One Stone Two Birds: Utilization of Solar Light for Simultaneous Selective Phenylcarbinol Oxidation and H2 Production over 0D/2D-3D Pt/In2S3 Schottky Junction
Abstract
1. Introduction
2. Results and Discussion
2.1. Catalysts Characterization
2.2. Evalution of PHP Activity
2.3. Photocatalytic Mechanism
3. Experiments and Methods
3.1. Materials
3.2. Preparation of 2D-3D In2S3 and 0D/2D-3D Pt/In2S3
3.3. Photocatalytic Activity Test
3.4. Characterization
3.5. Photoelectrochemical Property Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical Photocatalysis of Water at a Semiconductor Electtode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; Narushima, R.; et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 2021, 598, 304–307. [Google Scholar] [CrossRef]
- Liu, L.; Du, S.; Guo, X.; Xiao, Y.; Yin, Z.; Yang, N.; Bao, Y.; Zhu, X.; Jin, S.; Feng, Z.; et al. Water-Stable Nickel Metal-Organic Framework Nanobelts for Cocatalyst-Free Photocatalytic Water Splitting to Produce Hydrogen. J. Am. Chem. Soc. 2022, 144, 2747–2754. [Google Scholar] [CrossRef]
- Rasool, M.A.; Sattar, R.; Anum, A.; Al-Hussain, S.A.; Ahmad, S.; Irfan, A.; Zaki, M.E. An Insight into Carbon Nanomaterial-Based Photocatalytic Water Splitting for Green Hydrogen Production. Catalysts 2023, 13, 66. [Google Scholar] [CrossRef]
- Meng, S.; Chen, C.; Gu, X.; Wu, H.; Meng, Q.; Zhang, J.; Lei, W. Efficient Photocatalytic H2 Evolution, CO2 Reduction and N2 Fixation Coupled with Organic Synthesis by Cocatalyst and Vacancies Engineering. Appl. Catal. B Environ. 2021, 285, 119789. [Google Scholar] [CrossRef]
- Cai, M.D.; Cao, S.Y.; Zhuo, Z.Z.; Wang, X.; Shi, K.Z.; Cheng, Q.; Xue, Z.M.; Du, X.; Shen, C.; Liu, X. Fabrication of Ni2P Cocatalyzed CdS Nanorods with a Well-Defined Heterointerface for Enhanced Photocatalytic H2 Evolution. Catalysts 2022, 12, 417. [Google Scholar] [CrossRef]
- Battula, V.R.; Jaryal, A.; Kailasam, K. Visible light-driven simultaneous H2 production by water splitting coupled with selective oxidation of HMF to DFF catalyzed by porous carbon nitride. J. Mater. Chem. A 2019, 7, 5643–5649. [Google Scholar] [CrossRef]
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Galetti, M.; Alamgir, M.; Crist, E.; Mahmoud, M.I.; Laurance, W.F. World Scientists’ Warning to Humanity: A Second Notice. BioScience 2017, 67, 1026–1028. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, S.-N.; Chen, J.-S.; Li, X.-H. Design of the Synergistic Rectifying Interfaces in Mott-Schottky Catalysts. Chem. Rev. 2023, 123, 1–30. [Google Scholar] [CrossRef]
- Oshima, T.; Nishioka, S.; Kikuchi, Y.; Hirai, S.; Yanagisawa, K.; Eguchi, M.; Maeda, K. An Artificial Z-Scheme Constructed from Dye-Sensitized Metal Oxide Nanosheets for Visible Light-Driven Overall Water Splitting. J. Am. Chem. Soc. 2020, 142, 8412–8420. [Google Scholar] [CrossRef]
- Jin, X.X.; Wang, R.Y.; Zhang, L.X.; Si, R.; Shen, M.; Wang, M.; Tian, J.J.; Shi, J.L. Electron Configuration Modulation of Nickel Single Atoms for Elevated Photocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2020, 59, 6827–6831. [Google Scholar] [CrossRef]
