Evidence of a Wheland Intermediate in Carboxylate-Assisted C(sp2)−H Activation by Pd(IV) Active Catalyst Species Studied via DFT Calculations
Abstract
:1. Introduction
2. Results and Discussion
BIM | Deviation Angle | |||
---|---|---|---|---|
C(2)–C(3) | C(3)–C(4) | C(4)–C(9) | (α, °) | |
1 | 1.676 (0) | 1.129 (0) | 1.261 (0) | |
I_1 | 1.394 (49.6) | 1.113 (−6.2) | 1.263 (−1.7) | 9.0 |
II_1 | 1.086 (103.7) | 1.054 (−29.1) | 1.257 (2.6) | 17.7 |
III_1 | 1.346 (57.9) | 1.105 (−9.5) | 1.240 (14.2) | 9.8 |
IV_1 | 1.083 (104.3) | 1.338 (80.1) | 1.183 (53.8) | 35.8 |
V_1 | 1.079 (104.9) | 1.337 (79.8) | 1.114 (102.3) | 45.2 |
1●+ | 1.107 (100) | 1.389 (100) | 1.117 (100) | |
ΔBI | 0.569 | −0.260 | 0.144 |
3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bergman, R.G. Activation of Alkanes with Organotransition Metal Complexes. Science 1984, 223, 902–908. [Google Scholar] [CrossRef] [PubMed]
- Crabtree, R.H. The Organometallic Chemistry of Alkanes. Chem. Rev. 1985, 85, 245–269. [Google Scholar] [CrossRef]
- Shilov, A.E.; Shul’pin, G.B. Activation of C-H Bonds by Metal Complexes. Chem. Rev. 1997, 97, 2879–2932. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Kitamura, T.; Fujiwara, Y. Catalytic Functionalization of Arenes and Alkanes via C-H Bond Activation. Acc. Chem. Res. 2001, 34, 633–639. [Google Scholar] [CrossRef]
- Labinger, J.A.; Bercaw, J.E. Understanding and exploiting C-H bond activation. Nature 2002, 417, 507–514. [Google Scholar] [CrossRef]
- Brookhart, M.; Green, M.L.H.; Parkin, G. Agostic interactions in transition metal compounds. Proc. Natl. Acad. Sci. USA 2007, 104, 6908–6914. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Engle, K.M.; Wang, D.H.; Yu, J.Q. Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: Versatility and practicality. Angew. Chem. 2009, 48, 5094–5115. [Google Scholar] [CrossRef]
- Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations: Mechanism and scope. Chem. Rev. 2011, 111, 1315–1345. [Google Scholar] [CrossRef]
- Rouquet, G.; Chatani, N. Catalytic functionalization of C(sp2)-H and C(sp3)-H bonds by using bidentate directing groups. Angew. Chem. 2013, 52, 11726–11743. [Google Scholar] [CrossRef]
- Ryabov, A.D. Mechanisms of intramolecular activation of carbon-hydrogen bonds in transition-metal complexes. Chem. Rev. 1990, 90, 403–424. [Google Scholar] [CrossRef]
- Lersch, M.; Tilset, M. Mechanistic Aspects of C-H Activation by Pt Complexes. Chem. Rev. 2005, 105, 2471–2526. [Google Scholar] [CrossRef]
- Balcells, D.; Clot, E.; Eisenstein, O. C-H Bond Activation in Transition Metal Species from a Computational Perspective. Chem. Rev. 2010, 110, 749–823. [Google Scholar] [CrossRef]
- Gray, A.; Tsybizova, A.; Roithova, J. Carboxylate-assisted C-H activation of phenylpyridines with copper, palladium and ruthenium: A mass spectrometry and DFT study. Chem. Sci. 2015, 6, 5544–5553. [Google Scholar] [CrossRef] [Green Version]
