A Highly Efficient Composite Catalyst (Au/Ta3N5)/CdS for Photocatalytic Hydrogen Production
Abstract
:1. Introduction
2. Results
2.1. Catalysts Structure
2.2. Photocatalytic H2 Evolution
2.3. Capacitance of Catalysts
2.4. Photoelectrochemical Performance Evaluation
2.5. PL Spectra and Surface Photovoltage Spectra
2.6. XPS Spectra of (Au/Ta3N5)/CdS
2.7. The Photocatalytic H2 Evolution Structure and Mechanism
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Preparation of Photocatalysts
3.2.1. Synthesis of Ta3N5
3.2.2. Synthesis of Rod-Shaped CdS
3.2.3. Synthesis of Ta3N5/CdS
3.3. Characterization
3.4. Electrochemical Measurements
3.5. Photocatalytic Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Domen, K. Particulate photocatalysts for light driven water splitting: Mechanisms, challenges, and design strategies. Chem. Rev. 2020, 120, 919–985. [Google Scholar]
- Yan, H.; Yang, J.; Ma, G.; Wu, G.; Zong, X.; Lei, Z.; Shi, J.; Li, C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J. Catal. 2009, 266, 165–168. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, H.; Zhang, H.; Tu, W. One-pot hydrothermal synthesis of CdS/NiS photocatalysts for high H2 evolution from water under visible light. Int. J. Hydrogen Energy 2017, 42, 11199–11205. [Google Scholar] [CrossRef]
- Lee, G.; Hou, Y.; Chen, C.; Tsay, C.Y.; Chang, Y.C.; Chen, J.H.; Horng, T.L.; Anandan, S.; Wu, J.J. Enhanced performance for photocatalytic hydrogen evolution using MoS2/graphene hybrids. Int. J. Hydrogen Energy 2021, 46, 5938–5948. [Google Scholar]
- Ma, B.; Wang, X.; Lin, K.; Li, J.; Liu, Y.; Zhan, W. Liu. A novel ultraefficient non-noble metal composite cocatalyst Mo2N/Mo2C/graphene for enhanced photocatalytic H2 evolution. Int. J. Hydrogen Energy 2017, 42, 18977–18984. [Google Scholar] [CrossRef]
- Gong, S.; Fan, J.; Cecen, V.; Huang, C.; Min, Y.; Xu, Q.; Li, H. Noble-metal and cocatalyst free W2N/C/TiO photocatalysts for efficient photocatalytic overall water splitting in visible and near-infrared light regions. Chem. Eng. J. 2020, 405, 126913. [Google Scholar] [CrossRef]
- Ma, B.; Xu, H.; Lin, K.; Li, J.; Zhan, H.; Liu, W.; Li, C. Mo2C as Non-Noble Metal Co-Catalyst in Mo2C/CdS Composite for Enhanced Photocatalytic H2 Evolution under Visible Light Irradiation. ChemSusChem 2016, 9, 820. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Ng, K.; Zhang, Y.; Li, Z.; Xu, S.; Huang, J.; Lai, Y. One-pot loading of cadmium sulfide onto tungsten carbide for efficient photocatalytic H2 evolution under visible light irradiation. Chem. Eng. J. 2022, 434, 134689. [Google Scholar]
- Ma, B.; Zhang, R.; Lin, K.; Liu, H.; Wang, X.; Liu, H. Zhan. Large-scale synthesis of noble-metal-free phosphide/CdS composite photocatalysts for enhanced H2 evolution under visible light irradiation. Chin. J. Catal. 2018, 39, 527–533. [Google Scholar] [CrossRef]
- Cheng, C.; Zong, S.; Shi, J. Facile preparation of nanosized MoP as cocatalyst coupled with g-C3N4 by surface bonding state for enhanced photocatalytic hydrogen production. Appl. Catal. B Environ. 2020, 265, 118620. [Google Scholar] [CrossRef]
- Dang, Y.; Feng, L.; Hu, W.; Wang, W.; Zhang, Q.; Ma, B. A 3D flower-like WC with large capacitance as efficient co-catalyst in photocatalytic H2 evolution. Int. J. Hydrogen Energy 2021, 46, 39251–39261. [Google Scholar] [CrossRef]
- Luo, L.; Li, D.; Dang, Y.; Wang, W.; Yu, G.; Li, J.; Ma, B. Capacitance Catalysis: Positive and Negative Effects of Capacitance of Mo2C in Photocatalytic H2 Evolution. ACS Sustain. Chem. Eng. 2022, 10, 5949–5957. [Google Scholar] [CrossRef]
- Zhang, J.; Dang, Y.; Wang, W. Efficiently improving the photocatalytic hydrogen evolution of g-C3N4 by (Pt/MoP) composite co-catalyst with low amount of Pt. Int. J. Hydrogen Energy 2022, 47, 2338–2346. [Google Scholar] [CrossRef]
- Li, S.; Chen, J.; Hu, S.; Wang, H.; Jiang, W.; Chen, X. Facile construction of novel Bi2WO6/Ta3N5 Z-scheme heterojunction nanofibers for efficient degradation of harmful pharmaceutical pollutants. Chem. Eng. J. 2020, 402, 1385–8947. [Google Scholar] [CrossRef]
- Chen, S.; Shen, S.; Liu, G.; Qi, Y.; Zhang, Y.; Li, C. Interface engineering of a CoOx/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation. Angew. Chem. Int. Ed. 2015, 54, 1433–7851. [Google Scholar]
