acetalized Galactaric Acid. J. Polym. Sci. A Polym. Chem. 2012, 50, 1591–1604. [Google Scholar] [CrossRef]
- Lavilla, C.; Alla, A.; Martínez de Ilarduya, A.; Benito, E.; García-Martín, M.G.; Galbis, J.A.; Muñoz-Guerra, S. Carbohydrate-Based Polyesters Made from Bicyclic Acetalized Galactaric Acid. Biomacromolecules 2011, 12, 2642–2652. [Google Scholar] [CrossRef] [Green Version]
- Van der Klis, F.; Frissen, A.E.; van Haveren, J.; van Es, D.S. Waste Not, Want Not: Mild and Selective Catalytic Oxidation of Uronic Acids. ChemSusChem 2013, 6, 1640–1645. [Google Scholar] [CrossRef]
- Climent, M.J.; Corma, A.; Iborra, S. Converting Carbohydrates to Bulk Chemicals and Fine Chemicals over Heterogeneous Catalysts. Green Chem. 2011, 13, 520. [Google Scholar] [CrossRef]
- Mudgil, D. The Interaction Between Insoluble and Soluble Fiber. In Dietary Fiber for the Prevention of Cardiovascular Disease; Elsevier: Amsterdam, The Netherlands, 2017; pp. 35–59. [Google Scholar]
- Fauvarque, J.F.; Guerin, C.; Petit, S.; De Regis, B. The Prepn of Galactaric Acid from Galacturonic Acid. French Patent 2699937A1, 29 December 1992. [Google Scholar]
- Phelps, I.K.; Hale, W.J. on Dehydromucic Acid and Certain of Its Derivatives. Am. Chem. J. 1901, 25, 445–463. [Google Scholar]
- Cope, A.; Keller, R. Notes—Benzofuran from Saccharic Acid. J. Org. Chem. 1956, 21, 141. [Google Scholar] [CrossRef]
- Gonis, G.; Amstutz, E.D. The Preparation of Furan-2,5-Dicarboxylic Acid1. J. Org. Chem. 1962, 27, 2946–2947. [Google Scholar] [CrossRef]
- Miller, D.J.; Peereboom, L.; Wegener, E.; Gattinger, M. Formation of 2,5-Furan Dicarboxylic Acid from Aldaric Acids. U.S. Patent 9,994,539, 11 July 2017. [Google Scholar]
- Fittig, R.; Heinzelmann, H. Production of 2, 5-Furandicarboxylic Acid by the Reaction of Fuming Hydrobromic Acid with Mucic Acid under Pressure. Chem. Ber. 1876, 9, 1198. [Google Scholar]
- Lewkowski, J. Synthesis, Chemistry and Applications of 5-Hydroxymethylfurfural and Its Derivatives. Arkivoc 2001, 1, 17–54. [Google Scholar] [CrossRef] [Green Version]
- Thiyagarajan, S.; Pukin, A.; van Haveren, J.; Lutz, M.; van Es, D.S. Concurrent Formation of Furan-2,5- and Furan-2,4-Dicarboxylic Acid: Unexpected Aspects of the Henkel Reaction. RSC Adv. 2013, 3, 15678–15686. [Google Scholar] [CrossRef] [Green Version]
- Taguchi, Y.; Oishi, A.; Iida, H. One-Step Synthesis of Dibutyl Furandicarboxylates from Galactaric Acid. Chem. Lett. 2008, 37, 50–51. [Google Scholar] [CrossRef]
- Zhao, D.; Delbecq, F.; Len, C. One-Pot FDCA Diester Synthesis from Mucic Acid and Their Solvent-Free Regioselective Polytransesterification for Production of Glycerol-Based Furanic Polyesters. Molecules 2019, 24, 1030. [Google Scholar] [CrossRef] [Green Version]
- Tundo, P.; Aricò, F.; Rosamilia, A.E.; Memoli, S. Synthesis of Dialkyl Ethers by Decarboxylation of Dialkyl Carbonates. Green Chem. 2008, 10, 1182. [Google Scholar] [CrossRef]
- Tundo, P.; Musolino, M.; Aricò, F. The Reactions of Dimethyl Carbonate and Its Derivatives. Green Chem. 2018, 20, 28–85. [Google Scholar] [CrossRef]
- Vrancken, E.; Campagne, J.-M. Organic Transformations Promoted by Lewis Acid Iron Catalysts. In PATAI’S Chemistry of Functional Groups; John Wiley & Sons, Ltd.: Chichester, UK, 2013. [Google Scholar]
- Bauer, I.; Knölker, H.-J. Iron Catalysis in Organic Synthesis. Chem. Rev. 2015, 115, 3170–3387. [Google Scholar] [CrossRef]
- Martins, F.; Rodrigues, F.; Silva, M. Fe2(SO4)3-Catalyzed Levulinic Acid Esterification: Production of Fuel Bioadditives. Energies 2018, 11, 1263. [Google Scholar] [CrossRef] [Green Version]
