Synthesis of PtAu Alloy Nanocrystals Supported on Three-Dimensional Carbon with Enhanced Electrocatalytic Properties
Abstract
1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Catalyst Synthesis
3.2. Catalyst Characterization
3.3. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, H.; Nagaura, T.; Kim, M.; Kani, K.; Kim, J.; Bando, Y.; Alshehri, S.M.; Ahamad, T.; You, J.; Na, J.; et al. Electrochemical preparation system for unique mesoporous hemisphere gold nanoparticles using block copolymer micelles. RSC Adv. 2020, 10, 8309–8313. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; Kani, K.; Henzie, J.; Nagaura, T.; Nugraha, A.S.; Iqbal, M.; Ok, Y.S.; Hossain, S.A.; Bando, Y.; Wu, K.C.W.; et al. A universal approach for the synthesis of mesoporous gold, palladium and platinum films for applications in electrocatalysis. Nat. Protoc. 2020, 15, 2980–3008. [Google Scholar] [CrossRef] [PubMed]
- Borges, L.R.; Lopez-Castillo, A.; Meira, D.; Gallo, J.; Zanchet, D.; Bueno, J. Effect of the Pt precursor and loading on the structural parameters and catalytic properties of Pt/Al2O3. ChemCatChem 2019, 11, 3064. [Google Scholar] [CrossRef]
- Deng, S.; Liu, C.; Zhang, Y.; Ji, Y.; Mei, B.; Yao, Z.; Lin, S. Large-Scale Preparation of Ultrathin Bimetallic Nickel Iron Sulfides Branch Nanoflake Arrays for Enhanced Hydrogen Evolution Reaction. Catalysts 2023, 13, 174. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, Z.; Liu, W.; Zhang, F.; Yan, H. Novel Bifunctional Nitrogen Doped MoS2/COF-C4N Vertical Heterostructures for Electrocatalytic HER and OER. Catalysts 2023, 13, 90. [Google Scholar] [CrossRef]
- Mohammed-Ibrahim, J.; Sun, X. Recent progress on earth abundant electrocatalysts for hydrogen evolution reaction (HER) in alkaline medium to achieve efficient water splitting—A review. J. Energy Chem. 2018, 34, 111–160. [Google Scholar] [CrossRef]
- Ometto, F.B.; Paganin, V.A.; Hammer, P.; Ticianelli, E.A. Effects of Metal–Support Interaction in the Electrocatalysis of the Hydrogen Evolution Reaction of the Metal-Decorated Titanium Dioxide Supported Carbon. Catalysts 2022, 13, 22. [Google Scholar] [CrossRef]
- Shinde, N.M.; Raut, S.D.; Ghule, B.G.; Deokate, R.J.; Narwade, S.H.; Mane, R.S.; Xia, Q.; Pak, J.J.; Kim, J.-S. Hydrogen Evolution Reaction Activities of Room-Temperature Self-Grown Glycerol-Assisted Nickel Chloride Nanostructures. Catalysts 2023, 13, 177. [Google Scholar] [CrossRef]
- Avani, A.; Anila, E. Recent advances of MoO3 based materials in energy catalysis: Applications in hydrogen evolution and oxygen evolution reactions. Int. J. Hydrogen Energy 2022, 47, 20475–20493. [Google Scholar] [CrossRef]
- Popczun, E.J.; McKone, J.R.; Read, C.G.; Biacchi, A.J.; Wiltrout, A.M.; Lewis, N.S.; Schaak, R.E. Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270. [Google Scholar] [CrossRef]
- Hu, X.; Brunschwig, B.S.; Peters, J.C. Electrocatalytic Hydrogen Evolution at Low Overpotentials by Cobalt Macrocyclic Glyoxime and Tetraimine Complexes. J. Am. Chem. Soc. 2007, 129, 8988–8998. [Google Scholar] [CrossRef]
- Andreiadis, E.S.; Jacques, P.; Tran, P.; Leyris, A.; Chavarot-Kerlidou, M.; Jousselme, B.; Matheron, M.; Pécaut, J.; Palacin, S.; Fontecave, M. Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H(2) evolution under fully aqueous con-ditions. Nat. Chem. 2012, 5, 48. [Google Scholar]
- Voiry, D.; Yamaguchi, H.; Li, J.; Silva, R.; Alves, D.C.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V.B.; Eda, G.; et al. Enhanced Catalytic Activity in Strained Chemically Exfoliated WS2 Nanosheets for Hydrogen Evolution. Nat. Mater. 2013, 12, 850. [Google Scholar] [CrossRef] [PubMed]
- Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V.B.; Eda, G.; Chhowalla, M. Conducting MoS2 Nanosheets as Catalysts for Hydrogen Evolution Reaction. Nano Lett. 2013, 13, 6222–6227. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, J.; Li, S.; Grote, F.; Zhang, X.; Zhang, H.; Wang, R.; Lei, Y.; Pan, B.; Xie, Y. Correction to Controllable Disorder En-gineering in Oxygen-Incorporated MoS2 Ultrathin Nanosheets for Efficient Hydrogen Evolution. J. Am. Chem. Soc. 2013, 135, 17881. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Weng, B.; Sun, X.; Cai, B.; Hübner, R.; Luo, Y.; Du, R. A Decade of Electrocatalysis with Metal Aerogels: A Perspective. Catalysts 2023, 13, 167. [Google Scholar] [CrossRef]
- Vernigor, I.; Bogdanovskaya, V.; Radina, M.; Andreev, V.; Grafov, O. PtM/CNT (M = Mo, Ni, CoCr) Electrocatalysts with Reduced Platinum Content for Anodic Hydrogen Oxidation and Cathodic Oxygen Reduction in Alkaline Electrolytes. Catalysts 2023, 13, 161. [Google Scholar] [CrossRef]
- Zhang, C.; Sang, Y.; Peng, Z.; Sang, Y.; Peng, Z. Size-Dependent Oxygen Reduction Property of Octahedral Pt-Ni Nano-particle Electrocatalysts. J. Mater. Chem. A 2014, 2, 19778. [Google Scholar] [CrossRef]
- Wu, J.; Qi, L.; You, H.; Gross, A.; Li, J.; Yang, H. Icosahedral Platinum Alloy Nanocrystals with Enhanced Electrocatalytic Activities. J. Am. Chem. Soc. 2012, 134, 11880–11883. [Google Scholar] [CrossRef]
- Carpenter, M.K.; Moylan, T.; Kukreja, R.; Atwan, M.; Tessema, M. Solvothermal synthesis of platinum alloy nano-particles for oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2012, 134, 11. [Google Scholar] [CrossRef]
- Kwon, S.Y.; Blum, J.D.; Chirby, M.A.; Chesney, E.J. Application of mercury isotopes for tracing trophic transfer and internal distribution of mercury in marine fish feeding experiments. Environ. Toxicol. Chem. 2013, 32, 2322–2330. [Google Scholar] [CrossRef] [PubMed]
- Lalonde, M.; Bury, W.; Karagiaridi, O.; Brown, Z.; Hupp, J.T.; Farha, O.K. Transmetalation: Routes to metal exchange within metal–organic frameworks. J. Mater. Chem. A 2013, 1, 5453. [Google Scholar] [CrossRef]
- Ertl, G. Reactions at Surfaces: From Atoms to Complexity (Nobel Lecture). Angew. Chem. 2008, 47, 3524. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, G.J.; Kiely, C. Strategies for the Synthesis of Supported Gold Palladium Nanoparticles with Controlled Morphology and Composition. Acc. Chem. Res. 2013, 46, 1759–1772. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, S.; Pollack, S.; Li, R.; Gonzalez, A.; Fan, J.; Zou, J.; Leininger, S.; Pavía-Sanders, A.; Johnson, R. Improving paclitaxel delivery: In vitro and in vivo characterization of PEGylated polyphosphoester-based nanocarriers. J. Am. Chem. Soc. 2015, 137, 2056. [Google Scholar] [CrossRef]
- Turner, M.; Golovko, V.B.; Vaughan, O.P.H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M.S.; Johnson, B.F.G.; Lambert, R.M. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 2008, 454, 981–983. [Google Scholar] [CrossRef]
- Huang, J.; Akita, T.; Faye, J.; Fujitani, T.; Takei, T.; Haruta, M. Propene Epoxidation with Dioxygen Catalyzed by Gold Clusters. Angew. Chem. Int. Ed. 2009, 48, 7862–7866. [Google Scholar] [CrossRef] [PubMed]
- Tsunoyama, H.; Sakurai, H.; Negishi, Y.; Tsukuda, T. Size-Specific Catalytic Activity of Polymer-Stabilized Gold Nanoclusters for Aerobic Alcohol Oxidation in Water. J. Am. Chem. Soc. 2005, 127, 9374–9375. [Google Scholar] [CrossRef]
