Adsorption Efficiency and Photocatalytic Activity of Silver Sulfide Nanoparticles Deposited on Carbon Nanotubes
Abstract
:1. Introduction
2. Results and Discussion
CNTs-Ag2S + hν → e− + h+ |
h+ + H2O → HO− + H+ |
e− + O2 → O2•− |
O2•− + H+ →HO2• |
HO2• + H2O → H2O2 + HO• |
AYR + HO• → H2O + CO2 + nontoxic products |
3. Experimental
3.1. Materials
3.2. Preparation of CNTs-Ag2S
3.3. Preparation of Ag2S
3.4. Adsorption Experiments
3.5. Photocatalytic Activity
3.6. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, K.; Fang, J.; Li, L.; Deng, J.; Chen, F. Progress of graphite carbon nitride with different dimensions in the photocatalytic degradation of dyes: A review. J. Alloy. Compd. 2022, 901, 163589. [Google Scholar] [CrossRef]
- Zhan, S.; Wu, Y.; Wang, L.; Zhan, X.; Zhou, P. A mini-review on functional nucleic acids-based heavy metal ion detection. Biosens. Bioelectron. 2016, 86, 353–368. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Zhao, C.; Li, Y.; Li, Q.; Bayongzhong, X.; Peng, D.; Huang, T. Cadmium adsorption performance and mechanism from aqueous solution using red mud modified with amorphous MnO2. Sci. Rep. 2022, 12, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef]
- Bailey, S.E.; Olin, T.J.; Bricka, R.; Adrian, D. A review of potentially low-cost sorbents for heavy metals. Water Res. 1999, 33, 2469–2479. [Google Scholar] [CrossRef]
- Drush, G. Increase of cadmium body burden for this century. Sci. Total Environ. 1993, 67, 75–89. [Google Scholar]
- Elkhatib, E.; Mahdy, A.; Sherif, F.; Elshemy, W. Competitive adsorption of cadmium (II) from aqueous solutions onto nano-particles of water treatment residual. J. Nanomater. 2016, 2016, 8496798. [Google Scholar] [CrossRef] [Green Version]
- Lei, T.; Li, S.-J.; Jiang, F.; Ren, Z.-X.; Wang, L.-L.; Yang, X.-J.; Tang, L.-H.; Wang, S.-X. Adsorption of Cadmium Ions from an Aqueous Solution on a Highly Stable Dopamine-Modified Magnetic Nano-Adsorbent. Nanoscale Res. Lett. 2019, 14, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Yusuff, A.S.; Popoola, L.T.; Babatunde, E.O. Adsorption of cadmium ion from aqueous solutions by copper-based metal organic framework: Equilibrium modeling and kinetic studies. Appl. Water Sci. 2019, 9, 106. [Google Scholar] [CrossRef] [Green Version]
- Masoudi, R.; Moghimi, H.; Azin, E.; Taheri, R. Adsorption of cadmium from aqueous solutions by novel Fe3O4- newly isolated Actinomucor sp. bionanoadsorbent: Functional group study. Artif. Cells Nanomed. Biotechnol. 2018, 46, S1092–S1101. [Google Scholar] [CrossRef] [Green Version]
- Tran, H.N.; You, S.-J.; Chao, H.-P. Effect of pyrolysis temperatures and times on the adsorption of cadmium onto orange peel derived biochar. Waste Manag. Res. J. Sustain. Circ. Econ. 2015, 34, 129–138. [Google Scholar] [CrossRef]
- Asuquo, E.; Martin, A.; Nzerem, P.; Siperstein, F.; Fan, X. Cd(II) adsorption and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: Equilibrium, kinetics and characterization studies. J. Environ. Chem. Eng. 2017, 5, 679–698. [Google Scholar] [CrossRef] [Green Version]