- Ess, D.H.; Goddard, W.A.; Periana, R.A. Electrophilic, Ambiphilic, and Nucleophilic C-H Bond Activation: Understanding the Electronic Continuum of C-H Bond Activation Through Transition-State and Reaction Pathway Interaction Energy Decompositions. Organometallics 2010, 29, 6459–6472. [Google Scholar] [CrossRef] [Green Version]
- Ess, D.H.; Nielsen, R.J.; Goddard, W.A., III; Periana, R.A. Transition-State Charge Transfer Reveals Electrophilic, Ambiphilic, and Nucleophilic Carbon-Hydrogen Bond Activation. J. Am. Chem. Soc. 2009, 131, 11686–11688. [Google Scholar] [CrossRef] [Green Version]
- Cho, B.S.; Chung, Y.K. Palladium-catalyzed bisarylation of 3-alkylbenzofurans to 3-arylalkyl-2-arylbenzofurans on water: Tandem C(sp(3))-H and C(sp(2))-H activation reactions of 3-alkylbenzofurans. Chem. Commun. 2015, 51, 14543–14546. [Google Scholar] [CrossRef]
- Cannon, J.S.; Zou, L.; Liu, P.; Lan, Y.; O’Leary, D.J.; Houk, K.N.; Grubbs, R.H. Carboxylate-assisted C(sp(3))-H activation in olefin metathesis-relevant ruthenium complexes. J. Am. Chem. Soc. 2014, 136, 6733–6743. [Google Scholar] [CrossRef]
- Davies, D.L.; Macgregor, S.A.; McMullin, C.L. Computational Studies of Carboxylate-Assisted C–H Activation and Functionalization at Group 8–10 Transition Metal Centers. Chem. Rev. 2017, 117, 8649–8709. [Google Scholar] [CrossRef] [Green Version]
- Maleckis, A.; Kampf, J.W.; Sanford, M.S. A Detailed Study of Acetate-Assisted C–H Activation at Palladium(IV) Centers. J. Am. Chem. Soc. 2013, 135, 6618–6625. [Google Scholar] [CrossRef]
- Boutadla, Y.; Davies, D.L.; Macgregor, S.A.; Poblador-Bahamonde, A.I. Mechanisms of C–H bond activation: Rich synergy between computation and experiment. Dalton Trans. 2009, 30, 5820–5831. [Google Scholar] [CrossRef] [Green Version]
- Davies, D.L.; Donald, S.M.A.; Macgregor, S.A. Computational Study of the Mechanism of Cyclometalation by Palladium Acetate. J. Am. Chem. Soc. 2005, 127, 13754–13755. [Google Scholar] [CrossRef] [PubMed]
- Stuart, D.R.; Fagnou, K. The Catalytic Cross-Coupling of Unactivated Arenes. Science 2007, 316, 1172–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafrance, M.; Gorelsky, S.I.; Fagnou, K. High-Yielding Palladium-Catalyzed Intramolecular Alkane Arylation: Reaction Development and Mechanistic Studies. J. Am. Chem. Soc. 2007, 129, 14570–14571. [Google Scholar] [CrossRef]
- Gorelsky, S.I.; Lapointe, D.; Fagnou, K. Analysis of the Concerted Metalation-Deprotonation Mechanism in Palladium-Catalyzed Direct Arylation Across a Broad Range of Aromatic Substrates. J. Am. Chem. Soc. 2008, 130, 10848–10849. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Carrow, B.P. Oligothiophene Synthesis by a General C-H Activation Mechanism: Electrophilic Concerted Metalation-Deprotonation (eCMD). ACS Catal. 2019, 9, 6821–6836. [Google Scholar] [CrossRef]
- Amatore, C.; Jutand, A. Mechanistic and kinetic studies of palladium catalytic systems. J. Organomet. Chem. 1999, 576, 254–278. [Google Scholar] [CrossRef]
