Ag2CO3-Based Photocatalyst with Enhanced Photocatalytic Activity for Endocrine-Disrupting Chemicals Degradation: A Review
Abstract
:1. Introduction
2. Photocatalysis for Water Purification
2.1. Endocrine-Disrupting Chemicals (EDCs) Classification
2.2. EDC Removal from Water by Semiconductor-Based Photocatalytic Materials
2.2.1. Silver Carbonate (Ag2CO3) Photocatalyst
2.2.2. Synthesis Techniques of Ag2CO3-Based Photocatalyst
3. Endocrine-Disrupting Chemical Removal from Water by Ag2CO3-Based Photocatalytic Materials
4. Challenges and Perspectives
5. Conclusions and Future Outlooks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pironti, C.; Ricciardi, M.; Proto, A.; Bianco, P.; Montano, L.; Motta, O. Endocrine-Disrupting Compounds: An Overview on Their Occurrence in the Aquatic Environment and Human Exposure. Water 2021, 13, 1347. [Google Scholar] [CrossRef]
- Surana, D.; Gupta, J.; Sharma, S.; Kumar, S.; Ghosh, P. A review on advances in removal of endocrine disrupting compounds from aquatic matrices: Future perspectives on utilization of agri-waste based adsorbents. Sci. Total Environ. 2022, 826, 154129. [Google Scholar] [CrossRef] [PubMed]
- Werkneh, A.A.; Gebru, S.B.; Redae, G.H.; Tsige, A.G. Removal of endocrine disrupters from the contaminated environment: Public health concerns, treatment strategies and future perspectives—A review. Heliyon 2022, 8, e09206. [Google Scholar] [CrossRef] [PubMed]
- Diamanti-Kandarakis, E.; Bourguignon, J.-P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef] [PubMed]
- Katibi, K.K.; Yunos, K.F.; Man, H.C.; Aris, A.Z.; Nor, M.Z.M.; Azis, R.S.; Umar, A.M. Contemporary Techniques for Remediating Endocrine-Disrupting Compounds in Various Water Sources: Advances in Treatment Methods and Their Limitations. Polymers 2021, 13, 3229. [Google Scholar] [CrossRef] [PubMed]
- Katibi, K.; Yunos, K.; Man, H.C.; Aris, A.; Nor, M.b.M.; Azis, R.B. Recent Advances in the Rejection of Endocrine-Disrupting Compounds from Water Using Membrane and Membrane Bioreactor Technologies: A Review. Polymers 2021, 13, 392. [Google Scholar] [CrossRef]
- Sin, J.; Lam, S.; Mohamed, A.; Lee, K. Degrading endocrine disrupting chemicals from wastewater by TiO2 photocatalysis: A review. Int. J. Photoenergy 2012, 2012, 185159. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Kang, S.; Xiong, R.; Chen, M. Environment-Friendly Removal Methods for Endocrine Disrupting Chemicals. Sustainability 2020, 12, 7615. [Google Scholar] [CrossRef]
- Ghosh, A.; Orasugh, J.T.; Chattopadhyay, D.; Ghosh, S. Electrospun nanofibres: A new vista for detection and degradation of harmful endocrine-disrupting chemicals. Groundw. Sustain. Dev. 2021, 16, 100716. [Google Scholar] [CrossRef]
- Raizada, P.; Sudhaik, A.; Singh, P. Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: A review. Mater. Sci. Energy Technol. 2019, 2, 509–525. [Google Scholar] [CrossRef]
- Abdelraheem, W.H.; He, X.; Duan, X.; Dionysiou, D.D. Degradation and mineralization of organic UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) using UV-254nm/H2O2. J. Hazard. Mater. 2015, 282, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Khaki, M.R.D.; Shafeeyan, M.S.; Raman, A.A.A.; Daud, W.M.A.W. Application of doped photocatalysts for organic pollutant degradation—A review. J. Environ. Manag. 2017, 198, 78–94. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wan, X.; Xu, X.; Chen, X. Facile fabrication of highly efficient AgI/ZnO heterojunction and its application of methylene blue and rhodamine B solutions degradation under natural sunlight. Appl. Surf. Sci. 2014, 321, 10–18. [Google Scholar] [CrossRef]
- Tonda, S.; Kumar, S.; Shanker, V. In situ growth strategy for highly efficient Ag2CO3/g-C3N4 hetero/nanojunctions with enhanced photocatalytic activity under sunlight irradiation. J. Environ. Chem. Eng. 2015, 3, 852–861. [Google Scholar] [CrossRef]
- Finegold, L.; Cude, J.L. Biological Sciences: One and Two-dimensional Structure of Alpha-Helix and Beta-Sheet Forms of Poly(L-Alanine) shown by Specific Heat Measurements at Low Temperatures (1.5–20 K). Nature 1972, 238, 38–40. [Google Scholar] [CrossRef]