- Zhu, Q.H.; Xu, Q.; Du, M.M.; Zeng, X.F.; Zhong, G.F.; Qiu, B.C.; Zhang, J.L. Recent progress of metal sulfide photocatalysts for solar energy conversion. Adv. Mater. 2022, 34, 2202929. [Google Scholar] [CrossRef]
- Zhang, F.; Li, J.M.; Wang, H.F.; Li, Y.P.; Liu, Y.; Qian, Q.; Zhang, G. Realizing Synergistic Effect of Electronic Modulation and Nanostructure Engineering over Graphitic Carbon Nitride for Highly Efficient Visible-Light H2 Production Coupled with Benzyl Alcohol Oxidation. Appl. Catal. B Environ. 2020, 269, 118772. [Google Scholar] [CrossRef]
- Meng, S.; Ye, X.; Zhang, J.; Fu, X.; Chen, S. Effective use of photogenerated electrons and holes in a system: Photocatalytic selective oxidation of aromatic alcohols to aldehydes and hydrogen production. J. Catal. 2018, 367, 159–170. [Google Scholar] [CrossRef]
- Zong, X.; Yan, H.H.; Wu, G.P.; Ma, G.J.; Wen, F.Y.; Wang, L.; Li, C. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 2008, 130, 7176–7177. [Google Scholar] [CrossRef]
- Fazil, M.; Ahmad, T. Pristine TiO2 and Sr-Doped TiO2 Nanostructures for Enhanced Photocatalytic and Electrocatalytic Water Splitting Applications. Catalysts 2023, 13, 93. [Google Scholar] [CrossRef]
- AlSalka, Y.; Al-Madanat, O.; Hakki, A.; Bahnemann, D.W. Boosting the H2 production efficiency via photocatalytic organic reforming: The role of additional hole scavenging system. Catalysts 2021, 11, 1423. [Google Scholar] [CrossRef]
- Al-Madanat, O.; Alsalka, Y.; Curti, M.; Dillert, R.; Bahnemann, D.W. Mechanistic insights into hydrogen evolution by photocatalytic reforming of naphthalene. ACS Catal. 2020, 10, 7398–7412. [Google Scholar] [CrossRef]
- Al-Madanat, O.; AlSalka, Y.; Ramadan, W.; Bahnemann, D.W. TiO2 photocatalysis for the transformation of aromatic water pollutants into fuels. Catalysts 2021, 11, 317. [Google Scholar] [CrossRef]
- Schneider, J.; Bahnemann, D.W. Undesired role of sacrificial reagents in photocatalysis. J. Chem. Phys. Lett. 2013, 4, 3479–3483. [Google Scholar] [CrossRef]
- Zhou, P.; Lv, F.; Li, N.; Zhang, Y.L.; Mu, Z.J.; Tang, Y.H.; Guo, S. Strengthening reactive metal-support interaction to stabilize high-density Pt single atoms on electron-deficient g-C3N4 for boosting photocatalytic H2 production. Nano Energy 2019, 56, 127–137. [Google Scholar] [CrossRef]
- Ma, X.H.; Li, W.J.; Li, H.D.; Dong, M.; Li, X.Y.; Geng, L.; Wang, T. Fabrication of novel and noble-metal-free MoP/In2S3 Schottky heterojunction photocatalyst with efficient charge separation for enhanced photocatalytic H2 evolution under visible light. J. Colloid Interf. Sci. 2022, 617, 284–292. [Google Scholar] [CrossRef]