- Goossen, L.J.; Koley, D.; Hermann, H.L.; Thiel, W. Palladium Monophosphine Intermediates in Catalytic Cross-Coupling Reactions: A DFT Study. Organometallics 2006, 25, 54–67. [Google Scholar] [CrossRef]
- Kozuch, S.; Shaik, S. How to Conceptualize Catalytic Cycles? The Energetic Span Model. Acc. Chem. Res. 2011, 44, 101–110. [Google Scholar] [CrossRef]
- Bhaskararao, B.; Singh, S.; Anand, M.; Verma, P.; Prakash, P.; Athira, C.; Malakar, S.; Schaefer, H.F.; Sunoj, R.B. Is silver a mere terminal oxidant in palladium catalyzed C-H bond activation reactions? Chem. Sci. 2020, 11, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Rousseaux, S.; Gorelsky, S.I.; Chung, B.K.W.; Fagnou, K. Investigation of the mechanism of C(sp3)-H bond cleavage in Pd(0)-catalyzed intramolecular alkane arylation adjacent to amides and sulfonamides. J. Am. Chem. Soc. 2010, 132, 10692–10705. [Google Scholar] [CrossRef]
- Burke, K. Perspective on density functional theory. J. Chem. Phys. 2012, 136, 150901. [Google Scholar] [CrossRef]
- Klimeš, J.; Michaelides, A. Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. J. Chem. Phys. 2012, 137, 120901. [Google Scholar] [CrossRef] [Green Version]
- Goerigk, L.; Grimme, S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys. Chem. Chem. Phys. 2011, 13, 6670–6688. [Google Scholar] [CrossRef]
- Yin, G.; Wu, Y.; Liu, G. Scope and Mechanism of Allylic C-H Amination of Terminal Alkenes by the Palladium/PhI(OPiv)2 Catalyst System: Insights into the Effect of Naphthoquinone. J. Am. Chem. Soc. 2010, 132, 11978–11987. [Google Scholar] [CrossRef]
- Engelin, C.J.; Fristrup, P. Palladium catalyzed allylic C-H alkylation: A mechanistic perspective. Molecules 2011, 16, 951–969. [Google Scholar] [CrossRef]
- Liron, F.; Oble, J.; Lorion, M.M.; Poli, G. Direct Allylic Functionalization Through Pd-Catalyzed C-H Activation. Eur. J. Org. Chem. 2014, 2014, 5863–5883. [Google Scholar] [CrossRef]
- Duarte, F.J.S.; Poli, G.; Calhorda, M.J. Mechanistic Study of the Direct Intramolecular Allylic Amination Reaction Catalyzed by Palladium(II). ACS Catal. 2016, 6, 1772–1784. [Google Scholar] [CrossRef]
- The energy difference between the highest energy point during the C-H activation process and the initial state.
- Biswas, B.; Sugimoto, M.; Sakaki, S. C-H Bond Activation of Benzene and Methane by M(η2-O2CH)2 (M = Pd or Pt). A Theoretical Study. Organometallics 2000, 19, 3895–3908. [Google Scholar] [CrossRef]
- Hull, K.L.; Lanni, E.L.; Sanford, M.S. Highly regioselective catalytic oxidative coupling reactions: Synthetic and mechanistic investigations. J. Am. Chem. Soc. 2006, 128, 14047–14049. [Google Scholar] [CrossRef]
- Racowski, J.M.; Ball, N.D.; Sanford, M.S. C–H Bond Activation at Palladium(IV) Centers. J. Am. Chem. Soc. 2011, 133, 18022–18025. [Google Scholar] [CrossRef] [Green Version]
- Kawai, H.; Kobayashi, Y.; Oi, S.; Inoue, Y. Direct C-H bond arylation of arenes with aryltin reagents catalysed by palladium complexes. Chem. Commun. 2008, 12, 1464–1466. [Google Scholar] [CrossRef] [PubMed]
