Fabrication of New TiO2 Photocatalyst for Removing Organic Dyes and Hazardous VOCs in Air Purifier System
Abstract
:1. Introduction
2. Results and Discussion
2.1. Photocatalytic Activity Test with Amorphous Ti-Based Hydroperoxo Complex (ATPC)
2.2. Application Test for Air Purifier System
3. Materials and Methods
3.1. Synthesis of Amorphous Ti-Based Hydroperoxo Complex (ATPC)
3.2. Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Shao, M.; Fu, L.; Lu, S. Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar] [CrossRef]
- Phillips, M.; Herrera, J.; Krishnan, S. Variation in volatile organic compounds in the breath of normal humans. J. Chromatogr. B 1999, 729, 75–88. [Google Scholar] [CrossRef]
- Fan, Z.; Lioy, P.; Weschler, C.; Fiedler, N.; Zhang, J. Ozone-Initiated Reactions with Mixtures of Volatile Organic Compounds under Simulated Indoor Conditions. Environ. Sci. Technol. 2003, 37, 1811–1821. [Google Scholar] [CrossRef] [PubMed]
- Calfapietra, C.; Fares, S.; Manes, F.; Morani, A.; Sgrigna, G.; Loreto, F. Role of Biogenic Volatile Organic Compounds (BVOC) emitted by urban trees on ozone concentration in cities: A review. Environ. Pollut. 2013, 183, 71–80. [Google Scholar] [CrossRef]
- He, J.; Zou, Z.; Yang, X. Measuring whole-body volatile organic compound emission by humans: A pilot study using an air-tight environmental chamber. Build. Environ. 2019, 153, 101–109. [Google Scholar] [CrossRef]
- Yang, S.; Gao, K.; Yang, X. Volatile organic compounds (VOCs) formation due to interactions between ozone and skin-oiled clothing: Measurements by extractionanalysis-reaction method. Build. Environ. 2016, 103, 146–154. [Google Scholar] [CrossRef]
- Yu, L.; Wang, L.; Xu, W.; Chen, L. Adsorption of VOCs on reduced graphene oxide. J. Environ. Sci. 2018, 67, 171–178. [Google Scholar] [CrossRef]
- Kamal, M.S.; Razzak, S.A.; Hossain, M.M. Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos. Environ. 2016, 140, 117–134. [Google Scholar] [CrossRef]
- Yang, C.; Qian, H.; Li, X.; Cheng, Y.; He, H.; Zeng, G.; Xi, J. Simultaneous Removal of Multicomponent VOCs in Biofilters. Trends Biotechnol. 2018, 36, 673–685. [Google Scholar] [CrossRef]
- Ostyn, N.R.; Steele, J.A.; Prins, M.D. Low-temperature activation of carbon black by selective photocatalytic oxidation. Nanoscale Adv. 2019, 1, 2873–2880. [Google Scholar] [CrossRef]
- Sheng, Z.; Ma, D.; He, Q.; Wu, K. Mechanism of photocatalytic toluene oxidation with ZnWO4: A combined experimental and theoretical investigation. Catal. Sci. Technol. 2019, 9, 5692–5697. [Google Scholar] [CrossRef]
- Shayegan, Z.; Haghighat, F. Effect of surface fluorination of P25-TiO2 on adsorption of indoor environment volatile organic compounds. Chem. Eng. J. 2018, 346, 578–589. [Google Scholar] [CrossRef]
- Erdogan, N.; Jongee, P.; Woohyuk, C.; Soo, Y.K.; Abdullah, O. Alkaline hydrothermal synthesis, characterization, and photocatalytic activity of TiO2 nanostructures: The effect of initial TiO2 phase. J. Nanosci. Nanotechnol. 2019, 19, 1511–1519. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.X.; Ge, Q.Q.; Xue, D.J.; Ding, J.; Ma, J.Y. Tuning the fermi-level of TiO2 mesoporous layer by lanthanum doping towards efficient perovskite solar cells. Nanoscale 2016, 8, 16881–16885. [Google Scholar] [CrossRef] [PubMed]
- Giannakopoulou, T.; Papailias, I.; Todorova, N.; Boukos, N.; Liu, Y.; Yu, J.; Trapalis, C. Tailoring the energy band gap and edged’ potentials of g-C3N4/TiO2 composite photocatalysts for NOX removal. Chem. Eng. J. 2017, 310, 571–580. [Google Scholar] [CrossRef]
