Facile Construction of Intramolecular g-CN-PTCDA Donor-Acceptor System for Efficient CO2 Photoreduction
Abstract
1. Introduction
2. Results and Discussion
3. Photocatalytic Performance
4. Structure–Activity Relationship and Mechanism Discussion
5. Experimental Section
5.1. Reagents and Materials
5.2. Preparation of Catalysts
5.2.1. Preparation of g-CN
5.2.2. Preparation of g-CN-x mg PTCDA
5.2.3. Preparation of g-CN-Co and g-CN-1 mg PTCDA-Co
5.3. Physicochemical Characterization
5.4. Photoelectrochemical Measurements
5.5. Photocatalytic CO2 Reduction
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Xie, Y.; Ou, P.; Wang, X.; Xu, Z.; Li, Y.C.; Wang, Z.; Huang, J.E.; Wicks, J.; McCallum, C.; Wang, N.; et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 2022, 5, 564–570. [Google Scholar] [CrossRef]
- Xie, S.; Li, Y.; Sheng, B.; Zhang, W.; Wang, W.; Chen, C.; Li, J.; Sheng, H.; Zhao, J. Self-reconstruction of paddle-wheel copper-node to facilitate the photocatalytic CO2 reduction to ethane. Appl. Catal. B 2022, 310, 121320. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, J.; Yang, K.; Zhu, X.; Zhong, K.; Zhang, M.; Ji, H.; He, M.; Li, H.; Xu, H. Synergistic Effect in Plasmonic CuAu Alloys as Co-Catalyst on SnIn4S8 for Boosted Solar-Driven CO2 Reduction. Catalysts 2022, 12, 1588. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; Guan, Z.; Li, Q.; He, C.; Yang, J. Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Appl. Catal. B 2017, 206, 300–307. [Google Scholar] [CrossRef]
- Cui, Y.; Ge, P.; Chen, M.; Xu, L. Research Progress in Semiconductor Materials with Application in the Photocatalytic Reduction of CO2. Catalysts 2022, 12, 372. [Google Scholar] [CrossRef]
- Wang, X.; Blechert, S.; Antonietti, M. Polymeric Graphitic Carbon Nitride for Heterogeneous Photocatalysis. ACS Catal. 2012, 2, 1596–1606. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Pawar, A.U.; Kang, Y.S. Preparation of C3N4 Thin Films for Photo-/Electrocatalytic CO2 Reduction to Produce Liquid Hydrocarbons. Catalysts 2022, 12, 1399. [Google Scholar] [CrossRef]
- Wang, K.; Li, Q.; Liu, B.; Cheng, B.; Ho, W.; Yu, J. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B 2015, 176–177, 44–52. [Google Scholar] [CrossRef]
- Ong, W.-J.; Tan, L.-L.; Ng, Y.H.; Yong, S.-T.; Chai, S.-P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Ding, J.; Tang, Q.; Fu, Y.; Zhang, Y.; Hu, J.; Li, T.; Zhong, Q.; Fan, M.; Kung, H.H. Core-Shell Covalently Linked Graphitic Carbon Nitride-Melamine-Resorcinol-Formaldehyde Microsphere Polymers for Efficient Photocatalytic CO2 Reduction to Methanol. J. Am. Chem. Soc. 2022, 144, 9576–9585. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, D.; Huang, Y.; Chen, B.; Luo, B.; Shen, H.; Wang, M.; Yu, T.; Shi, W. Construction of binary donor-acceptor conjugated copolymer in g-C3N4 for enhanced visible light-induced hydrogen evolution. Appl. Surf. Sci. 2021, 565, 150012. [Google Scholar] [CrossRef]
- Zhang, X.; Song, X.; Yan, Y.; Huo, P. Construction of carbon nitride based intramolecular D-A system for effective photocatalytic reduction of CO2. Catal. Lett. 2022, 152, 559–569. [Google Scholar] [CrossRef]