- Esposito, R.; Raucci, U.; Cucciolito, M.E.; Di Guida, R.; Scamardella, C.; Rega, N.; Ruffo, F. Iron(III) Complexes for Highly Efficient and Sustainable Ketalization of Glycerol: A Combined Experimental and Theoretical Study. ACS Omega 2019, 4, 688–698. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Zhang, G.; Pan, F. Fe2(SO4)3·xH2O-Catalyzed per-O-Acetylation of Sugars Compatible with Acid-Labile Protecting Groups Adopted in Carbohydrate Chemistry. Tetrahedron 2008, 64, 2572–2575. [Google Scholar] [CrossRef]
- Cao, H.; Zhan, H.; Wu, J.; Zhong, H.; Lin, Y.; Zhang, H. An Efficient and General Iron-Catalyzed One-Pot Synthesis of Furans via α-Hydroxy Ketones and Activated Alkynes. Eur. J. Org. Chem. 2012, 2012, 2318–2322. [Google Scholar] [CrossRef]
- Mukherjee, A.; Portillo-Perez, G.; Dumont, M.-J. Synthesis of Hydroxymethylfurfural and Furfural from Hardwood and Softwood Pulp Using Ferric Sulphate as Catalyst. Front. Chem. Sci. Eng. 2019, 13, 531–542. [Google Scholar] [CrossRef]
# | Acid/Base | Pressure (Bar) b | Selectivity c (%) | Isolated Yield d (%) | ||
---|---|---|---|---|---|---|
1 | MgSO4 e | 13 | 91 | 9 | 0 | n.d. |
2 | MgO | 12 | 72 | 28 | 0 | 4 |
3 | K2CO3 | 20 | 83 | 17 | 0 | 3 |
4 | KW2000 e,f | 15 | 100 | 0 | 0 | n.d. |
5 | KW500 e,f | 12 | 100 | 0 | 0 | n.d. |
6 | Ce2O e | 13 | 100 | 0 | 0 | n.d. |
7 | Al2O3[H+] e | 15 | 69 | 31 | 0 | 2 |
8 | Fe2(SO4)3 | 25 | 0 | 100 | 0 | 54 |
9 | C6H5FeO7·H2O g | 15 | 14 | 86 | 0 | n.d. |
10 | FeCl3 | 16 | 74 | 26 | 0 | <5 |
11 | NH4Fe(SO4)2 | 13 | 0 | 0 | 0 | n.d. |
12 | MSA | 18 | 15 | 55 | 30 | 15 |
13 | p-TSA | 54 | 0 | 100 | 0 | 3 |
# | Fe2(SO4)3 (% mol.) | Temperature (°C) | Pressure (Bar) b | Yield c (%) |
---|---|---|---|---|
1 | 10 | 200 | 13 | 11 |
2 | 25 | 200 | 14 | 15 |
3 | 50 | 200 | 25 | 54 |
4 | 100 | 200 | 36 | 53 |
5 | 50 | 180 | 20 | 16 |
6 | 50 | 200 | 25 | 54 |
7 | 50 | 220 | 45 | 24 |
# | Galactaric Acid (g) | DMC (mL) | Temperature (°C) | Time (h) | Pressure (Bar) b | Yield c (%) |
---|---|---|---|---|---|---|
1 | 2 | 35 | 200 | 8 | 80 | 50 |
2 | 3 d | 35 | 200 | 2 | >100 | n.d. |
3 | 3 | 35 | 180 | 8 | 75 | 53 |
4 | 4 | 35 | 180 | 8 | 75 | 33 |
5 | 4 | 50 | 180 | 8 | 75 | 58 |
6 | 4 c | 70 | 180 | 6 | 100 | 55 |
7 | 5 c | 50 | 180 | 3 | 100 | 45 |
Sample | Iron Content (µg/g) |
---|---|
Raw material | 117.09 |
Recrystallized FDME | 15.35 |
Column-purified FDME | 1.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trapasso, G.; Chícharo, B.; Gherardi, T.; Redolfi-Bristol, D.; Aricò, F. Iron(III) Sulfate-Mediated Synthesis of 2,5-Furandicarboxylic Acid Dimethyl Ester from Galactaric Acid. Catalysts 2023, 13, 1114. https://doi.org/10.3390/catal13071114
Trapasso G, Chícharo B, Gherardi T, Redolfi-Bristol D, Aricò F. Iron(III) Sulfate-Mediated Synthesis of 2,5-Furandicarboxylic Acid Dimethyl Ester from Galactaric Acid. Catalysts. 2023; 13(7):1114. https://doi.org/10.3390/catal13071114
Chicago/Turabian StyleTrapasso, Giacomo, Beatriz Chícharo, Thomas Gherardi, Davide Redolfi-Bristol, and Fabio Aricò. 2023. "Iron(III) Sulfate-Mediated Synthesis of 2,5-Furandicarboxylic Acid Dimethyl Ester from Galactaric Acid" Catalysts 13, no. 7: 1114. https://doi.org/10.3390/catal13071114
APA StyleTrapasso, G., Chícharo, B., Gherardi, T., Redolfi-Bristol, D., & Aricò, F. (2023). Iron(III) Sulfate-Mediated Synthesis of 2,5-Furandicarboxylic Acid Dimethyl Ester from Galactaric Acid. Catalysts, 13(7), 1114. https://doi.org/10.3390/catal13071114