- Yang, L.F.; Li, A.Q.; Dang, T.; Wang, Y.F.; Liang, L.; Tang, J.; Zhang, Z. S-scheme In2S3/Zn3In2S6 microsphere for efficient photocatalytic H2 evolution with simultaneous photodegradation of bisphenol A. Appl. Surf. Sci. 2023, 612, 155848. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Jia, X.W.; Li, Y.R.; Yu, X.D.; Xing, Y. Oxidation co-catalyst modified In2S3 with efficient interfacial charge transfer for boosting photocatalytic H2 evolution. Int. J. Hydrogen Energ. 2022, 47, 25300–25308. [Google Scholar] [CrossRef]
- Lin, Q.C.; Li, Z.H.; Lin, T.J.; Li, B.L.; Liao, X.C.; Yu, H.Q.; Yu, C.L. Controlled preparation of P-doped g-C3N4 nanosheets for efficient photocatalytic hydrogen production. Chin. J. Chem. Eng. 2020, 28, 2677–2688. [Google Scholar] [CrossRef]
- Chen, X.B.; Shen, S.H.; Guo, L.J.; Mao, S.S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef]
- Chai, Z.G.; Zeng, T.T.; Li, Q.; Lu, L.Q.; Xiao, W.J.; Xu, D.S. Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst. J. Am. Chem. Soc. 2016, 138, 10128–10131. [Google Scholar] [CrossRef]
- Xiong, Z.; Hou, Y.D.; Yuan, R.S.; Ding, Z.X.; Ong, W.J.; Wang, S.B. Hollow NiCo2S4 nanospheres as a cocatalyst to support ZnIn2S4 nanosheets for visible-light-driven hydrogen production. Acta. Phys.-Chim. Sin. 2022, 38, 2111021. [Google Scholar]
- Li, S.C.; Shi, M.Y.; Yu, J.H.; Li, S.J.; Lei, S.L.; Lin, L.G.; Wang, J.J. Two-dimensional blue-phase CX (X = S, Se) monolayers with high carrier mobility and tunable photocatalytic water splitting capability. Chin. Chem. Lett. 2021, 32, 1977–1982. [Google Scholar] [CrossRef]
- Yuan, L.; Li, Y.H.; Tang, Z.R.; Gong, J.L.; Xu, Y.J. Defect-promoted visible light-driven CC coupling reactions pairing with CO2 reduction. J. Catal. 2020, 390, 244–250. [Google Scholar] [CrossRef]
- Meng, S.; Wu, H.; Cui, Y.; Zheng, X.; Wang, H.; Chen, S.; Fu, X. One-step synthesis of 2D/2D-3D NiS/Zn3In2S6 hierarchical structure toward solar-to-chemical energy transformation of biomass-relevant alcohols. Appl. Catal. B Environ. 2020, 266, 118617. [Google Scholar] [CrossRef]
- Qi, M.Y.; Conte, M.; Anpo, M.; Tang, Z.R.; Xu, Y.J. Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chem. Rev. 2021, 121, 13051–13085. [Google Scholar] [CrossRef]
- Fu, X.; Zhang, L.; Liu, L.; Li, H.; Meng, S.; Ye, X.; Chen, S. In situ photodeposition of MoSx on CdS nanorods as a highly efficient cocatalyst for photocatalytic hydrogen production. J. Mater. Chem. A 2017, 5, 15287–15293. [Google Scholar] [CrossRef]
- Shen, R.C.; Ren, D.D.; Ding, Y.N.; Guan, Y.T.; Ng, Y.H.; Zhang, P.; Li, X. Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Sci. China Mater. 2020, 63, 2153–2188. [Google Scholar] [CrossRef]
- Li, L.; Guo, C.F.; Ning, J.Q.; Zhong, Y.J.; Chen, D.L.; Hu, Y. Oxygen-vacancy-assisted construction of FeOOH/CdS heterostructure as an efficient bifunctional photocatalyst for CO2 conversion and water oxidation. Appl. Catal. B Environ. 2021, 293, 120203. [Google Scholar] [CrossRef]
- Han, G.Q.; Jin, Y.H.; Burgess, R.A.; Dickenson, N.E.; Cao, X.M.; Sun, Y.J. Visible-Light-Driven Valorization of Biomass Intermediates Integrated with H2 Production Catalyzed by Ultrathin Ni/CdS Nanosheets. J. Am. Chem. Soc. 2017, 139, 15584–15587. [Google Scholar] [CrossRef]