- Yu, F.; Wang, Z.; Zhang, S.; Wu, W.; Ye, H.; Ding, H.; Gong, X.; Hua, J. Construction of polymeric carbon nitride and dibenzothiophene dioxide-based intramolecular donor-acceptor conjugated copolymers for photocatalytic H2 evolution. Nanoscale Adv. 2021, 3, 1699–1707. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-W.; Pan, L.; Zhang, X.; Shi, C.; Zou, J.-J. Donor-acceptor carbon nitride with electron-withdrawing chlorine group to promote exciton dissociation. Chin. J. Catal. 2021, 42, 1168–1175. [Google Scholar] [CrossRef]
- Song, X.; Zhang, X.; Wang, M.; Li, X.; Zhu, Z.; Huo, P.; Yan, Y. Fabricating intramolecular donor-acceptor system via covalent bonding of carbazole to carbon nitride for excellent photocatalytic performance towards CO2 conversion. J. Colloid Interface Sci. 2021, 594, 550–560. [Google Scholar] [CrossRef]
- Zhu, C.; Wei, T.; Wei, Y.; Wang, L.; Lu, M.; Yuan, Y.; Yin, L.; Huang, L. Unravelling intramolecular charge transfer in donor-acceptor structured g-C3N4 for superior photocatalytic hydrogen evolution. J. Mater. Chem. A 2021, 9, 1207–1212. [Google Scholar] [CrossRef]
- Song, J.; Chen, Y.; Sun, D.; Li, X. Perylenetetracarboxylic diimide modified Zn0.7Cd0.3S hybrid photocatalyst for efficient hydrogen production from water under visible light irradiation. Inorg. Chem. Commun. 2018, 92, 27–34. [Google Scholar] [CrossRef]
- Sun, T.; Song, J.; Jia, J.; Li, X.; Sun, X. Real roles of perylenetetracarboxylic diimide for enhancing photocatalytic H2-production. Nano Energy 2016, 26, 83–89. [Google Scholar] [CrossRef]
- Wei, W.; Zhu, Y. TiO2@Perylene Diimide Full-Spectrum Photocatalysts via Semi-Core-Shell Structure. Small 2019, 15, 1903933. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Chen, G.Y.; Liu, H.R.; Yuan, L.L.; Yang, L.; Liu, D. ZnSnO3 Quantum Dot/Perylene Diimide Supramolecular Nanorod Heterojunction Photocatalyst for Efficient Phenol Degradation. ACS Appl. Nano Mater. 2022, 5, 9829–9839. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.; Liu, D.; Luo, W.; Zhang, M.; Jiang, W.; Zhu, Y. Highly Efficient Organic Photocatalyst with Full Visible Light Spectrum through π-π Stacking of TCNQ-PTCDI. ACS Appl. Mater. Interfaces 2016, 8, 30225–30231. [Google Scholar] [CrossRef]
- Wang, X.; Meng, J.; Yang, X.; Hu, A.; Yang, Y.; Guo, Y. Fabrication of a Perylene Tetracarboxylic Diimide-Graphitic Carbon Nitride Heterojunction Photocatalyst for Efficient Degradation of Aqueous Organic Pollutants. ACS Appl. Mater. Interfaces 2019, 11, 588–602. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.; Wang, Y.; Gong, Y.; Cao, D.; Qiao, M. Peroxymonosulfate-enhanced visible light photocatalytic degradation of bisphenol A by perylene imide-modified g-C3N4. Appl. Catal. B 2018, 237, 976–985. [Google Scholar] [CrossRef]
- Xing, C.; Yu, G.; Chen, T.; Liu, S.; Sun, Q.; Liu, Q.; Hu, Y.; Liu, H.; Li, X. Perylenetetracarboxylic diimide covalently bonded with mesoporous g-C3N4 to construct direct Z-scheme heterojunctions for efficient photocatalytic oxidative coupling of amines. Appl. Catal. B 2021, 298, 120534. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Hao, X.; Wang, Y.; Zou, Z. Z-scheme PTCDA/g-C3N4 photocatalyst based on interfacial strong interaction for efficient photooxidation of benzylamine. Appl. Surf. Sci. 2018, 456, 861–870. [Google Scholar] [CrossRef]