- Yu, C.; Wei, L.; Zhou, W.; Dionysiou, D.D.; Zhu, L.; Shu, Q.; Liu, H. A visible-light-driven core-shell like Ag2S@Ag2CO3 composite photocatalyst with high performance in pollutants degradation. Chemosphere 2016, 157, 250–261. [Google Scholar] [CrossRef]
- Hu, H.; Lin, Y.; Hu, Y.H. Synthesis, structures and applications of single component core-shell structured TiO2: A review. Chem. Eng. J. 2019, 375, 122029. [Google Scholar] [CrossRef]
- Kumar, A. A Review on the Factors Affecting the Photocatalytic Degradation of Hazardous Materials. Mater. Sci. Eng. Int. J. 2017, 1, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, S.; Gu, P.; Zhang, T.; Chen, D.; Li, N.; Xu, Q.; Lu, J. Conjugate Polymer-clothed TiO2@V2O5 nanobelts and their enhanced visible light photocatalytic performance in water remediation. J. Colloid Interface Sci. 2020, 578, 402–411. [Google Scholar] [CrossRef]
- Mehta, M.; Krishnamurthy, S.; Basu, S.; Nixon, T.; Singh, A. BiVO4/TiO2 core-shell heterostructure: Wide range optical absorption and enhanced photoelectrochemical and photocatalytic performance. Mater. Today Chem. 2020, 17, 100283. [Google Scholar] [CrossRef]
- Alam, U.; Khan, A.; Raza, W.; Khan, A.; Bahnemann, D.; Muneer, M. Highly efficient Y and V co-doped ZnO photocatalyst with enhanced dye sensitized visible light photocatalytic activity. Catal. Today 2017, 284, 169–178. [Google Scholar] [CrossRef]
- Bora, L.V.; Mewada, R. Photocatalytic decolouration, degradation and disinfection capability of Ag2CO3/ZnO in natural sunlight. J. Indian Chem. Soc. 2022, 99, 100311. [Google Scholar] [CrossRef]
- Li, W.; Qin, L.; Wang, Z.; Xu, G.; Zheng, H.; Zhou, L.; Chen, Z. Efficient porous carbon nitride/Ag3PO4 photocatalyst for selective oxidation of amines to imines: Z-scheme heterojunction and interfacial adsorption. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 652, 129806. [Google Scholar] [CrossRef]
- Amirulsyafiee, A.; Khan, M.; Harunsani, M. Ag3PO4 and Ag3PO4—Based visible light active photocatalysts:Recent progress, synthesis, and photocatalytic applications. Catal. Commun. 2022, 172, 106556. [Google Scholar] [CrossRef]
- Liu, R.; Li, H.; Duan, L.; Shen, H.; Zhang, Q.; Zhao, X. The synergistic effect of graphene oxide and silver vacancy in Ag3PO4-based photocatalysts for rhodamine B degradation under visible light. Appl. Surf. Sci. 2018, 462, 263–269. [Google Scholar] [CrossRef]
- Duan, J.; Fang, X.; Li, C.; Qu, J.; Guo, L.; Zou, Y.; Xiang, M.; Wang, W. Efficient and stable monolithic microreactor with Ag/AgCl photocatalysts coated on polydopamine modified melamine sponge for photocatalytic water purification. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 659, 130759. [Google Scholar] [CrossRef]
- Yang, J.; Li, L.; Fu, F.; Xu, H.; Da, K.; Cao, S.; Chen, W.; Yang, L.; Fan, X. Construction of Z-scheme Ag/AgCl/Bi2WO6 photocatalysts with enhanced visible-light photocatalytic performance for gaseous toluene degradation. Appl. Surf. Sci. 2023, 610, 155598. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, H.; Sun, X.; Zhang, H.; Xian, T. Preparation and photocatalytic application of ternary n-BaTiO3/Ag/p-AgBr heterostructured photocatalysts for dye degradation. Mater. Res. Bull. 2020, 124, 110754. [Google Scholar] [CrossRef]
- Sabzehmeidani, M.; Karimi, H.; Ghaedi, M.; Avargani, V. Construction of efficient and stable ternary ZnFe2O4/Ag/AgBr Z-scheme photocatalyst based on ZnFe2O4 nanofibers under LED visible light. Mater. Res. Bull. 2021, 143, 111449. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, H.; Lv, J.; Zhao, J.; Jiang, D.; Zhan, Q. Synthesis and characterization of Bi2SiO5-coated Ag/AgBr photocatalyst with highly efficient decontamination of organic pollutants. Appl. Surf. Sci. 2021, 578, 152074. [Google Scholar] [CrossRef]