- Liu, M.C.; Chen, Y.B.; Su, J.Z.; Shi, J.W.; Wang, X.X.; Guo, L.J. Photocatalytic Hydrogen Production using Twinned Nanocrystals and an Unanchored NiSx Co-Catalyst. Nat. Energy 2016, 1, 16151. [Google Scholar] [CrossRef]
- Li, S.J.; Cai, M.J.; Liu, Y.P.; Wang, C.C.; Yan, R.Y.; Chen, X.B. Constructing Cd0.5Zn0.5S/Bi2WO6 S-scheme heterojunction for boosted photocatalytic antibiotic oxidation and Cr(VI) reduction. Adv. Powder Mater. 2023, 2, 100073. [Google Scholar] [CrossRef]
- Dong, Y.J.; Han, Q.; Hu, Q.Y.; Xu, C.J.; Dong, C.Z.; Peng, Y.; Lan, Y. Carbon quantum dots enriching molecular nickel polyoxometalate over CdS semiconductor for photocatalytic water splitting. Appl. Catal. B 2021, 293, 120214. [Google Scholar] [CrossRef]
- Ye, H.F.; Shi, R.; Yang, X.; Fu, W.F.; Chen, Y. P-doped ZnxCd1-xS solid solutions as photocatalysts for hydrogen evolution from water splitting coupled with photocatalytic oxidation of 5-hydroxymethylfurfural. Appl. Catal. B Environ. 2018, 233, 70–79. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, W.; Zheng, X.; Meng, S.; Cai, C.; Fu, X.; Chen, S. Decorating Zn0.5Cd0.5S with C, N Co-Doped CoP: An Efficient Dual-Functional Photocatalyst for H2 Evolution and 2,5-Diformylfuran Oxidation. ACS Appl. Mater. Inter. 2022, 14, 54649–54661. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, S.; Chen, G.; Meng, S.; Zheng, X.; Chen, S.; Zhang, F. Minimized Pt deposition on CdS simultaneously maximizes the performance of hydrogen production and aromatic alcohols oxidation. Appl. Surf. Sci. 2021, 564, 150446. [Google Scholar] [CrossRef]
- Shi, X.W.; Dai, C.; Wang, X.; Hu, J.Y.; Zhang, J.Y.; Zheng, L.; Zhu, M. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 1287. [Google Scholar] [CrossRef]
- Andreou, E.K.; Koutsouroubi, E.D.; Vamvasakis, I.; Armatas, G.S. Ni2P-modified P-Doped Carbon Nitride Hetero-Nanostructures for Efficient Photocatalytic Aqueous Cr(VI) Reduction. Catalysts 2023, 13, 437. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, X.Z.; Liu, J.F.; Qi, Z.L.; Su, T.Y.; Cai, C.; Chen, S. Efficient H2 evolution on Co3S4/Zn0.5Cd0.5S nanocomposites by photocatalytic synergistic reaction. Inorg. Chem. Front. 2022, 9, 1943–1955. [Google Scholar] [CrossRef]
- Shen, R.C.; Ding, Y.N.; Li, S.B.; Zhang, P.; Xiang, Q.J.; Ng, Y.H.; Li, X. Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/ homojunction nanohybrids for efficient photocatalytic H2 evolution. Chin. J. Catal. 2021, 42, 25–36. [Google Scholar] [CrossRef]
- Li, K.; Chai, B.; Peng, T.Y.; Mao, J.; Zan, L. Preparation of AgIn5S8/TiO2 heterojunction nanocomposite and its enhanced photocatalytic H2 production property under visible light. ACS Catal. 2013, 3, 170–177. [Google Scholar] [CrossRef]
- He, Y.; Li, D.; Xiao, G.; Chen, W.; Chen, Y.; Sun, M.; Huang, H.; Fu, X. A New Application of Nanocrystal In2S3 in Efficient Degradation of Organic Pollutants under Visible Light Irradiation. J. Phys. Chem. C 2009, 113, 5254–5262. [Google Scholar] [CrossRef]