- Yuan, Y.-J.; Shen, Z.-K.; Wang, P.; Li, Z.; Pei, L.; Zhong, J.; Ji, Z.; Yu, Z.-T.; Zou, Z. Metal-free broad-spectrum PTCDA/g-C3N4 Z-scheme photocatalysts for enhanced photocatalytic water oxidation. Appl. Catal. B 2020, 260, 118179. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Tian, S.; Chen, S.; Ren, X.; Hu, Y.; Hu, H.; Sun, J.; Bai, F. An efficient visible-light photocatalyst for CO2 reduction fabricated by cobalt porphyrin and graphitic carbon nitride via covalent bonding. Nano Res. 2020, 13, 2665–2672. [Google Scholar] [CrossRef]
- Zong, X.; Niu, L.; Jiang, W.; Yu, Y.; An, L.; Qu, D.; Wang, X.; Sun, Z. Constructing creatinine-derived moiety as donor block for carbon nitride photocatalyst with extended absorption and spatial charge separation. Appl. Catal. B 2021, 291, 120099. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, W.; Ke, X.; Cai, X.; Chen, X.; Wang, S.; Lin, W.; Wang, X. A heptazine-based polymer photocatalyst with donor-acceptor configuration to promote exciton dissociation and charge separation. Appl. Catal. B 2023, 325, 122312. [Google Scholar] [CrossRef]
- Wang, C.; Wan, Q.; Cheng, J.; Lin, S.; Savateev, A.; Antonietti, M.; Wang, X. Efficient aerobic oxidation of alcohols to esters by acidified carbon nitride photocatalysts. J. Catal. 2021, 393, 116–125. [Google Scholar] [CrossRef]
- Yu, H.; Shi, R.; Zhao, Y.; Bian, T.; Zhao, Y.; Zhou, C.; Waterhouse, G.I.N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution. Adv. Mater. 2017, 29, 1605148. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, S.; Xu, H.; Wang, G.; Qu, Y.; Zhu, P.; Wang, D. Co-MOF as an electron donor for promoting visible-light photoactivities of g-C3N4 nanosheets for CO2 reduction. Chin. J. Catal. 2020, 41, 514–523. [Google Scholar] [CrossRef]
- Fu, J.; Zhu, B.; Jiang, C.; Cheng, B.; You, W.; Yu, J. Hierarchical Porous O-Doped g-C3N4 with Enhanced Photocatalytic CO2 Reduction Activity. Small 2017, 13, 1603938. [Google Scholar] [CrossRef]
- Li, Q.; Wang, S.; Sun, Z.; Tang, Q.; Liu, Y.; Wang, L.; Wang, H.; Wu, Z. Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Res. 2019, 12, 2749–2759. [Google Scholar] [CrossRef]
- Qin, J.; Wang, S.; Ren, H.; Hou, Y.; Wang, X. Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid. Appl. Catal. B 2015, 179, 1–8. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, J.; Dong, J.; Liu, G.; Shi, L.; An, P.; Zhao, G.; Kong, J.; Wang, X.; Meng, X.; et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew. Chem. Int. Ed. 2016, 55, 14310–14314. [Google Scholar] [CrossRef]
- Wang, S.; Yao, W.; Lin, J.; Ding, Z.; Wang, X. Cobalt Imidazolate Metal-Organic Frameworks Photosplit CO2 under Mild Reaction Conditions. Angew. Chem. Int. Ed. 2014, 53, 1034–1038. [Google Scholar] [CrossRef]
- Wang, S.; Lin, J.; Wang, X. Semiconductor-redox catalysis promoted by metal-organic frameworks for CO2 reduction. Phys. Chem. Chem. Phys. 2014, 16, 14656–14660. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, M.; Song, X.; Yan, Y.; Huo, P.; Yan, Y.; Yang, B. Boosting charge carrier separation efficiency by constructing an intramolecular DA system towards efficient photoreduction of CO2. New J. Chem. 2021, 45, 6042–6052. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, L.; Cheng, R.; Wang, M.; Li, M.; Zhou, Y.; Shi, J. Construction of Graphitic C3N4-Based Intramolecular Donor-Acceptor Conjugated Copolymers for Photocatalytic Hydrogen Evolution. ACS Catal. 2015, 5, 5008–5015. [Google Scholar] [CrossRef]