- Haruta, M. Nanoparticulate Gold Catalysts for Low-Temperature CO Oxidation. Cheminform 2004, 7, 163. [Google Scholar] [CrossRef]
- Niu, Z.; Li, Y. Removal and Utilization of Capping Agents in Nanocatalysis. Chem. Mater. 2013, 26, 72–83. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Robinson, J.T.; Sanchez, H.; Diankov, G.; Dai, H. Simultaneous Nitrogen Doping and Reduction of Graphene Oxide. J. Am. Chem. Soc. 2009, 131, 15939–15944. [Google Scholar] [CrossRef]
- Li, B.; Hao, Y.; Shao, X.; Tang, H.; Wang, T.; Zhu, J.; Yan, S. Synthesis of hierarchically porous metal oxides and Au/TiO2 nano-hybrids for photodegradation of organic dye and catalytic reduction of 4-nitrophenol. J. Catal. 2015, 329, 368. [Google Scholar] [CrossRef]
- Li, C.-Y.; Fan, F.; Yin, B.; Chen, L.; Ganguly, T.; Tian, Z. Au+-cetyltrimethylammonium bromide solution: A novel precursor for seed-mediated growth of gold nanoparticles in aqueous solution. Nano Res. 2012, 6, 29–37. [Google Scholar] [CrossRef]
- Hu, H.; Guan, B.; Xia, B.; Lou, X. Designed Formation of Co3O4/NiCo2O4 Double-Shelled Nanocages with Enhanced Pseu-docapacitive and Electrocatalytic Properties. J. Am. Chem. Soc. 2015, 137, 5590. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Chen, G.; Fan, J.; Lan, H.; Yang, Y. Ultra-low-gold loading Au/CeO2 catalysts for ambient temperature CO oxidation: Effect of preparation conditions on surface composition and activity. J. Catal. 2010, 273, 167–176. [Google Scholar] [CrossRef]
- Li, T.; Duan, A.; Zhao, Z.; Liu, B.; Jiang, G.; Liu, J.; Wei, Y.; Pan, H. Synthesis of ordered hierarchically porous L-SBA-15 material and its hydro-upgrading performance for FCC gasoline. Fuel 2013, 117, 974–980. [Google Scholar] [CrossRef]
- Li, W.; Deng, Y.; Wu, Z.; Qian, X.; Yang, J.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Hydrothermal Etching Assisted Crystal-lization: A Facile Route to Functional Yolk-Shell Titanate Microspheres with Ultrathin Nanosheets-Assembled Double Shells. J. Am. Chem. Soc. 2011, 133, 15830. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wu, Z.; Wang, J.; Elzatahry, A.; Zhao, D. A Perspective on Mesoporous TiO2 Materials. Chem. Mater. 2013, 26, 287. [Google Scholar] [CrossRef]
- Du, C.; Gao, X.; Zhuang, Z.; Cheng, C.; Zheng, F.; Li, X.; Chen, W. Epitaxial growth of zigzag PtAu alloy surface on Au nano-pentagrams with enhanced Pt utilization and electrocatalytic performance toward ethanol oxidation reaction. Electrochim. Acta 2017, 238, 263–268. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Sun, H.; Yang, Y.; Dai, X.; Gao, J.; Li, X.; Zhang, P.; Wang, H.-H.; Yu, N.-F.; et al. Synthesis of Pt-Ni Alloy Nanocrystals with High-Index Facets and Enhanced Electrocatalytic Properties. Angew. Chem. 2014, 126, 12730–12735. [Google Scholar] [CrossRef]
- Tang, M.; Luo, S.; Wang, K.; Du, H.; Sriphathoorat, R.; Shen, P. Simultaneous formation of trimetallic Pt-Ni-Cu excavated rhombic dodecahedrons with enhanced catalytic performance for the methanol oxidation reaction. Nano Res. 2018, 11, 4786–4795. [Google Scholar] [CrossRef]
- Ding, J.; Bu, L.; Guo, S.; Zhao, Z.; Zhu, E.; Huang, Y.; Huang, X. Morphology and Phase Controlled Construction of Pt–Ni Nanostructures for Efficient Electrocatalysis. Nano Lett. 2016, 16, 2762–2767. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y.; Cai, Z.; Zhang, Y.; He, D.; Yan, X.; Bi, Y.; Li, Y.; Li, Z.; Sun, X. Ultrathin Dendritic Pt3Cu Triangular Pyramid Caps with Enhanced Electrocatalytic Activity. ACS Appl. Mater. Interfaces 2014, 6, 17748–17752. [Google Scholar] [CrossRef]