- Sun, X.; Luo, X.; Zhang, X.; Xie, J.; Jin, S.; Wang, H.; Zheng, X.; Wu, X.; Xie, Y. Enhanced Superoxide Generation on Defective Surfaces for Selective Photooxidation. J. Am. Chem. Soc. 2019, 141, 3797–3801. [Google Scholar] [CrossRef]
- Li, T.; Zhang, S.; Meng, S.; Ye, X.; Fu, X.; Chen, S. Amino acid-assisted synthesis of In2S3 hierarchical architectures for selective oxidation of aromatic alcohols to aromatic aldehydes. RSC Adv. 2017, 7, 6457–6466. [Google Scholar] [CrossRef]
- Meng, S.; Ye, X.; Ning, X.; Xie, M.; Fu, X.; Chen, S. Selective oxidation of aromatic alcohols to aromatic aldehydes by BN/metal sulfide with enhanced photocatalytic activity. Appl. Catal. B Environ. 2016, 182, 356–368. [Google Scholar] [CrossRef]
- Meng, S.; Cui, Y.; Wang, H.; Zheng, X.; Fu, X.; Chen, S. Noble metal-free 0D-1D NiSx/CdS nanocomposites toward highly efficient photocatalytic contamination removal and hydrogen evolution under visible light. Dalton T. 2018, 47, 12671–12683. [Google Scholar] [CrossRef]
- Cheng, T.T.; Gao, H.J.; Liu, G.R.; Pu, Z.S.; Wang, S.F.; Yi, Z.; Yang, H. Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi4Ti3O12 hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr (VI) ions. Colloid. Surf. A 2022, 633, 127918. [Google Scholar] [CrossRef]
- Li, W.J.; Lin, Z.Y.; Yang, G.W. A 2D self-assembled MoS2/Znln2S4 heterostructure for efficient photocatalytic hydrogen evolution. Nanoscale 2017, 9, 18290–18298. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Reddeppa, M.; Park, B.-G.; Oh, J.-E.; Kim, S.-G.; Kim, M.-D. Efficient Charge Separation in Polypyrrole/GaN-Nanorod-Based Hybrid Heterojunctions for High-Performance Self-Powered UV Photodetection. Phys. Status Solidi-Rapid Res. Lett. 2021, 15, 2000518. [Google Scholar] [CrossRef]
- Wu, H.; Meng, S.; Zhang, J.; Zheng, X.; Wang, Y.; Chen, S.; Fu, X. Construction of two-dimensionally relative p-n heterojunction for efficient photocatalytic redox reactions under visible light. Appl. Surf. Sci. 2020, 505, 144638. [Google Scholar] [CrossRef]
- Deng, H.Z.; Fei, X.G.; Yang, Y.; Fan, J.J.; Yu, J.G.; Cheng, B.; Zhang, L.Y. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chem. Eng. J. 2021, 409, 127377. [Google Scholar] [CrossRef]
- Liu, D.N.; Chen, D.Y.; Li, N.J.; Xu, Q.F.; Li, H.; He, J.H.; Lu, J.M. Surface engineering of g-C3N4 by stacked BiOBr sheets rich in oxygen vacancies for boosting photocatalytic performance. Angew. Chem. Int. Ed. 2020, 59, 4519–4524. [Google Scholar] [CrossRef]
- Yang, W.L.; Zhang, L.; Xie, J.F.; Zhang, X.D.; Liu, Q.H.; Yao, T.; Xie, Y. Enhanced photoexcited carrier separation in oxygen-doped ZnIn2S4 nanosheets for hydrogen evolution. Angew. Chem. Int. Edit. 2016, 55, 6716–6720. [Google Scholar] [CrossRef]
- Nielsen, M.; Kammer, A.; Cozzula, D.; Junge, H.; Gladiali, S.; Beller, M. Efficient hydrogen production from alcohols under mild reaction conditions. Angew. Chem., Int. Ed. 2011, 50, 9593. [Google Scholar] [CrossRef]
