A Highly Efficient Composite Catalyst (Au/Ta3N5)/CdS for Photocatalytic Hydrogen Production
Abstract
1. Introduction
2. Results
2.1. Catalysts Structure
2.2. Photocatalytic H2 Evolution
2.3. Capacitance of Catalysts
2.4. Photoelectrochemical Performance Evaluation
2.5. PL Spectra and Surface Photovoltage Spectra
2.6. XPS Spectra of (Au/Ta3N5)/CdS
2.7. The Photocatalytic H2 Evolution Structure and Mechanism
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Preparation of Photocatalysts
3.2.1. Synthesis of Ta3N5
3.2.2. Synthesis of Rod-Shaped CdS
3.2.3. Synthesis of Ta3N5/CdS
3.3. Characterization
3.4. Electrochemical Measurements
3.5. Photocatalytic Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Domen, K. Particulate photocatalysts for light driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985. [Google Scholar]
- Yan, H.; Yang, J.; Ma, G.; Wu, G.; Zong, X.; Lei, Z.; Shi, J.; Li, C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J. Catal. 2009, 266, 165–168. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, H.; Zhang, H.; Tu, W. One-pot hydrothermal synthesis of CdS/NiS photocatalysts for high H2 evolution from water under visible light. Int. J. Hydrogen Energy 2017, 42, 11199–11205. [Google Scholar] [CrossRef]
- Lee, G.; Hou, Y.; Chen, C.; Tsay, C.Y.; Chang, Y.C.; Chen, J.H.; Horng, T.L.; Anandan, S.; Wu, J.J. Enhanced performance for photocatalytic hydrogen evolution using MoS2/graphene hybrids. Int. J. Hydrogen Energy 2021, 46, 5938–5948. [Google Scholar]
- Ma, B.; Wang, X.; Lin, K.; Li, J.; Liu, Y.; Zhan, W. Liu. A novel ultraefficient non-noble metal composite cocatalyst Mo2N/Mo2C/graphene for enhanced photocatalytic H2 evolution. Int. J. Hydrogen Energy 2017, 42, 18977–18984. [Google Scholar] [CrossRef]
- Gong, S.; Fan, J.; Cecen, V.; Huang, C.; Min, Y.; Xu, Q.; Li, H. Noble-metal and cocatalyst free W2N/C/TiO photocatalysts for efficient photocatalytic overall water splitting in visible and near-infrared light regions. Chem. Eng. J. 2020, 405, 126913. [Google Scholar] [CrossRef]
- Ma, B.; Xu, H.; Lin, K.; Li, J.; Zhan, H.; Liu, W.; Li, C. Mo2C as Non-Noble Metal Co-Catalyst in Mo2C/CdS Composite for Enhanced Photocatalytic H2 Evolution under Visible Light Irradiation. ChemSusChem 2016, 9, 820. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Ng, K.; Zhang, Y.; Li, Z.; Xu, S.; Huang, J.; Lai, Y. One-pot loading of cadmium sulfide onto tungsten carbide for efficient photocatalytic H2 evolution under visible light irradiation. Chem. Eng. J. 2022, 434, 134689. [Google Scholar]
- Ma, B.; Zhang, R.; Lin, K.; Liu, H.; Wang, X.; Liu, H. Zhan. Large-scale synthesis of noble-metal-free phosphide/CdS composite photocatalysts for enhanced H2 evolution under visible light irradiation. Chin. J. Catal. 2018, 39, 527–533. [Google Scholar] [CrossRef]
- Cheng, C.; Zong, S.; Shi, J. Facile preparation of nanosized MoP as cocatalyst coupled with g-C3N4 by surface bonding state for enhanced photocatalytic hydrogen production. Appl. Catal. B Environ. 2020, 265, 118620. [Google Scholar] [CrossRef]
- Dang, Y.; Feng, L.; Hu, W.; Wang, W.; Zhang, Q.; Ma, B. A 3D flower-like WC with large capacitance as efficient co-catalyst in photocatalytic H2 evolution. Int. J. Hydrogen Energy 2021, 46, 39251–39261. [Google Scholar] [CrossRef]
- Luo, L.; Li, D.; Dang, Y.; Wang, W.; Yu, G.; Li, J.; Ma, B. Capacitance Catalysis: Positive and Negative Effects of Capacitance of Mo2C in Photocatalytic H2 Evolution. ACS Sustain. Chem. Eng. 2022, 10, 5949–5957. [Google Scholar] [CrossRef]
- Zhang, J.; Dang, Y.; Wang, W. Efficiently improving the photocatalytic hydrogen evolution of g-C3N4 by (Pt/MoP) composite co-catalyst with low amount of Pt. Int. J. Hydrogen Energy 2022, 47, 2338–2346. [Google Scholar] [CrossRef]
- Li, S.; Chen, J.; Hu, S.; Wang, H.; Jiang, W.; Chen, X. Facile construction of novel Bi2WO6/Ta3N5 Z-scheme heterojunction nanofibers for efficient degradation of harmful pharmaceutical pollutants. Chem. Eng. J. 2020, 402, 1385–8947. [Google Scholar] [CrossRef]
- Chen, S.; Shen, S.; Liu, G.; Qi, Y.; Zhang, Y.; Li, C. Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation. Angew. Chem. Int. Ed. 2015, 54, 1433–7851. [Google Scholar]