- Bulut, V.; Demirci, H.; Ozdes, D.; Gundogdu, A.; Bekircan, O.; Soylak, M.; Duran, C. A novel carrier element-free coprecipi-tation method for separation/preconcentration of lead and cadmium ions from environmental matrices. Environ. Prog. Sustain. Energy 2016, 35, 1709–1715. [Google Scholar] [CrossRef]
- Wong, C.-W.; Barford, J.P.; Chen, G.; McKay, G. Kinetics and equilibrium studies for the removal of cadmium ions by ion exchange resin. J. Environ. Chem. Eng. 2014, 2, 698–707. [Google Scholar] [CrossRef]
- Kumar, P.R.; Swathanthr, P.A.; Rao, V.B.; Rao, S.R.M. Adsorption of Cadmium and Zinc Ions from Aqueous Solution Using Low Cost Adsorbents. J. Appl. Sci. 2014, 14, 1372–1378. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Yang, L.; Xu, Z.; Sun, Q. Separation and recovery of heavy metals from waste water using synergistic solvent extraction. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Sanya, China, 19–21 November 2016; Volume 167, p. 12005. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Nan, J.; Wang, Z.; Ji, X.; Wu, F.; Liu, B.; Xiao, Q. Study on the efficiency of ultrafiltration technology in dealing with sudden cadmium pollution in surface water and ultrafiltration membrane fouling. Environ. Sci. Pollut. Res. 2019, 26, 16641–16651. [Google Scholar] [CrossRef]
- Bhadrinarayana, N.S.; Basha, C.A.; Anantharaman, N. Electrochemical Oxidation of Cyanide and Simultaneous Cathodic Removal of Cadmium Present in the Plating Rinse Water. Ind. Eng. Chem. Res. 2007, 46, 6417–6424. [Google Scholar] [CrossRef]
- Kim, H.S.; Seo, B.-H.; Kuppusamy, S.; Lee, Y.B.; Lee, J.-H.; Yang, J.-E.; Owens, G.; Kim, K.-R. A DOC coagulant, gypsum treatment can simultaneously reduce As, Cd and Pb uptake by medicinal plants grown in contaminated soil. Ecotoxicol. Environ. Saf. 2018, 148, 615–619. [Google Scholar] [CrossRef]
- Lan, Z.; Lin, Y.; Yang, C. Lanthanum-iron incorporated chitosan beads for adsorption of phosphate and cadmium from aqueous solutions. Chem. Eng. J. 2022, 448. [Google Scholar] [CrossRef]
- Foroutan, R.; Peighambardoust, S.; Mohammadi, R.; Peighambardoust, S.; Ramavandi, B. Cadmium ion removal from aqueous media using banana peel biochar/ Fe3O4/ZIF-67. Envir. Res. 2022, 211, 113020. [Google Scholar] [CrossRef]
- Dou, D.; Wei, D.; Guan, X.; Liang, Z.; Lan, L.; Lan, X.; Liu, P.; Mo, H.; Lan, P. Adsorption of copper (II) and cadmium (II) ions by in situ doped nano-calcium carbonate high-intensity chitin hydrogels. J. Hazard. Mater. 2021, 423, 127137. [Google Scholar] [CrossRef] [PubMed]
- Alsantali, R.I.; Alam Raja, Q.; Alzahrani, A.Y.; Sadiq, A.; Naeem, N.; Mughal, E.U.; Al-Rooqi, M.M.; El Guesmi, N.; Moussa, Z.; Ahmed, S.A. Miscellaneous azo dyes: A comprehensive review on recent advancements in biological and industrial applications. Dye. Pigment. 2022, 199, 110050. [Google Scholar] [CrossRef]
- Narayanasamy, L.; Murugesan, T. Degradation of Alizarin Yellow R using UV/H2O2 Advanced Oxidation Process. Environ. Prog. Sustain. Energy 2014, 33, 482–489. [Google Scholar] [CrossRef]
- Ahmed, A.; Usman, M.; Yu, B.; Ding, X.; Peng, Q.; Shen, Y.; Cong, H. Efficient photocatalytic degradation of toxic Alizarin yellow R dye from industrial wastewater using biosynthesized Fe nanoparticle and study of factors affecting the degradation rate. J. Photochem. Photobiol. B Biol. 2020, 202, 111682. [Google Scholar] [CrossRef] [PubMed]