- Zheng, X.Z.; Zhang, Z.; Meng, S.; Wang, Y.X.; Li, D. Regulating charge transfer over 3D Au/ZnO hybrid inverse opal toward efficiently photocatalytic degradation of bisphenol A and photoelectrochemical water splitting. Chem. Eng. J. 2020, 393, 124676. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Ali, N.; Khan, I.; Zhang, B.; Sadiq, M. Heterogeneous photodegradation of industrial dyes: An insight to different mechanisms and rate affecting parameters. J. Environ. Chem. Eng. 2020, 8, 104364. [Google Scholar] [CrossRef]
- Ahmad, S.; Almehmadi, M.; Janjuhah, H.T.; Kontakiotis, G.; Abdulaziz, O.; Saeed, K.; Ahmad, H.; Allahyani, M.; Aljuaid, A.; Alsaiari, A.A.; et al. The Effect of Mineral Ions Present in Tap Water on Photodegradation of Organic Pollutants: Future Perspectives. Water 2023, 15, 175. [Google Scholar] [CrossRef]
- Al-Madanat, O.; AlSalka, Y.; Dillert, R.; Bahnemann, D.W. Photocatalytic H2 production from naphthalene by various TiO2 photocatalysts: Impact of Pt loading and formation of intermediates. Catalysts 2021, 11, 107. [Google Scholar] [CrossRef]
- Al-Madanat, O.; Curti, M.; Günnemann, C.; AlSalka, Y.; Dillert, R.; Bahnemann, D.W. TiO2 photocatalysis: Impact of the platinum loading method on reductive and oxidative half-reactions. Catal. Today 2021, 380, 3–15. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Chougule, S.S.; Jung, N.; Yu, Y.J.; Oh, J.-E.; Kim, M.-D. Plasmonic Pt nanoparticles triggered efficient charge separation in TiO2/GaN NRs hybrid heterojunction for the high performance self-powered UV photodetectors. Appl. Surf. Sci. 2022, 594, 153474. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Reddeppa, M.; Park, B.-G.; Peta, K.R.; Oh, J.-E.; Kim, S.-G.; Kim, M.-D. Ag nanowire-plasmonic-assisted charge separation in hybrid heterojunctions of Ppy-PEDOT: PSS/GaN nanorods for enhanced UV photodetection. ACS Appl. Mater. Interfaces 2020, 12, 54181–54190. [Google Scholar] [CrossRef]
- Wan, J.; Liu, L.; Wu, Y.; Song, J.R.; Liu, J.Q.; Song, R.; Xiong, Y. Exploring the polarization photocatalysis of ZnIn2S4 material toward hydrogen evolution by integrating cascade electric fields with hole transfer vehicle. Adv. Funct. Mater. 2022, 32, 2203252. [Google Scholar] [CrossRef]
- Wan, J.; Yang, W.J.; Liu, J.Q.; Sun, K.L.; Liu, L.; Fu, F. Enhancing an internal electric field by a solid solution strategy for steering bulk-charge flow and boosting photocatalytic activity of Bi24O31ClxBr10-x. Chin. J. Catal. 2022, 43, 485–496. [Google Scholar] [CrossRef]
- Hu, Z.F.; Yuan, L.Y.; Liu, Z.F.; Shen, Z.R.; Yu, J.C. An Elemental Phosphorus Photocatalyst with a Record High Hydrogen Evolution Efficiency. Angew. Chem. Int. Ed. 2016, 55, 9793. [Google Scholar] [CrossRef]
- Pasupuleti, K.S.; Ghosh, S.; Jayababu, N.; Kang, C.J.; Cho, H.D.; Kim, S.-G.; Kim, M.-D. Boron doped g-C3N4 quantum dots based highly sensitive surface acoustic wave NO2 sensor with faster gas kinetics under UV light illumination. Sensor. Actuat. B Chem. 2023, 378, 133140. [Google Scholar] [CrossRef]