- Song, X.; Li, X.; Zhang, X.; Wu, Y.; Ma, C.; Huo, P.; Yan, Y. Fabricating C and O co-doped carbon nitride with intramolecular donor-acceptor systems for efficient photoreduction of CO2 to CO. Appl. Catal. B 2020, 268, 118736. [Google Scholar] [CrossRef]
- Wei, Y.; Li, X.; Liu, Q.; Zhang, Y.; Zhang, K.; Huo, P.; Yan, Y. Leaf-Vein structure like g-C3N4/P-MWNTs donor-accepter hybrid catalyst for efficient CO2 photoreduction. Carbon 2022, 188, 59–69. [Google Scholar] [CrossRef]
- Qu, D.; Liu, J.; Miao, X.; Han, M.; Zhang, H.; Cui, Z.; Sun, S.; Kang, Z.; Fan, H.; Sun, Z. Peering into water splitting mechanism of g-C3N4-carbon dots metal-free photocatalyst. Appl. Catal. B 2018, 227, 418–424. [Google Scholar] [CrossRef]
- Jiang, W.; Zong, X.; An, L.; Hua, S.; Miao, X.; Luan, S.; Wen, Y.; Tao, F.F.; Sun, Z. Consciously Constructing Heterojunction or Direct Z-Scheme Photocatalysts by Regulating Electron Flow Direction. ACS Catal. 2018, 8, 2209–2217. [Google Scholar] [CrossRef]
- Song, X.; Mao, W.; Wu, Y.; Wang, M.; Liu, X.; Zhou, W.; Huo, P. Fabricating Carbon Nitride-Based 3D/0D Intramolecular Donor-Acceptor Catalysts for Efficient Photoreduction of CO2. New J. Chem. 2022, 46, 20225–20234. [Google Scholar] [CrossRef]
- Hayat, A.; Rahman, M.U.; Khan, I.; Khan, J.; Sohail, M.; Yasmeen, H.; Liu, S.; Qi, K.; Lv, W. Conjugated Electron Donor-Acceptor Hybrid Polymeric Carbon Nitride as a Photocatalyst for CO2 Reduction. Molecules 2019, 24, 1779. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Hong, Z.; Yang, C.; Li, L.; Xu, Y.; Wang, X.; Wang, R. A Covalent Triazine-Based Framework Consisting of Donor-Acceptor Dyads for Visible-Light-Driven Photocatalytic CO2 Reduction. ChemSusChem 2019, 12, 4493–4499. [Google Scholar] [CrossRef]
- Xu, N.; Diao, Y.; Qin, X.; Xu, Z.; Ke, H.; Zhu, X. Donor-Acceptor Covalent Organic Frameworks of Nickel (II) Porphyrin for Selective and Efficient CO2 Reduction into CO. Dalton Trans. 2020, 49, 15587–15591. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Chen, X.; Ren, X.; Tian, S.; Bai, F. Facile Construction of Intramolecular g-CN-PTCDA Donor-Acceptor System for Efficient CO2 Photoreduction. Catalysts 2023, 13, 600. https://doi.org/10.3390/catal13030600
Wei J, Chen X, Ren X, Tian S, Bai F. Facile Construction of Intramolecular g-CN-PTCDA Donor-Acceptor System for Efficient CO2 Photoreduction. Catalysts. 2023; 13(3):600. https://doi.org/10.3390/catal13030600
Chicago/Turabian StyleWei, Jiajia, Xing Chen, Xitong Ren, Shufang Tian, and Feng Bai. 2023. "Facile Construction of Intramolecular g-CN-PTCDA Donor-Acceptor System for Efficient CO2 Photoreduction" Catalysts 13, no. 3: 600. https://doi.org/10.3390/catal13030600
APA StyleWei, J., Chen, X., Ren, X., Tian, S., & Bai, F. (2023). Facile Construction of Intramolecular g-CN-PTCDA Donor-Acceptor System for Efficient CO2 Photoreduction. Catalysts, 13(3), 600. https://doi.org/10.3390/catal13030600