- Lopez, R.; Ricardo, G. Band-gap energy estimation from diffuse reflectance measurements on sol-gel and commercial TiO2: A comparative study. J. Sol-Gel Sci. Technol. 2012, 61, 1–7. [Google Scholar] [CrossRef]
- Mara, M.W.; Bowman, D.N.; Buyukcakir, O.; Shelby, M.L. Electron injection from copper diimine sensitizers into TiO2: Structural effects and their implications for solar energy conversion devices. J. Am. Chem. Soc. 2015, 137, 9670–9684. [Google Scholar] [CrossRef]
- Ovsyannikov, S.V.; Xiang, W.; Vladimir, V.S.; Alexander, E.K.; Natalia, D.; Gaston, G.; Leonid, D. Structural stability of a golden semiconducting orthorhombic polymorph of Ti2O3 under high pressures and high temperatures. J. Phys. Condens. Matter 2010, 22, 375402–375411. [Google Scholar] [CrossRef]
- Panayotov, D.A.; John, T.Y.J. Depletion of conduction band electrons in TiO2 by water chemisorptions-IR spectroscopic studies of the independence of Ti-OH frequencies on electron concentration. Chem. Phys. Lett. 2005, 410, 11–17. [Google Scholar] [CrossRef]
- Qiu, M.; Yuan, T.; Zhangxian, C.; Zeheng, Y.; Wenming, L.; Kai, W.; Lei, W.; Kun, W.; Weixin, Z. Synthesis of Ti3+ self-doped TiO2 nanocrystals based on Le Chatelier’s principle and their application in solar light photocatalysis. RSC Adv. 2016, 6, 74376–74383. [Google Scholar] [CrossRef]
- Lee, J.W.; Jeong, R.H.; Kim, D.I.; Yu, J.-H.; Nam, S.-H.; Boo, J.-H. Facile synthesis of amorphous Ti-peroxo complex for photocatalytic activity under visible-light irradiation. J. Clean. Prod. 2019, 239, 118013. [Google Scholar] [CrossRef]
- Gligorovski, S.; Strekowski, R.; Barbati, S.; Vione, D. Environmental implications of hydroxyl radicals. Chem. Rev. 2015, 115, 13051–13092. [Google Scholar] [CrossRef]
- Shu, Y.; Ji, J.; Zhou, M.; Liang, S.; Xie, Q.; Li, S.; Liu, B.; Deng, J.; Cao, J.; Liu, S.; et al. Selective photocatalytic oxidation of gaseous ammonia at ppb level over Pt and F modified TiO2. Appl. Catal. B Environ. 2022, 300, 120688. [Google Scholar] [CrossRef]
- Karmakar, S.; Barman, S.; Rahimi, F.A.; Biswas, S.; Nath, S.; Maji, T.K. Developing post-modified Ce-MOF as a photocatalyst: A detail mechanistic insight into CO2 reduction toward selective C2 product formation. Energy Environ. Sci. 2023, 16, 2187–2198. [Google Scholar] [CrossRef]
- Talaiekhozani, A.; Rezani, S.; Kim, K.-H.; Sanaye, R.; Amanie, A.M. Recent advances in photocatalytic removal of organic and inorganic pollutants in air. J. Clean. Prod. 2021, 278, 123895. [Google Scholar] [CrossRef]
- Papailias, I.; Todorova, N.; Giannakopoulou, T.; Dvoranová, D.; Brezová, V.; Dimotikali, D.; Trapalis, C. Selective removal of organic and inorganic air pollutants by adjusting the g-C3N4/TiO2 ratio. Catal. Today 2021, 361, 37–42. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, X.; Yan, Z.; Zhu, L. Ionic liquid-assisted synthesis of large-scale TiO2 nanoparticles with controllable phase by hydrolysis of TiCl4. ACS Nano 2009, 3, 115–122. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.W.; Jeong, R.H.; Shin, I.; Boo, J.-H. Fabrication of New TiO2 Photocatalyst for Removing Organic Dyes and Hazardous VOCs in Air Purifier System. Catalysts 2023, 13, 935. https://doi.org/10.3390/catal13060935
Lee JW, Jeong RH, Shin I, Boo J-H. Fabrication of New TiO2 Photocatalyst for Removing Organic Dyes and Hazardous VOCs in Air Purifier System. Catalysts. 2023; 13(6):935. https://doi.org/10.3390/catal13060935
Chicago/Turabian StyleLee, Ji Won, Rak Hyun Jeong, Ikjo Shin, and Jin-Hyo Boo. 2023. "Fabrication of New TiO2 Photocatalyst for Removing Organic Dyes and Hazardous VOCs in Air Purifier System" Catalysts 13, no. 6: 935. https://doi.org/10.3390/catal13060935