- Nowicka, E.; Hofmann, J.P.; Parker, S.F.; Sankar, M.; Lari, G.M.; Kondrat, S.A.; Knight, D.W.; Bethell, D.; Weckhuysen, B.M.; Hutchings, G.J. In situ spectroscopic investigation of oxidative dehydrogenation and disproportionation of benzyl alcohol. Phys. Chem. Chem. Phys. 2013, 15, 12147–12155. [Google Scholar] [CrossRef]
- Sun, Z.; Yang, X.; Yu, X.-F.; Xia, L.; Peng, Y.; Li, Z.; Zhang, Y.; Cheng, J.; Zhang, K.; Yu, J. Surface oxygen vacancies of Pd/Bi2MoO6-x acts as “Electron Bridge” to promote photocatalytic selective oxidation of alcohol. Appl. Catal. B Environ. 2021, 285, 119790. [Google Scholar] [CrossRef]
- Al-Madanat, O.; Nunes, B.N.; AlSalka, Y.; Hakki, A.; Curti, M.; Patrocinio, A.O.T.; Bahnemann, D.W. Application of EPR spectroscopy in TiO2 and Nb2O5 photocatalysis. Catalysts 2021, 11, 1514. [Google Scholar] [CrossRef]
- Chen, Z.X.; Li, D.Z.; Zhang, W.J.; Chen, C.; Li, W.J.; Sun, M.; Fu, X. Low-temperature and template-free synthesis of ZnIn2S4 microspheres. Inorg. Chem. 2008, 47, 9766–9772. [Google Scholar] [CrossRef]
Photocatalyst | Light Source | Reagents | H2 Evolution (mmol g−1 h−1) | Ref. |
---|---|---|---|---|
Pt/In2S3 | λ ≥ 420 nm | PhCH2OH | 7.97 | This Work |
Pt/CdS | λ > 420 nm | PhCH2OH | 4.9 | [42] |
Pt/Zn3In2S6 | λ ≥ 420 nm | PhCH2OH | 0.9 | [14] |
Pt/g-C3N4 | λ > 420 nm | TEOA | 3.02 | [21] |
MoP/In2S3 | λ ≥ 420 nm | Lactic acid | 0.5 | [22] |
Zn3In2S6In2S3 | λ > 400 nm | bisphenol A | 0.08 | [23] |
PdS/In2S3 | λ > 420 nm | Na2S/Na2SO3 | 3.6 | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Xiao, P.; Meng, S.; Long, B.; Liu, Q.; Zheng, X.; Zhang, S.; Ruan, Z.; Chen, S. One Stone Two Birds: Utilization of Solar Light for Simultaneous Selective Phenylcarbinol Oxidation and H2 Production over 0D/2D-3D Pt/In2S3 Schottky Junction. Catalysts 2023, 13, 461. https://doi.org/10.3390/catal13030461
Zhang H, Xiao P, Meng S, Long B, Liu Q, Zheng X, Zhang S, Ruan Z, Chen S. One Stone Two Birds: Utilization of Solar Light for Simultaneous Selective Phenylcarbinol Oxidation and H2 Production over 0D/2D-3D Pt/In2S3 Schottky Junction. Catalysts. 2023; 13(3):461. https://doi.org/10.3390/catal13030461
Chicago/Turabian StyleZhang, Huijun, Peipei Xiao, Sugang Meng, Baihua Long, Qing Liu, Xiuzhen Zheng, Sujuan Zhang, Zhaohui Ruan, and Shifu Chen. 2023. "One Stone Two Birds: Utilization of Solar Light for Simultaneous Selective Phenylcarbinol Oxidation and H2 Production over 0D/2D-3D Pt/In2S3 Schottky Junction" Catalysts 13, no. 3: 461. https://doi.org/10.3390/catal13030461
APA StyleZhang, H., Xiao, P., Meng, S., Long, B., Liu, Q., Zheng, X., Zhang, S., Ruan, Z., & Chen, S. (2023). One Stone Two Birds: Utilization of Solar Light for Simultaneous Selective Phenylcarbinol Oxidation and H2 Production over 0D/2D-3D Pt/In2S3 Schottky Junction. Catalysts, 13(3), 461. https://doi.org/10.3390/catal13030461