- Xu, H.; Xie, J.; Jia, W.; Wu, G.; Cao, Y. The formation of visible light-driven Ag/Ag2O photocatalyst with excellent property of photocatalytic activity and photocorrosion inhibition. J. Colloid Interface Sci. 2018, 516, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhai, J.; Jiang, H.; Liu, D.; Zhang, L. CdS/Ag2S nanocomposites photocatalyst with enhanced visible light photocatalysis activity. Solid State Sci. 2019, 98, 106020. [Google Scholar] [CrossRef]
- Zhao, W.; Li, J.; Wei, Z.; Wang, S.; He, H.; Sun, C.; Yang, S. Fabrication of a ternary plasmonic photocatalyst of Ag/AgVO3/RGO and its excellent visible-light photocatalytic activity. Appl. Catal. B Environ. 2015, 179, 9–20. [Google Scholar] [CrossRef]
- Mansha, M.S.; Iqbal, T. Experimental and theoretical study of novel rGO/AgVO3 nano-hetrostructures for their application as efficient photocatalyst. Opt. Mater. 2022, 131, 112591. [Google Scholar] [CrossRef]
- Alheshibri, M.; Elsayed, K.; Haladu, S.A.; Magami, S.M.; Al Baroot, A.; Ercan, I.; Ercan, F.; Manda, A.A.; Çevik, E.; Kayed, T.S.; et al. Synthesis of Ag nanoparticles-decorated on CNTs/TiO2 nanocomposite as efficient photocatalysts via nanosecond pulsed laser ablation. Opt. Laser Technol. 2022, 155, 108443. [Google Scholar] [CrossRef]
- Dai, Y.-D.; Lyu, R.-J.; Wu, T.; Huang, C.-C.; Lin, Y.-W. Influences of silver halides AgX (X = Cl, Br, and I) on magnesium bismuth oxide photocatalyst in methylene blue degradation under visible light irradiation. J. Photochem. Photobiol. A Chem. 2020, 397, 112585. [Google Scholar] [CrossRef]
- Lan, Y.; Qian, X.; Zhao, C.; Zhang, Z.; Chen, X.; Li, Z. High performance visible light driven photocatalysts silver halides and graphitic carbon nitride (X=Cl, Br, I) nanocomposites. J. Colloid Interface Sci. 2013, 395, 75–80. [Google Scholar] [CrossRef]
- Veerakumar, P.; Sangili, A.; Saranya, K.; Pandikumar, A.; Lin, K.-C. Palladium and silver nanoparticles embedded on zinc oxide nanostars for photocatalytic degradation of pesticides and herbicides. Chem. Eng. J. 2021, 410, 128434. [Google Scholar] [CrossRef]
- González, V.J.; Vázquez, E.; Villajos, B.; Tolosana-Moranchel, A.; Duran-Valle, C.; Faraldos, M.; Bahamonde, A. Eco-friendly mechanochemical synthesis of titania-graphene nanocomposites for pesticide photodegradation. Sep. Purif. Technol. 2022, 289, 120638. [Google Scholar] [CrossRef]
- Huang, F.; Gao, F.; Li, C.; Campos, L.C. Photodegradation of free estrogens driven by UV light: Effects of operation mode and water matrix. Sci. Total Environ. 2022, 835, 155515. [Google Scholar] [CrossRef]
- Javaid, A.; Imran, M.; Latif, S.; Hussain, N.; Bilal, M. Functionalized magnetic nanostructured composites and hybrids for photocatalytic elimination of pharmaceuticals and personal care products. Sci. Total Environ. 2022, 849, 157683. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L. Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: A review. Sustain. Cities Soc. 2016, 27, 407–418. [Google Scholar] [CrossRef]
- Zhang, X.; Su, H.; Gao, P.; Li, B.; Feng, L.; Liu, Y.; Du, Z.; Zhang, L. Effects and mechanisms of aged polystyrene microplastics on the photodegradation of sulfamethoxazole in water under simulated sunlight. J. Hazard. Mater. 2022, 433, 128813. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.; Zhang, S.; Zhang, M.; Hou, J. A critical review of presence, removal and potential impacts of endocrine disruptors bisphenol A. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 254, 109275. [Google Scholar] [CrossRef]
- Komesli, O.; Muz, M.; Ak, M.; Bakırdere, S.; Gokcay, C. Occurrence, fate and removal of endocrine disrupting compounds (EDCs) in Turkish wastewater treatment plants. Chem. Eng. J. 2015, 277, 202–208. [Google Scholar] [CrossRef]
- Kumar, M.; Sarma, D.; Shubham, S.; Kumawat, M.; Verma, V.; Prakash, A.; Tiwari, R. Environmental Endocrine-Disrupting Chemical Exposure: Role in Non-Communicable Diseases. Front. Public Health 2020, 8, 553850. [Google Scholar] [CrossRef]
- Ahmed, S.; Rasul, M.; Brown, R.; Hashib, M. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review. J. Environ. Manag. 2011, 92, 311–330. [Google Scholar] [CrossRef] [Green Version]