- Suteu, D.; Zaharia, C.; Muresan, A.; Muresan, R.; Popescu, A. Textile wastewater treatment by homogenous oxidation with hydrogen peroxide. Environ. Eng. Manage. J. 2009, 8, 1359–1369. [Google Scholar]
- Jiao, X.; Yu, H.; Kong, Q.; Luo, Y.; Chen, Q.; Qu, J. Theoretical mechanistic studies on the degradation of alizarin yellow R initiated by hydroxyl radical. J. Phys. Org. Chem. 2014, 27, 519–526. [Google Scholar] [CrossRef]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Al Nafiey, A.; Addad, A.; Sieber, B.; Chastanet, G.; Barras, A.; Szunerits, S.; Boukherroub, R. Reduced graphene oxide deco-rated with Co3O4 nanoparticles (rGO-Co3O4) nanocomposite: A reusable catalyst for highly efficient reduction of 4-nitrophenol, and Cr(VI) and dye removal from aqueous solutions. Chem. Eng. J. 2017, 322, 375–384. [Google Scholar] [CrossRef]
- Zhu, C.; Mahmood, Z.; Siddique, M.S.; Wang, H.; Anqi, H.; Sillanpää, M. Structure-Based Long-Term Biodegradation of the Azo Dye: Insights from the Bacterial Community Succession and Efficiency Comparison. Water 2021, 13, 3017. [Google Scholar] [CrossRef]
- Zhang, Y.; He, P.; Jia, L.; Li, C.; Liu, H.; Wang, S.; Zhou, S., F. Dong Ti/PbO2-Sm2O3 composite based electrode for highly effi-cient electrocatalytic degradation of alizarin yellow R. J. Colloid Interface Sci. 2019, 533, 750–761. [Google Scholar] [CrossRef]
- Mcyotto, F.; Wei, Q.; Macharia, D.K.; Huang, M.; Shen, C.; Chow, C.W. Effect of dye structure on color removal efficiency by coagulation. Chem. Eng. J. 2020, 405, 126674. [Google Scholar] [CrossRef]
- Lee, J.-W.; Choi, S.-P.; Thiruvenkatachari, R.; Shim, W.-G.; Moon, H. Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dye. Pigment. 2006, 69, 196–203. [Google Scholar] [CrossRef]
- Unsal, Y.E.; Tuzen, M.; Soylak, M. Separation and Preconcentration of Sudan Blue II Using Membrane Filtration and UV-Visible Spectrophotometric Determination in River Water and Industrial Wastewater Samples. J. AOAC Int. 2015, 98, 213–217. [Google Scholar] [CrossRef]
- Kadirvelu, K.; Kavipriya, M.; Karthika, C.; Radhika, M.; Vennilamani, N.; Pattabhi, S. Utilization of various agricultural wastes for activated carbon preparation and application for the removal of dyes and metal ions from aqueous solutions. Bioresour. Technol. 2002, 87, 129–132. [Google Scholar] [CrossRef]
- Rajkumar, D.; Song, B.J.; Kim, J.G. Electrochemical degradation of Reactive Blue 19 in chloride medium for the treatment of textile dyeing wastewater with identification of intermediate compounds. Dye. Pigment. 2007, 72, 1–7. [Google Scholar] [CrossRef]
- Mahmoodi, N. Photocatalytic ozonation of dyes using multiwalled carbon nanotube. J. Mol. Catal. A 2013, 366, 254–260. [Google Scholar] [CrossRef]
- Neelgund, G.; Bliznyuk, V.; Oki, A. Photocatalytic activity and NIR laser response of polyanilineconjugated graphene nano-composite prepared by a novel acid-less method. Appl. Catal. B 2016, 187, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Neelgund, G.M.; Oki, A. Folic acid and CuS conjugated graphene oxide: An efficient photocatalyst for explicit degradation of toxic dyes. Appl. Surf. Sci. 2021, 566, 150648. [Google Scholar] [CrossRef]