- Li, S.; Shen, X.; Liu, J.; Zhang, L. Synthesis of Ta3N5/Bi2MoO6 core-shell fiber-shaped heterojunctions as efficient and easily recyclable photocatalysts. Chem. Eng. J. 2017, 4, 2051–8153. [Google Scholar]
- Pelicano, C.; Saruyama, M.; Takahata, R.; Sato, R.; Kitahama, Y.; Matsuzaki, H.; Yamada, T.; Hisatomi, T.; Domen, K.; Teranishi, T. Bimetallic Synergy in Ultrafine Cocatalyst Alloy Nanoparticles for Efficient Photocatalytic Water Splitting. Adv. Funct. Mater. 2022, 32, 2202987. [Google Scholar] [CrossRef]
- Chugenji, T.; Pan, Z.; Katayama, K. Effect of CoOx and Rh Cocatalysts on Local Charge Carrier Dynamics of BiVO4 Particles by Pattern-Illumination Time-Resolved Phase Microscopy. J. Phys. Chem. C 2022, 126, 19319–19326. [Google Scholar] [CrossRef]
- Paramasivam, I.; Macak, J.; Schmuki, P. Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles. Electrochem. Commun. 2008, 10, 71–75. [Google Scholar] [CrossRef]
- Hara, M.; Hitoki, G.; Takata, T.; Kondo, J.; Kobayashi, H.; Domen, K. TaON and Ta3N5 as new visible light driven photocatalysts. Catal. Today 2003, 78, 555–560. [Google Scholar] [CrossRef]
- Li, R.; Ou, X.; Zhang, L.; Qi, Z.; Wu, X.; Lu, C.; Fan, J.; Lv, K. Photocatalytic oxidation of NO on reduction type semiconductor photocatalysts: Effect of metallic Bi on CdS nanorods. Chem. Commun. 2021, 57, 10067–10070. [Google Scholar] [CrossRef]
- Li, S.; Cai, M.; Wang, C.; Liu, Y. Ta3N5/CdS Core–Shell S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Removal of Antibiotic Tetracycline and Cr(VI): Performance and Mechanism Insights. Adv. Fiber Mater. 2023, 5, 994–1007. [Google Scholar] [CrossRef]
- Elijah, T.; Florian, L.; Michael, G.; Scott, C.W. Influence of Plasmonic Au Nanoparticles on the Photoactivity of Fe2O3 Electrodes for Water Splitting. Nano Lett. 2011, 11, 35–43. [Google Scholar]
- Fu, J.; Fan, Z.; Nakabayashi, M.; Ju, H.; Pastukhova, N.; Xiao, Y.; Feng, C.; Shibata, N.; Domen, K.; Li, Y. Interface engineering of Ta3N5 thin film photoanode for highly efficient photoelectrochemical water splitting. Nat. Commun. 2022, 13, 729. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, S.; Yang, F.; Zhang, Y.; Yan, L.; Li, K.; Guo, H.; Yan, J.; Lin, J. Construction of Au/g-C3N4/ZnIn2S4 plasma photocatalyst heterojunction composite with 3D hierarchical microarchitecture for visible-lightdriven hydrogen production. Int. J. Hydrogen Energy 2022, 47, 2900–2913. [Google Scholar] [CrossRef]
- Xiao, Y.; Feng, C.; Fu, F.J.; Wang, F.; Li, C.; Kunzelmann, V.F.; Jiang, C.-M.; Nakabayashi, M.; Shibata, N.; Sharp, I.D.; et al. Band structure engineering and defect control of Ta3N5 for efficient photoelectrochemical water oxidation. Nat. Catal. 2020, 3, 932–940. [Google Scholar] [CrossRef]
- Dang, Y.; Luo, L.; Wang, W.; Hu, W.; Wen, X.; Lin, K.; Ma, B. Improving the Photocatalytic H2 Evolution of CdS by Adjusting the (002) Crystal Facet. J. Phys. Chem. C 2022, 126, 1346–1355. [Google Scholar] [CrossRef]
- Qi, Y.; Chen, S.; Li, M.; Ding, Q.; Li, Z.; Cui, J.; Li, C. Achievement of visible-light-driven Z-scheme overall water splitting using barium-modified Ta3N5 as a H2 evolving photocatalyst. Chem. Sci. 2017, 8, 437–443. [Google Scholar] [CrossRef]
- Liang, Y.; Lung, T. Growth of Hydrothermally Derived CdS-Based Nanostructures with Various Crystal Features and Photoactivated Properties. Nanoscale Res. Lett. 2016, 11, 264. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Wen, X.; Hu, W.; Luo, L.; Wang, W.; Lin, K.; Zhan, H.; Ma, B. A Highly Efficient Composite Catalyst (Au/Ta3N5)/CdS for Photocatalytic Hydrogen Production. Catalysts 2023, 13, 1103. https://doi.org/10.3390/catal13071103
Tian J, Wen X, Hu W, Luo L, Wang W, Lin K, Zhan H, Ma B. A Highly Efficient Composite Catalyst (Au/Ta3N5)/CdS for Photocatalytic Hydrogen Production. Catalysts. 2023; 13(7):1103. https://doi.org/10.3390/catal13071103
Chicago/Turabian StyleTian, Jinfeng, Xing Wen, Wenfeng Hu, Li Luo, Wei Wang, Keying Lin, Haijuan Zhan, and Baojun Ma. 2023. "A Highly Efficient Composite Catalyst (Au/Ta3N5)/CdS for Photocatalytic Hydrogen Production" Catalysts 13, no. 7: 1103. https://doi.org/10.3390/catal13071103
APA StyleTian, J., Wen, X., Hu, W., Luo, L., Wang, W., Lin, K., Zhan, H., & Ma, B. (2023). A Highly Efficient Composite Catalyst (Au/Ta3N5)/CdS for Photocatalytic Hydrogen Production. Catalysts, 13(7), 1103. https://doi.org/10.3390/catal13071103