- Olasupo, A.; Suah, F.B.M. Recent advances in the removal of pharmaceuticals and endocrine-disrupting compounds in the aquatic system: A case of polymer inclusion membranes. J. Hazard. Mater. 2020, 406, 124317. [Google Scholar] [CrossRef]
- Corsini, E.; Ruffo, F.; Racchi, M. Steroid hormones, endocrine disrupting compounds and immunotoxicology. Curr. Opin. Toxicol. 2018, 10, 69–73. [Google Scholar] [CrossRef]
- Vessa, B.; Perlman, B.; McGovern, P.G.; Morelli, S.S. Endocrine disruptors and female fertility: A review of pesticide and plasticizer effects. F&S Rep. 2022, 3, 86–90. [Google Scholar] [CrossRef]
- Mnif, W.; Hassine, A.I.H.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of Endocrine Disruptor Pesticides: A Review. Int. J. Environ. Res. Public Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Hajji, L.; Ismail, A.A.; Bumajdad, A.; Alsaidi, M.; Ahmed, S.; Al-Hazza, A.; Ahmed, N. Photodegradation of powerful five estrogens collected from waste water treatment plant over visible-light-driven Au/TiO2 photocatalyst. Environ. Technol. Innov. 2021, 24, 101958. [Google Scholar] [CrossRef]
- Vaiano, V.; Matarangolo, M.; Murcia, J.; Rojas, H.; Navío, J.; Hidalgo, M. Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Appl. Catal. B Environ. 2018, 225, 197–206. [Google Scholar] [CrossRef]
- Hayati, F.; Moradi, S.; Saei, S.F.; Madani, Z.; Giannakis, S.; Isari, A.A.; Kakavandi, B. A novel, Z-scheme ZnO@AC@FeO photocatalyst, suitable for the intensification of photo-mediated peroxymonosulfate activation: Performance, reactivity and bisphenol A degradation pathways. J. Environ. Manag. 2022, 321, 115851. [Google Scholar] [CrossRef]
- Batista, W.C.; da Cunha, R.; Santos, A.; Reis, P.; Furtado, C.; Silva, M.; de Fátima Gorgulho, H. Synthesis of a reusable magnetic photocatalyst based on carbon xerogel/TiO2 composites and its application on acetaminophen degradation. Ceram. Int. 2022, 48, 34395–34404. [Google Scholar] [CrossRef]
- Silvestri, S.; Burgo, T.; Dias-Ferreira, C.; Labrincha, J.; Tobaldi, D. Polypyrrole-TiO2 composite for removal of 4-chlorophenol and diclofenac. React. Funct. Polym. 2020, 146, 104401. [Google Scholar] [CrossRef]
- Monfared, A.H.; Jamshidi, M. Synthesis of polyaniline/titanium dioxide nanocomposite (PAni/TiO2) and its application as photocatalyst in acrylic pseudo paint for benzene removal under UV/VIS lights. Prog. Org. Coatings 2019, 136, 105257. [Google Scholar] [CrossRef]
- Anjum, M.; Oves, M.; Kumar, R.; Barakat, M. Fabrication of ZnO-ZnS@polyaniline nanohybrid for enhanced photocatalytic degradation of 2-chlorophenol and microbial contaminants in wastewater. Int. Biodeterior. Biodegrad. 2017, 119, 66–77. [Google Scholar] [CrossRef]
- Thakare, S.; Mate, V.; Urkude, K.; Gawande, S. Graphene-TiO2-polyaniline nanocomposite: A new green and efficient catalyst as a alternative for noble metal and NaBH4 induced the reduction of 4-nitro phenol. FlatChem 2020, 22, 100179. [Google Scholar] [CrossRef]
- Baishnisha, A.; Divakaran, K.; Balakumar, N.; Perumal, K.N.; Meenakshi, C.; Kannan, R.S. Synthesis of highly efficient g-CN@CuO nanocomposite for photocatalytic degradation of phenol under visible light. J. Alloys Compd. 2021, 886, 161167. [Google Scholar] [CrossRef]
- Kumar, S.; Kaushik, R.; Purohit, L. RGO supported ZnO/SnO2 Z-scheme heterojunctions with enriched ROS production towards enhanced photocatalytic mineralization of phenolic compounds and antibiotics at low temperature. J. Colloid Interface Sci. 2023, 632, 196–215. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Mo, L.; Liu, Y.; Zhang, H.; Ge, Y.; Zhou, Y. Ag2CO3 Decorating BiOCOOH Microspheres with Enhanced Full-Spectrum Photocatalytic Activity for the Degradation of Toxic Pollutants. Nanomaterials 2018, 8, 914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mergenbayeva, S.; Atabaev, T.; Vakros, J.; Mantzavinos, D.; Poulopoulos, S. Photocatalytic Degradation of 4-tert-butylphenol Using Solar Light Responsive Ag2CO3. Catalysts 2022, 12, 1523. [Google Scholar] [CrossRef]
- Petala, A.; Nasiou, A.; Mantzavinos, D.; Frontistis, Z. Photocatalytic Evaluation of Ag2CO3 for Ethylparaben Degradation in Different Water Matrices. Water 2020, 12, 1180. [Google Scholar] [CrossRef] [Green Version]