- Singh, S.; Rao, C.; Nandi, C.K.; Mukherjee, T.K. Quantum Dot-Embedded Hybrid Photocatalytic Nanoreactors for Visible Light Photocatalysis and Dye Degradation. ACS Appl. Nano Mater. 2022, 5, 7427–7439. [Google Scholar] [CrossRef]
- Chouke, P.; Dadure, K.; Potbhare, A.; Bhusari, G.; Mondal, A.; Chaudhary, K.; Singh, V.; Desimone, M.; Chaudhary, R.; Masram, D. Biosynthesized δ-Bi2O3 nanoparticles from crinum viviparum flower extract for photocatalytic dye degradation and molecular docking. ACS Omega 2022, 7, 20983–20993. [Google Scholar] [CrossRef]
- Neelgund, G.M.; Oki, A. Photocatalytic activity of hydroxyapatite deposited graphene nanosheets under illumination to sunlight. Mater. Res. Bull. 2021, 146, 111593. [Google Scholar] [CrossRef]
- Hamd, A.; Shaban, M.; AlMohamadi, H.; Dryaz, A.R.; Ahmed, S.A.; Abu Al-Ola, K.A.; El-Mageed, H.R.A.; Soliman, N.K. Novel Wastewater Treatment by Using Newly Prepared Green Seaweed–Zeolite Nanocomposite. ACS Omega 2022, 7, 11044–11056. [Google Scholar] [CrossRef] [PubMed]
- Neelgund, G.M.; Oki, A. ZnO conjugated graphene: An efficient sunlight driven photocatalyst for degradation of organic dyes. Mater. Res. Bull. 2020, 129, 110911. [Google Scholar] [CrossRef]
- Neelgund, G.; Oki, A. Photothermal effect: An important aspect for the enhancement of photocatalytic activity under illumi-nation by NIR radiation. Mater. Chem. Front. 2018, 2, 64–75. [Google Scholar] [CrossRef]
- Abass, A.K.; Raoof, S.D. Photocatalytic Removal of Alizarin Yellow R from Water using Modified Zinc Oxide Catalyst. Asian J. Chem. 2016, 28, 312–316. [Google Scholar] [CrossRef]
- Ramamoorthy, S.; Das, S.; Balan, R.; Lekshmi, I. TiO2-ZrO2 nanocomposite with tetragonal zirconia phase and photocatalytic degradation of Alizarin Yellow GG azo dye under natural sunlight. Mater. Today: Proc. 2021, 47, 4641–4646. [Google Scholar] [CrossRef]
- Mawhinney, D.B.; Naumenko, V.; Kuznetsova, A.; Yates, J.J.T.; Liu, J.; Smalley, R.E. Infrared Spectral Evidence for the Etching of Carbon Nanotubes: Ozone Oxidation at 298 K. J. Am. Chem. Soc. 2000, 122, 2383–2384. [Google Scholar] [CrossRef]
- Chingombe, P.; Saha, B.; Wakeman, R. Surface modification and characterization of a coal-based activated carbon. Carbon 2005, 43, 3132–3143. [Google Scholar] [CrossRef]
- Neelgund, G.M.; Oki, A.R. Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite. J. Colloid Interface Sci. 2016, 484, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Zamiri, R.; Ahangar, H.A.; Zakaria, A.; Zamiri, G.; Shabani, M.; Singh, B.K.; Ferreira, J.M.F. The structural and optical constants of Ag2S semiconductor nanostructure in the Far-Infrared. Chem. Central J. 2015, 9, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Neelgund, G.M.; Oki, A. Photocatalytic activity of CdS and Ag2S quantum dots deposited on poly(amidoamine) functionalized carbon nanotubes. Appl. Catal. B: Environ. 2011, 110, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Hota, G.; Jain, S.; Khila, K. Synthesis of CdS-Ag2S core-shell/composite nanoparticles using AOT/n-heptane/water micro-emulsions. Colloids Surf. A 2004, 232, 119–127. [Google Scholar] [CrossRef]