- Xue, S.; Deng, W.; Yang, F.; Yang, J.; Amiinu, I.S.; He, D.; Tang, H.; Mu, S. Hexapod PtRuCu Nanocrystalline Alloy for Highly Efficient and Stable Methanol Oxidation. ACS Catal. 2018, 8, 7578–7584. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, X.; Han, Y.; Wang, Q.; Fang, Y.; Dong, S. High-Index Facets Bounded Platinum–Lead Concave Nanocubes with Enhanced Electrocatalytic Properties. Chem. Mater. 2017, 29, 4557–4562. [Google Scholar] [CrossRef]
- Du, H.; Luo, S.; Wang, K.; Tang, M.; Sriphathoorat, R.; Jin, Y.; Shen, P.K. High-Quality and Deeply Excavated Pt3Co Nanocubes as Efficient Catalysts for Liquid Fuel Electrooxidation. Chem. Mater. 2017, 29, 9613–9617. [Google Scholar] [CrossRef]
- Zhang, N.; Bu, L.; Guo, S.; Guo, J.; Huang, X. Screw Thread-Like Platinum–Copper Nanowires Bounded with High-Index Facets for Efficient Electrocatalysis. Nano Lett. 2016, 16, 5037–5043. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, X.; Wang, Q.; Han, Y.; Fang, Y.; Dong, S. Shape-Control of Pt–Ru Nanocrystals: Tuning Surface Structure for Enhanced Electrocatalytic Methanol Oxidation. J. Am. Chem. Soc. 2018, 140, 1142–1147. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, Y.; Shan, Y.; Huang, Z. One-Pot and Facile Fabrication of Hierarchical Branched Pt–Cu Nanoparticles as Excellent Electrocatalysts for Direct Methanol Fuel Cells. ACS Appl. Mater. Interfaces 2016, 8, 5998–6003. [Google Scholar] [CrossRef]
- Liu, J.; Qiao, S.Z.; Hartono, S.B.; Lu, G.Q.M. Monodisperse Yolk-Shell Nanoparticles with a Hierarchical Porous Structure for Delivery Vehicles and Nanoreactors. Angew. Chem. Int. Ed. 2010, 49, 4981–4985. [Google Scholar] [CrossRef]
- Pazmiño, J.H.; Miller, J.T.; Mulla, S.S.; Delgass, W.N.; Ribeiro, F.H. Kinetic studies of the stability of Pt for NO oxidation: Effect of sulfur and long-term aging. J. Catal. 2011, 282, 13–24. [Google Scholar] [CrossRef]
Catalysts | Methanol Electro-Oxidation Reaction | References | |
---|---|---|---|
Specific Activities (mA/cm2) | Mass Activities (mA/μgPt) | ||
PtNi CNC | 1.86 | - | [40] |
PtNi nanocube | 1.40 | - | |
PtNi HOH | 1.71 | - | |
Pt-Ni-Cu ERDs | 3.88 | 2.39 | [41] |
Pt-Cu ERDs | 2.6 | 1.51 | |
Pt-Ni-Cu SRDs | 2.45 | 0.81 | |
THH Pt−Ni NFs | 0.84 | 2.19 | [42] |
RDH Pt−Ni NFs | 1.04 | 1.90 | |
Pt3Cu | 0.7 | 2.1 | [43] |
PtRuCu | 5.22 | 1.35 | [44] |
PtPb CNCs | 2.09 | 0.97 | [45] |
Pt3Co DENC | 3.4 | - | [46] |
Pt-Cu NWs | 3.31 | 1.56 | [47] |
PtRu NRs | 1.16 | 0.82 | [48] |
Pt-Cu HBNDs | 1.26 | 0.7 | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Cao, Z. Synthesis of PtAu Alloy Nanocrystals Supported on Three-Dimensional Carbon with Enhanced Electrocatalytic Properties. Catalysts 2023, 13, 464. https://doi.org/10.3390/catal13030464
Zhang X, Cao Z. Synthesis of PtAu Alloy Nanocrystals Supported on Three-Dimensional Carbon with Enhanced Electrocatalytic Properties. Catalysts. 2023; 13(3):464. https://doi.org/10.3390/catal13030464
Chicago/Turabian StyleZhang, Xia, and Zhengkai Cao. 2023. "Synthesis of PtAu Alloy Nanocrystals Supported on Three-Dimensional Carbon with Enhanced Electrocatalytic Properties" Catalysts 13, no. 3: 464. https://doi.org/10.3390/catal13030464
APA StyleZhang, X., & Cao, Z. (2023). Synthesis of PtAu Alloy Nanocrystals Supported on Three-Dimensional Carbon with Enhanced Electrocatalytic Properties. Catalysts, 13(3), 464. https://doi.org/10.3390/catal13030464