- Rosman, N.; Salleh, W.; Mohamed, M.; Harun, Z.; Ismail, A.; Aziz, F. Constructing a compact heterojunction structure of Ag2CO3/Ag2O in-situ intermediate phase transformation decorated on ZnO with superior photocatalytic degradation of ibuprofen. Sep. Purif. Technol. 2020, 251, 117391. [Google Scholar] [CrossRef]
- Rosman, N.; Salleh, W.N.W.; Razali, N.A.M.; Ahmad, S.N.; Ismail, N.H.; Aziz, F.; Harun, Z.; Ismail, A.F.; Yusof, N. Ibuprofen removal through photocatalytic filtration using antifouling PVDF- ZnO/Ag2CO3/Ag2O nanocomposite membrane. Mater. Today Proc. 2019, 42, 69–74. [Google Scholar] [CrossRef]
- Hir, Z.A.M.; Abdullah, A.H. Hybrid polymer-based photocatalytic materials for the removal of selected endocrine disrupting chemicals (EDCs) from aqueous media: A review. J. Mol. Liq. 2022, 361, 119632. [Google Scholar] [CrossRef]
- Pirzada, B.M.; Pushpendra; Kunchala, R.K.; Naidu, B. Synthesis of LaFeO3/Ag2CO3 Nanocomposites for Photocatalytic Degradation of Rhodamine B and p-Chlorophenol under Natural Sunlight. ACS Omega 2019, 4, 2618–2629. [Google Scholar] [CrossRef] [Green Version]
- Wu, C. Synthesis of Ag2CO3/ZnO nanocomposite with visible light-driven photocatalytic activity. Mater. Lett. 2014, 136, 262–264. [Google Scholar] [CrossRef]
- Rosman, N.; Salleh, W.; Ismail, A.; Jaafar, J.; Harun, Z.; Aziz, F.; Mohamed, M.; Ohtani, B.; Takashima, M. Photocatalytic degradation of phenol over visible light active ZnO/Ag2CO3/Ag2O nanocomposites heterojunction. J. Photochem. Photobiol. A Chem. 2018, 364, 602–612. [Google Scholar] [CrossRef]
- Xu, H.; Song, Y.; Song, Y.; Zhu, J.; Zhu, T.; Liu, C.; Zhao, D.; Zhang, Q.; Li, H. Synthesis and characterization of g-C3N4/Ag2CO3 with enhanced visible-light photocatalytic activity for the degradation of organic pollutants. RSC Adv. 2014, 4, 34539–34547. [Google Scholar] [CrossRef]
- Sánchez-Cid, P.; Paez, C.A.J.; Navío, J.; Martín-Gómez, A.; Hidalgo, M.C. Coupling of Ag2CO3 to an optimized ZnO photocatalyst: Advantages vs. disadvantages. J. Photochem. Photobiol. A Chem. 2018, 369, 119–132. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, C.; Yu, J.; Chen, Z.; Jiang, J.; Zeng, K.; Cai, L.; Yang, Z. Synthesis of dual Z-scheme photocatalyst ZnFe2O4/PANI/Ag2CO3with enhanced visible light photocatalytic activity and degradation of pollutants. Adv. Powder Technol. 2021, 33, 103348. [Google Scholar] [CrossRef]
- Hu, J.; Xu, H.; Wang, S.; Jia, W.; Cao, Y. In-situ solid-state synthesis and regulation of Ag2O/Ag2CO3 heterojunctions with promoted visible-light driven photocatalytic decomposition for organic pollutant. Sep. Purif. Technol. 2019, 226, 95–108. [Google Scholar] [CrossRef]
- Ma, L.; Jia, I.; Guo, X.; Xiang, L. High performance of Pd catalysts on bimodal mesopore for the silica catalytic oxidation of toluene. Chin. J. Catal. 2014, 35, 108–119. [Google Scholar] [CrossRef]
- Perumal, K.; Shanavas, S.; Ahamad, T.; Karthigeyan, A.; Murugakoothan, P. Construction of Ag2CO3/BiOBr/CdS ternary composite photocatalyst with improved visible-light photocatalytic activity on tetracycline molecule degradation. J. Environ. Sci. 2023, 125, 47–60. [Google Scholar] [CrossRef]
- Liu, Y.; Kong, J.; Yuan, J.; Zhao, W.; Zhu, X.; Sun, C.; Xie, J. Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation Chem. Eng. J. 2018, 331, 242–254. [Google Scholar]
- Zhu, X.-D.; Wang, Y.; Sun, R.-J.; Zhou, D.-M. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere 2013, 92, 925–932. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, H.; Liu, H.; Niu, C.; Huang, D.; Yang, Y.; Liang, C.; Li, L.; Li, J. Construction of dual S-scheme Ag2CO3/Bi4O5I2/g-C3N4 heterostructure photocatalyst with enhanced visible-light photocatalytic degradation for tetracycline. Chem. Eng. J. 2022, 438, 135471. [Google Scholar] [CrossRef]
- Martín, S.S.; Rivero, M.J.; Ortiz, I. Unravelling the Mechanisms that Drive the Performance of Photocatalytic Hydrogen Production. Catalysts 2020, 10, 901. [Google Scholar] [CrossRef]