- Wu, H.; Cao, W.; Chen, Q.; Liu, M.; Qian, S.; Jia, N.; Yang, H.; Yang, S. Metal sulfide coated multiwalled carbon nanotubes synthesized by an in situ method and their optical limiting properties. Nanotechnology 2009, 20, 195604–195613. [Google Scholar] [CrossRef]
- Kim, B.-J.; Kim, J.-P.; Park, J.-S. Effects of Al interlayer coating and thermal treatment on electron emission characteristics of carbon nanotubes deposited by electrophoretic method. Nanoscale Res. Lett. 2014, 9, 236. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Wu, S.; Yang, C.; Chen, M.; Li, X. Preparation of size-controlled silver phosphate catalysts and their enhanced pho-tocatalysis performance via synergetic effect with MWCNTs and PANI. Appl. Catal. B 2019, 245, 71–86. [Google Scholar] [CrossRef]
- Di, L.; Xian, T.; Sun, X.; Li, H.; Zhou, Y.; Ma, J.; Yang, H. Facile Preparation of CNT/Ag2S Nanocomposites with Improved Visible and NIR Light Photocatalytic Degradation Activity and Their Catalytic Mechanism. Micromachines 2019, 10, 503. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xia, J.; Li, C.; Zhou, G.; Yang, W.; Wang, D.; Zheng, H.; Du, Y.; Li, X.; Li, Q. Near-infrared-emitting colloidal Ag2S quantum dots excited by an 808 nm diode laser. J. Mater. Sci. 2017, 52, 9424–9429. [Google Scholar] [CrossRef]
- Hameed, B.; Salman, J.; Ahmad, A. Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. J. Hazard. Mater. 2009, 163, 121–126. [Google Scholar] [CrossRef]
- Zeng, H.; Zhai, L.; Qiao, T.; Yu, Y.; Zhang, J.; Li, D. Efficient removal of As(V) from aqueous media by magnetic nanoparticles prepared with Iron-containing water treatment residuals. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Neelgund, G.M.; Aguilar, S.F.; Kurkuri, M.D.; Rodrigues, D.F.; Ray, R.L. Elevated Adsorption of Lead and Arsenic over Silver Nanoparticles Deposited on Poly(amidoamine) Grafted Carbon Nanotubes. Nanomaterials 2022, 12, 3852. [Google Scholar] [CrossRef] [PubMed]
- Freundlich, H. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar]
- Temkin, M.; Pyzhev, V. Recent modifications to Langmuir isotherms. Acta Physiochim. USSR 1940, 12, 217–222. [Google Scholar]
- Tabuchi, A.; Ogata, F.; Uematsu, Y.; Toda, M.; Otani, M.; Saenjum, C.; Nakamura, T.; Kawasaki, N. Granulation of nick-el-aluminum-zirconium complex hydroxide using colloidal silica for adsorption of chromium(VI) ions from the liquid phase. Molecules 2022, 27, 2392. [Google Scholar] [CrossRef]
- Meng, Z.; Sarkar, S.; Zhu, L.; Ullah, K.; Ye, S.; Oh, W. Facile preparation of Ag2S-CNT nanocomposites with enhanced pho-to-catalytic activity. J. Korean Ceram. Soc. 2014, 51, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, K.A.M.; Peng, H.; Wu, K.; Huang, K. Hydrothermal preparation of nanostructured manganese oxides (MnOx) and their electrochemical and photocatalytic properties. Chem. Eng. J. 2011, 172, 531–539. [Google Scholar] [CrossRef]
- Iqbal, S.; Iqbal, M.; Sibtain, A.; Iqbal, A.; Farooqi, Z.; Ahmad, S.; Mustafa, K.; Musaddiq, S. Solar driven photocatalytic deg-radation of organic pollutants via Bi2O3@reduced graphene oxide nanocomposite. Desalination Water Treat. 2021, 216, 140–150. [Google Scholar] [CrossRef]