- Li, S.; Shen, X.; Liu, J.; Zhang, L. Synthesis of Ta3N5/Bi2MoO6 core-shell fiber-shaped heterojunctions as efficient and easily recyclable photocatalysts. Chem. Eng. J. 2017, 4, 2051–8153. [Google Scholar]
- Pelicano, C.; Saruyama, M.; Takahata, R.; Sato, R.; Kitahama, Y.; Matsuzaki, H.; Yamada, T.; Hisatomi, T.; Domen, K.; Teranishi, T. Bimetallic Synergy in Ultrafine Cocatalyst Alloy Nanoparticles for Efficient Photocatalytic Water Splitting. Adv. Funct. Mater. 2022, 32, 2202987. [Google Scholar] [CrossRef]
- Chugenji, T.; Pan, Z.; Katayama, K. Effect of CoOx and Rh Cocatalysts on Local Charge Carrier Dynamics of BiVO4 Particles by Pattern-Illumination Time-Resolved Phase Microscopy. J. Phys. Chem. C 2022, 126, 19319–19326. [Google Scholar] [CrossRef]
- Paramasivam, I.; Macak, J.; Schmuki, P. Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles. Electrochem. Commun. 2008, 10, 71–75. [Google Scholar] [CrossRef]
- Hara, M.; Hitoki, G.; Takata, T.; Kondo, J.; Kobayashi, H.; Domen, K. TaON and Ta3N5 as new visible light driven photocatalysts. Catal. Today 2003, 78, 555–560. [Google Scholar] [CrossRef]
- Li, R.; Ou, X.; Zhang, L.; Qi, Z.; Wu, X.; Lu, C.; Fan, J.; Lv, K. Photocatalytic oxidation of NO on reduction type semiconductor photocatalysts: Effect of metallic Bi on CdS nanorods. Chem. Commun. 2021, 57, 10067–10070. [Google Scholar] [CrossRef]
- Li, S.; Cai, M.; Wang, C.; Liu, Y. Ta3N5/CdS Core–Shell S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Removal of Antibiotic Tetracycline and Cr(VI): Performance and Mechanism Insights. Adv. Fiber Mater. 2023, 5, 994–1007. [Google Scholar] [CrossRef]
- Elijah, T.; Florian, L.; Michael, G.; Scott, C.W. Influence of Plasmonic Au Nanoparticles on the Photoactivity of Fe2O3 Electrodes for Water Splitting. Nano Lett. 2011, 11, 35–43. [Google Scholar]
- Fu, J.; Fan, Z.; Nakabayashi, M.; Ju, H.; Pastukhova, N.; Xiao, Y.; Feng, C.; Shibata, N.; Domen, K.; Li, Y. Interface engineering of Ta3N5 thin film photoanode for highly efficient photoelectrochemical water splitting. Nat. Commun. 2022, 13, 729. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, S.; Yang, F.; Zhang, Y.; Yan, L.; Li, K.; Guo, H.; Yan, J.; Lin, J. Construction of Au/g-C3N4/ZnIn2S4 plasma photocatalyst heterojunction composite with 3D hierarchical microarchitecture for visible-lightdriven hydrogen production. Int. J. Hydrogen Energy 2022, 47, 2900–2913. [Google Scholar] [CrossRef]
- Xiao, Y.; Feng, C.; Fu, F.J.; Wang, F.; Li, C.; Kunzelmann, V.F.; Jiang, C.-M.; Nakabayashi, M.; Shibata, N.; Sharp, I.D.; et al. Band structure engineering and defect control of Ta3N5 for efficient photoelectrochemical water oxidation. Nat. Catal. 2020, 3, 932–940. [Google Scholar] [CrossRef]
- Dang, Y.; Luo, L.; Wang, W.; Hu, W.; Wen, X.; Lin, K.; Ma, B. Improving the Photocatalytic H2 Evolution of CdS by Adjusting the (002) Crystal Facet. J. Phys. Chem. C 2022, 126, 1346–1355. [Google Scholar] [CrossRef]
- Qi, Y.; Chen, S.; Li, M.; Ding, Q.; Li, Z.; Cui, J.; Li, C. Achievement of visible-light-driven Z-scheme overall water splitting using barium-modified Ta3N5 as a H2 evolving photocatalyst. Chem. Sci. 2017, 8, 437–443. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Lung, T. Growth of Hydrothermally Derived CdS-Based Nanostructures with Various Crystal Features and Photoactivated Properties. Nanoscale Res. Lett. 2016, 11, 264. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Wen, X.; Hu, W.; Luo, L.; Wang, W.; Lin, K.; Zhan, H.; Ma, B. A Highly Efficient Composite Catalyst (Au/Ta3N5)/CdS for Photocatalytic Hydrogen Production. Catalysts 2023, 13, 1103. https://doi.org/10.3390/catal13071103
Tian J, Wen X, Hu W, Luo L, Wang W, Lin K, Zhan H, Ma B. A Highly Efficient Composite Catalyst (Au/Ta3N5)/CdS for Photocatalytic Hydrogen Production. Catalysts. 2023; 13(7):1103. https://doi.org/10.3390/catal13071103
Chicago/Turabian StyleTian, Jinfeng, Xing Wen, Wenfeng Hu, Li Luo, Wei Wang, Keying Lin, Haijuan Zhan, and Baojun Ma. 2023. "A Highly Efficient Composite Catalyst (Au/Ta3N5)/CdS for Photocatalytic Hydrogen Production" Catalysts 13, no. 7: 1103. https://doi.org/10.3390/catal13071103
APA StyleTian, J., Wen, X., Hu, W., Luo, L., Wang, W., Lin, K., Zhan, H., & Ma, B. (2023). A Highly Efficient Composite Catalyst (Au/Ta3N5)/CdS for Photocatalytic Hydrogen Production. Catalysts, 13(7), 1103. https://doi.org/10.3390/catal13071103