- Shen, J.; Qian, L.; Huang, J.; Guo, Y.; Zhang, Z. Enhanced degradation toward Levofloxacin under visible light with S-scheme heterojunction In2O3/Ag2CO3: Internal electric field, DFT calculation and degradation mechanism. Sep. Purif. Technol. 2021, 275, 119239. [Google Scholar] [CrossRef]
- Raizada, P.; Sudhaik, A.; Singh, P.; Shandilya, P.; Thakur, P.; Jung, H. Visible light assisted photodegradation of 2,4-dinitrophenol using Ag2CO3 loaded phosphorus and sulphur co-doped graphitic carbon nitride nanosheets in simulated wastewater. Arab. J. Chem. 2018, 13, 3196–3209. [Google Scholar] [CrossRef]
- Jiang, L.; Yuan, X.; Zeng, G.; Chen, X.; Wu, Z.; Liang, J.; Zhang, J.; Wang, H.; Wang, H. Phosphorus- and Sulfur-Codoped g-C3N4: Facile Preparation, Mechanism Insight, and Application as Efficient Photocatalyst for Tetracycline and Methyl Orange Degradation under Visible Light Irradiation. ACS Sustain. Chem. Eng. 2017, 5, 5831–5841. [Google Scholar] [CrossRef]
- Reheman, A.; Kadeer, K.; Okitsu, K.; Halidan, M.; Tursun, Y.; Dilinuer, T.; Abulikemu, A. Facile photo-ultrasonic assisted reduction for preparation of rGO/Ag2CO3 nanocomposites with enhanced photocatalytic oxidation activity for tetracycline. Ultrason. Sonochemistry 2019, 51, 166–177. [Google Scholar] [CrossRef]
- Li, G.; Zeng, G.; Chen, Z.; Hong, J.; Ji, X.; Lan, Z.; Tan, X.; Li, M.; Hu, X.; Tang, C. In Situ Coupling Carbon Defective C3N5 Nanosheet with Ag2CO3 for Effective Degradation of Methylene Blue and Tetracycline Hydrochloride. Nanomaterials 2022, 12, 2701. [Google Scholar] [CrossRef]
- Bagheri, S.; Hir, Z.A.M.; Yousefi, A.T.; Hamid, S.B.A. Progress on mesoporous titanium dioxide: Synthesis, modification and applications. Microporous Mesoporous Mater. 2015, 218, 206–222. [Google Scholar] [CrossRef]
- Wen, X.; Niu, C.; Guo, H.; Zhang, L.; Liang, C.; Zeng, G. Photocatalytic degradation of levofloxacin by ternary Ag2CO3/CeO2/AgBr photocatalyst under visible-light irradiation: Degradation pathways, mineralization ability, and an accelerated interfacial charge transfer process study. J. Catal. 2018, 358, 211–223. [Google Scholar] [CrossRef]
- Li, L.; Niu, C.; Guo, H.; Wang, J.; Ruan, M.; Zhang, L.; Liang, C.; Liu, H.; Yang, Y. Efficient degradation of Levofloxacin with magnetically separable ZnFe2O4/NCDs/Ag2CO3 Z-scheme heterojunction photocatalyst: Vis-NIR light response ability and mechanism insight. Chem. Eng. J. 2020, 383, 123192. [Google Scholar] [CrossRef]
- Tian, J.; Liu, Z.; Zeng, D.; Yu, C.; Liu, X.; Yang, K.; Liu, H. The preparation and characterization of CaMg(CO3)2@Ag2CO3/Ag2S/NCQD nanocomposites and their photocatalytic performance in phenol degradation. J. Nanoparticle Res. 2018, 20, 182. [Google Scholar] [CrossRef]
- Fu, S.; Yuan, W.; Yan, Y.; Liu, H.; Shi, X.; Zhao, F.; Zhou, J. Highly efficient visible-light photoactivity of Z-scheme MoS2/Ag2CO3 photocatalysts for organic pollutants degradation and bacterial inactivation. J. Environ. Manag. 2019, 252, 109654. [Google Scholar] [CrossRef]
- Jo, W.-K.; Kumar, S.; Yadav, P.; Tonda, S. In situ phase transformation synthesis of unique Janus Ag2O/Ag2CO3 heterojunction photocatalyst with improved photocatalytic properties. Appl. Surf. Sci. 2018, 445, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Syazwani, O.; Hir, Z.M.; Mukhair, H.; Mastuli, M.; Abdullah, A. Designing visible-light-driven photocatalyst of Ag3PO4/CeO2 for enhanced photocatalytic activity under low light irradiation. J. Mater. Sci. Mater. Electron. 2018, 30, 415–423. [Google Scholar] [CrossRef]
- Zhang, Z.; Yates, J.T., Jr. Band Bending in Semiconductors: Chemical and Physical Consequences at Surfaces and Interfaces. Chem. Rev. 2012, 112, 5520–5551. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.-J.; Niu, C.-G.; Zhang, L.; Liang, C.; Zeng, G.-M. A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: Possible degradation pathways, mineralization activity and an in depth mechanism insight. Appl. Catal. B Environ. 2017, 221, 701–714. [Google Scholar] [CrossRef]