- Mashentseva, A.A.; Aimanova, N.A.; Parmanbek, N.; Temirgaziyev, B.S.; Barsbay, M.; Zdorovets, M.V. Serratula coronata L. Mediated Synthesis of ZnO Nanoparticles and Their Application for the Removal of Alizarin Yellow R by Photocatalytic Degradation and Adsorption. Nanomaterials 2022, 12, 3293. [Google Scholar] [CrossRef]
- Neelgund, G.M.; Oki, A. Deposition of silver nanoparticles on dendrimer functionalized multiwalled carbon nanotubes: Synthesis, characterization and antimicrobial activity. J. Nanosci. Nanotechnol. 2011, 11, 3621–3629. [Google Scholar] [CrossRef] [Green Version]
- Neelgund, G.M.; Oki, A. Pd nanoparticles deposited on poly(lactic acid) grafted carbon nanotubes: Synthesis, characterization and application in Heck C–C coupling reaction. Appl. Catal. A Gen. 2011, 399, 154–160. [Google Scholar] [CrossRef] [Green Version]
Adsorbent | qe (exp) mg g−1 | Pseudo-First-Order Kinetic Model | Pseudo-Second-Order Kinetic Model | ||||
---|---|---|---|---|---|---|---|
qe (cal) mg g−1 | k1(min−1) | R2 | qe (cal) mg g−1 | k2 × 10−3 (g mg−1 min−1) | R2 | ||
CNTs-Ag2S | 125.0 | 5.0633 | 0.0778 | 0.9930 | 133.2 | 1.2140 | 0.9980 |
CNTs | 98.75 | 4.7785 | 0.0608 | 0.9906 | 109.8 | 0.8360 | 0.9963 |
Ag2S | 67.50 | 4.0970 | 0.0519 | 0.9540 | 72.62 | 1.7750 | 0.9985 |
Langmuir Isotherm | Freundlich Isotherm | Temkin Isotherm | ||||||
---|---|---|---|---|---|---|---|---|
qm (mg g−1) | KL (L mg−1) | R2Lan | KF (mg g−1) | n | R2Fre | A | B | R2Tem |
256.4 | −0.6830 | 0.9972 | 305.0 | −31.21 | 0.3562 | 1.1 × 10256 | 0.4565 | 0.0019 |
Photocatalyst | Source of Irradiation | Degradation Rate (%) | Ref |
---|---|---|---|
CNTs-Ag2S | Sunlight | 100 | This work |
Fe nanoparticles | Sunlight | 93.7 | 25 |
H2O2 | UV | 100 | 24 |
Zinc oxide | UV | 92.5 | 46 |
β-MnO2 nanowires | Mercury lamp | 98.0 | 69 |
Mn3O4 | Mercury lamp | 62.0 | 69 |
MnO(OH) nanorods | Mercury lamp | 54.0 | 69 |
Bi2O3@RGO | Sunlight | 41.5 | 70 |
ZnO nanoparticles | UV | 95.0 | 71 |
ZnO nanoparticles | Sunlight | 13.2 | 71 |
ZnO nanoparticles | Visible | 06.2 | 71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neelgund, G.M.; Aguilar, S.F.; Jimenez, E.A.; Ray, R.L. Adsorption Efficiency and Photocatalytic Activity of Silver Sulfide Nanoparticles Deposited on Carbon Nanotubes. Catalysts 2023, 13, 476. https://doi.org/10.3390/catal13030476
Neelgund GM, Aguilar SF, Jimenez EA, Ray RL. Adsorption Efficiency and Photocatalytic Activity of Silver Sulfide Nanoparticles Deposited on Carbon Nanotubes. Catalysts. 2023; 13(3):476. https://doi.org/10.3390/catal13030476
Chicago/Turabian StyleNeelgund, Gururaj M., Sanjuana Fabiola Aguilar, Erica A. Jimenez, and Ram L. Ray. 2023. "Adsorption Efficiency and Photocatalytic Activity of Silver Sulfide Nanoparticles Deposited on Carbon Nanotubes" Catalysts 13, no. 3: 476. https://doi.org/10.3390/catal13030476
APA StyleNeelgund, G. M., Aguilar, S. F., Jimenez, E. A., & Ray, R. L. (2023). Adsorption Efficiency and Photocatalytic Activity of Silver Sulfide Nanoparticles Deposited on Carbon Nanotubes. Catalysts, 13(3), 476. https://doi.org/10.3390/catal13030476