- Rosewall, C.F.; Sibbald, P.A.; Liskin, D.V.; Michael, F.E. Palladium-catalyzed carboamination of alkenes promoted by N-fluorobenzenesulfonimide via C-H activation of arenes. J. Am. Chem. Soc. 2009, 131, 9488–9489. [Google Scholar] [CrossRef] [PubMed]
- Juwaini, N.A.B.; Ng, J.K.P.; Seayad, J. Catalytic regioselective oxidative coupling of furan-2-carbonyls with simple arenes. ACS Catal. 2012, 2, 1787–1791. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, H.; Peng, H.; Liu, G.; Guo, Y. Study of the Transient Reactive Pd(IV) Intermediate in the Pd(OAc)2-Catalyzed Oxidative Coupling Reaction System by Electrospray Ionization Tandem Mass Spectrometry. Chin. J. Chem. 2013, 31, 371–376. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, C.; Lu, Y.; Xing, Z.; Sun, N.; Chen, D. A DFT study on the difference of C-H bond activation by Pd(II) and Pd(IV) complex. Comput. Theor. Chem. 2015, 1056, 41–46. [Google Scholar] [CrossRef]
- Cho, B.S.; Chung, Y.K. Palladium(II)-Catalyzed Transformation of 3-Alkylbenzofurans to [2,3′-Bibenzofuran]-2′(3′H)-ones: Oxidative Dimerization of 3-Alkylbenzofurans. J. Org. Chem. 2017, 82, 2237–2242. [Google Scholar] [CrossRef]
- Yamamoto, K.; Kimura, S.; Murahashi, T. σ-π Continuum in Indole-Palladium(II) Complexes. Angew. Chem. Int. Ed. 2016, 55, 5322–5326. [Google Scholar] [CrossRef]
- BORDER. Available online: http://occam.chemres.hu/programs/index.html (accessed on 5 April 2023).
- De Jong, G.T.; Bickelhaupt, F.M. Transition-State Energy and Position along the Reaction Coordinate in an Extended Activation Strain Model. ChemPhysChem 2007, 8, 1170–1181. [Google Scholar] [CrossRef]
- Legault, C.Y.; Garcia, Y.; Merlic, C.A.; Houk, K.N. Origin of Regioselectivity in Palladium-Catalyzed Cross-Coupling reactions of Polyhalogenated Heterocycles. J. Am. Chem. Soc. 2007, 129, 12664–12665. [Google Scholar] [CrossRef]
- Gorelsky, S.I.; Lapointe, D.; Fagnou, K. Analysis of the Palladium-Catalyzed (Aromatic)C-H Bond Metalation-Deprotonation Mechanism Spanning the Entire Spectrum of Arenes. J. Org. Chem. 2012, 77, 658–668. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-Functional Thermochemistry. 3. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab-Initio Calculation of Vibrational Absorption and Circular-Dichroism Spectra Using Density-Functional Force-Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Schäfer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 1994, 100, 5829–5835. [Google Scholar] [CrossRef]
- Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123–141. [Google Scholar] [CrossRef]
- Stoll, H.; Fuentealba, P.; Schwerdtfeger, P.; Flad, J.; Szentpály, L.V.; Preuss, H. Cu and Ag as one-valence-electron atoms: CI results and quadrupole corrections for Cu2, Ag2, CuH, and AgH. J. Chem. Phys. 1984, 81, 2732–2736. [Google Scholar] [CrossRef]
- Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Mol. Phys. 1993, 80, 1431–1441. [Google Scholar] [CrossRef]
- Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55, 117–129. [Google Scholar] [CrossRef]
- Miertuš, S.; Tomasi, J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem. Phys. 1982, 65, 239–245. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3093. [Google Scholar] [CrossRef] [PubMed]
- Adamo, C.; Barone, V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys. 1998, 108, 664–675. [Google Scholar] [CrossRef]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef] [PubMed]
ΔG‡max (kcal/mol) | ΔG‡i,max (kcal/mol) | ΔG (kcal/mol) | ||||
---|---|---|---|---|---|---|
C(sp2)−H | C(sp3)H | C(sp2)−H | C(sp3)H | C(sp2)−H | C(sp3)H | |
I | 33.3 | 51.4 | 21.4 | 30.7 | 23.7 | 24.7 |
II | 23.8 | 28.7 | 23.8 | 23.8 | 12.6 | −2.6 |
III | 32.0 | 49.6 | 21.7 | 34.4 | −15.1 | 7.5 |
IV | 10.9 | 10.9 | 10.9 | 10.9 | −2.9 | −18.0 |
V | 36.0 | 36.0 | 36.0 | 36.0 | −9.0 | −58.1 |
Qa | Δq b | ||
---|---|---|---|
Catalyst | Substrate | ||
I_1 | −0.151 | 0.151 | 0.151 |
II_1 | −0.321 | 0.321 | 0.321 |
III_1 | −0.172 | 0.172 | 0.172 |
IV_1 | 0.218 | 0.782 | 0.782 |
V_1 | 0.191 | 0.809 | 0.809 |
Path | EdistI (PdL) b | EdistI (ArH) c | ΔEI | EdistII (PdL) d | EdistII (ArH) e | Eint | ΔE‡ | EdistI f | EdistII g |
---|---|---|---|---|---|---|---|---|---|
I (sp2) | 8.5 | 1.6 | 6.9 | 4.3 | 38.5 | −30.2 | 22.7 | 10.1 | 42.8 |
I (sp3) | 8.5 | 1.6 | 6.9 | 8.5 | 57.3 | −35.9 | 40.1 | 10.1 | 65.9 |
II (sp2) | 14.2 | 5.9 | −2.4 | 2.6 | 27.9 | −42.5 | 8.1 | 20.1 | 30.5 |
II (sp3) | 14.2 | 5.9 | −2.4 | 8.3 | 49.7 | −63.1 | 15.0 | 20.1 | 58.1 |
III (sp2) | 5.2 | 1.4 | 3.8 | 4.2 | 39.4 | −31.5 | 18.6 | 6.6 | 43.6 |
III (sp3) | 5.2 | 1.4 | 3.8 | 7.9 | 34.8 | −17.8 | 31.5 | 6.6 | 42.7 |
IV (sp2) | 13.2 | 16.3 | −17.3 | 6.1 | 25.0 | −71.6 | −11.1 | 29.4 | 31.1 |
IV (sp3) | 13.2 | 16.3 | −17.3 | 10.3 | 33.3 | −85.0 | −12.0 | 29.4 | 43.6 |
V (sp2) | 30.3 | 21.8 | 6.4 | 3.3 | 21.1 | −69.9 | 6.5 | 52.1 | 24.4 |
V (sp3) | 30.3 | 21.8 | 6.4 | 8.3 | 37.7 | −79.8 | 18.2 | 52.1 | 45.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.E.; Kang, Y.K. Evidence of a Wheland Intermediate in Carboxylate-Assisted C(sp2)−H Activation by Pd(IV) Active Catalyst Species Studied via DFT Calculations. Catalysts 2023, 13, 724. https://doi.org/10.3390/catal13040724
Park JE, Kang YK. Evidence of a Wheland Intermediate in Carboxylate-Assisted C(sp2)−H Activation by Pd(IV) Active Catalyst Species Studied via DFT Calculations. Catalysts. 2023; 13(4):724. https://doi.org/10.3390/catal13040724
Chicago/Turabian StylePark, Ji Eun, and Youn K. Kang. 2023. "Evidence of a Wheland Intermediate in Carboxylate-Assisted C(sp2)−H Activation by Pd(IV) Active Catalyst Species Studied via DFT Calculations" Catalysts 13, no. 4: 724. https://doi.org/10.3390/catal13040724
APA StylePark, J. E., & Kang, Y. K. (2023). Evidence of a Wheland Intermediate in Carboxylate-Assisted C(sp2)−H Activation by Pd(IV) Active Catalyst Species Studied via DFT Calculations. Catalysts, 13(4), 724. https://doi.org/10.3390/catal13040724