- Sun, H.; Qin, P.; Wu, Z.; Liao, C.; Guo, J.; Luo, S.; Chai, Y. Visible light-driven photocatalytic degradation of organic pollutants by a novel Ag3VO4/Ag2CO3 p–n heterojunction photocatalyst: Mechanistic insight and degradation pathways. J. Alloys Compd. 2020, 834, 155211. [Google Scholar] [CrossRef]
- Hir, Z.A.M.; Abdullah, A.H.; Zainal, Z.; Lim, H.N. Visible light-active hybrid film photocatalyst of polyethersulfone–reduced TiO2: Photocatalytic response and radical trapping investigation. J. Mater. Sci. 2018, 53, 13264–13279. [Google Scholar] [CrossRef]
- Lazorski, M.S.; Castellano, F.N. Advances in the light conversion properties of Cu(I)-based photosensitizers. Polyhedron 2014, 82, 57–70. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Khadem, S.S.M.; Habibzadeh, S.; Esmaeili, A.; Abida, O.; Vatanpour, V.; Rabiee, N.; Bagherzadeh, M.; Iravani, S.; Saeb, M.R.; et al. Quantum dots for photocatalysis: Synthesis and environmental applications. Green Chem. 2021, 23, 4931–4954. [Google Scholar] [CrossRef]
- Yuan, Y.; Jin, N.; Saghy, P.; Dube, L.; Zhu, H.; Chen, O. Quantum Dot Photocatalysts for Organic Transformations. J. Phys. Chem. Lett. 2021, 12, 7180–7193. [Google Scholar] [CrossRef]
- Tan, P.; Li, H.; Wang, J.; Gopinath, S.C. Silver nanoparticle in biosensor and bioimaging: Clinical perspectives. Biotechnol. Appl. Biochem. 2020, 2045, 1236–1242. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Wang, Y.; Yao, X.; Chen, D.; Fan, M.; Jin, Z.; He, Q. Photocatalysis-mediated drug-free sustainable cancer therapy using nanocatalyst. Nat. Commun. 2021, 12, 1345. [Google Scholar] [CrossRef] [PubMed]
- Poormohammadi, A.; Bashirian, S.; Rahmani, A.R.; Azarian, G.; Mehri, F. Are photocatalytic processes effective for removal of airborne viruses from indoor air? A narrative review. Environ. Sci. Pollut. Res. 2021, 28, 43007–43020. [Google Scholar] [CrossRef]
- Marambio-Jones, C.; Hoek, E.M.V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 2010, 12, 1531–1551. [Google Scholar] [CrossRef]
- Salvadores, F.; Reli, M.; Alfano, O.M.; Kočí, K.; Ballari, M.D.L.M. Efficiencies Evaluation of Photocatalytic Paints Under Indoor and Outdoor Air Conditions. Front. Chem. 2020, 8, 551710. [Google Scholar] [CrossRef] [PubMed]
- Teets, T.S.; Nocera, D.G. Photocatalytic hydrogen production. Chem. Commun. 2021, 47, 9268. [Google Scholar] [CrossRef]
- Davis, K.A.; Yoo, S.; Shuler, E.W.; Sherman, B.D.; Lee, S.; Leem, G. Photocatalytic hydrogen evolution from biomass conversion. Nano Converg. 2021, 8, 6. [Google Scholar] [CrossRef] [PubMed]
Potential EDCs | Sources of EDCs | Harmful Effect | Ref. |
---|---|---|---|
Pharmaceutical and personal care products (PPCPs) | antibiotics, analgesics, beta-blockers, lipid regulators, anti-inflammatory drugs, X-ray contrast media, and estrogens |
| [4,49] |
Hormones and steroids | estrogens, androgens, glucocorticoids, and mineralocorticoids |
| [50] |
Plasticizers and additive | polychlorinated biphenyls (PCBs), Phthalates (DEP, DEHP, DBP), Bisphenol A, Polyfluoroalkyl compound (PFOS, PFOA) |
| [47,51] |
Pesticides and herbicides | polychlorinated biphenyls (PCBs), Dichlorodiphenyltrichloroethane (DDE), Organochlorines (DDT) |
| [47,52] |
Semiconductor-Based Photocatalyst | EDCs Target Compounds | Light Source/Experimental Condition | Photodegradation Efficiency (%) | Ref. |
---|---|---|---|---|
ZnO@AC@FeO | bisphenol A | UV lamp (UV–C irradiation, λ = 254 nm, OSRAM 8 W 60 min irradiation time | 95.6% | [55] |
Carbon xerogel/TiO2 composites | acetaminophen | 125 W mercury lamp, with a power density of 80 w/cm2 to 300 w/cm2 and a wavelength in the range of 266–578 nm3 h irradiation time | 99.2% | [56] |
Polypyrrole-TiO2 composite | pesticide 4-CP and diclofenac | Xenon lamp (600 Wm−2) 60 min irradiation time | 90% of DCF and 40% of 4-CP | [57] |
Polyaniline/titanium dioxide nanocomposite (PAni/TiO2) | benzene | 5 (UV-C) lamps (8 W) with wavelength of 265 nm and 11 visible light lamps (8 W) 70 min irradiation time | 50% under UV light 23% under visible light | [58] |
ZnO-ZnS@polyaniline nanohybrid | 2-chlorophenol | cool white visible light lamps (Sylvania s068) of total 104 W 240 min irradiation time | 88% | [59] |
Graphene-TiO2-polyaniline nanocomposite | 4-nitrophenol | Visible light 5 min irradiation time | 100% | [60] |
ZnO/SnO2 Z-scheme heterojunctions | p-bromophenol and bisphenol A | UV light (30 W, 365 nm) 180 min irradiation time | 98.64% (p-bromophenol) and 98.50% (bisphenol A) | [62] |
Ag2CO3 microparticles | 4-tert-butylphenol | Simulated solar 60 min irradiation time | 100% | [64] |
Ag2CO3 | ethyl paraben (EP) | solar simulator (Oriel, model LCS-100, Newport, Irvine, CA, USA) equipped with a 100 W xenon ozone-free lamp) 30 min irradiation time | 90% | [65] |
ZnO/Ag2CO3/Ag2O | ibuprofen | Visible (a white light-emitting diode (LED) spotlight (>420 nm, 100 W) 480 min irradiation time | 99.3% | [66] |
PVDF-ZnO/Ag2CO3/Ag2O nanocomposite membrane | ibuprofen | Visible (Light-emitting diode lamp, k = 420 nm, 100 W) | 35.27% | [67] |
LaFeO3/Ag2CO3 nanocomposites | p-chlorophenol | Visible 450 W xenon lamp operated at 400 W with 395 nm filter) 45 min irradiation time | 59% | [69] |
Photocatalyst | Synthesis Technique | EDC Target Compounds | Light Source | Photodegradation Performance | Ref. |
---|---|---|---|---|---|
Ag2S/Ag2CO3 composite | Coprecipitation method | Phenol and Bisphenol A | 300 W tungsten halogen lamp (Visible) | The highest photocatalytic activity (reaching 54% phenol degradation in 150 min) by Ag2S@Ag2CO3 photocatalysts 32%Ag2S@Ag2CO3 displayed higher decomposition rate than Ag2CO3 for degradation of bisphenol A | [16] |
LaFeO3/Ag2CO3 hetero-structure | co-precipitation method | p-chlorophenol | natural sunlight | LaFeO3/Ag2CO3 exhibited the highest photocatalytic activity with percentage degradation of 59% for p-chlorophenol within 45 min under natural sunlight irradiation. | [69] |
ZnO/Ag2CO3 | facile in situ precipitation–deposition | phenol | Visible lamp and UV lamp | 1 and 2% ZnO/Ag2CO3 shows highest efficiency degrading phonol under UV irradiation compared to ZnO and Ag2CO3 | [73] |
ZnFe2O4/PANI/Ag2CO3 | Hydrothermal/Co-precipitation method | bisphenol A | incandescent lamp (Visible) | ZnFe2O4/PANI/Ag2CO3 exhibited the best photocatalytic ability of bisphenol A with percentage degradation of 86.36% under 40 min irradiation | [74] |
Ag2O/Ag2CO3 | Simple room temperature solid-state (RTSS) chemical reaction | Phenol and Bisphenol A | 350W Xe lamp (Visible) | AAC-6 with mass ratio of 36.2 and 63.8 for Ag2CO3 and Ag2O exhibited the highest photocatalytic degradation performance with percentage degradation of 80% for Bisphenol A and 70% for Phenol after 60 min | [75] |
N-doped carbon quantum dots (CQDs)/Ag2CO3 | Precipitation method | phenol | 350-W Xe lamp with 420 nm long-pass (Visible) | Highest photocatalytic performance in phenol degradation was obtained over 3N-CQDs/Ag2CO3 in 150 min | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafaie, H.A.; Ramli, N.I.T.; Khusaimi, Z.; Mohd Sarjidan, M.A.; Dulyaseree, P.; Hir, Z.A.M. Ag2CO3-Based Photocatalyst with Enhanced Photocatalytic Activity for Endocrine-Disrupting Chemicals Degradation: A Review. Catalysts 2023, 13, 540. https://doi.org/10.3390/catal13030540
Rafaie HA, Ramli NIT, Khusaimi Z, Mohd Sarjidan MA, Dulyaseree P, Hir ZAM. Ag2CO3-Based Photocatalyst with Enhanced Photocatalytic Activity for Endocrine-Disrupting Chemicals Degradation: A Review. Catalysts. 2023; 13(3):540. https://doi.org/10.3390/catal13030540
Chicago/Turabian StyleRafaie, Hartini Ahmad, Nurul Infaza Talalah Ramli, Zuraida Khusaimi, Mohd Arif Mohd Sarjidan, Paweena Dulyaseree, and Zul Adlan Mohd Hir. 2023. "Ag2CO3-Based Photocatalyst with Enhanced Photocatalytic Activity for Endocrine-Disrupting Chemicals Degradation: A Review" Catalysts 13, no. 3: 540. https://doi.org/10.3390/catal13030540
APA StyleRafaie, H. A., Ramli, N. I. T., Khusaimi, Z., Mohd Sarjidan, M. A., Dulyaseree, P., & Hir, Z. A. M. (2023). Ag2CO3-Based Photocatalyst with Enhanced Photocatalytic Activity for Endocrine-Disrupting Chemicals Degradation: A Review. Catalysts, 13(3), 540. https://doi.org/10.3390/catal13030540