Facile Synthesis of Metal-Impregnated Sugarcane-Derived Catalytic Biochar for Ozone Removal at Ambient Temperature
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determining Optimum Pyrolysis Temperature
2.2. Characterization of Modified Biochar
2.3. Ozone Breakthrough Experiments
2.4. Kinetic Modelling
2.5. Plausible Ozone Removal Mechanism
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of Pristine Biochar
3.3. Preparation of Catalytic Biochar
3.4. Characterization of Biochar
3.5. Evaluation of Ozone Removal Performance
3.6. Adsorption Kinetics and Isotherm
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Marć, M.; Śmiełowska, M.; Namieśnik, J.; Zabiegała, B. Indoor air quality of everyday use spaces dedicated to specific purposes—A review. Environ. Sci. Pollut. Res. 2018, 25, 2065–2082. [Google Scholar] [CrossRef] [PubMed]
- EPA. Health Effects of Ozone Pollution. 2021. Available online: https://www.epa.gov/ground-level-ozone-pollution/health-effects-ozone-pollution (accessed on 26 September 2022).
- Touati, H.; Mehri, A.; Karouia, F.; Richard, F.; Batiot-Dupeyrat, C.; Daniele, S.; Clacens, J.M. Low-Temperature O3 Decomposition over Pd-TiO2 Hybrid Catalysts. Catalyst 2022, 12, 448. [Google Scholar] [CrossRef]
- Jenkins, S. The Use of Ozone in Chemical Process Industries (CPI) Applications. Chemical Engineering. 2018. Available online: https://www.chemengonline.com/the-use-of-ozone-in-chemical-process-industries-cpi-applications/ (accessed on 16 September 2022).
- Remondino, M.; Valdenassi, L. Different uses of ozone: Environmental and corporate sustainability. Literature review and case study. Sustainability 2018, 10, 4783. [Google Scholar] [CrossRef]
- Körlü, A. Use of Ozone in the Textile Industry. In Textile Industry and Environment; IntechOpen: London, UK, 2019; pp. 1–19. [Google Scholar] [CrossRef]
- McHugh, T. Ozone processing of foods and beverages. Food Technol. 2015, 69, 72–74. [Google Scholar]
- Grignani, E.; Mansi, A.; Cabella, R.; Castellano, P.; Tirabasso, A.; Sisto, R.; Spagnoli, M.; Fabrizi, G.; Frigerio, F.; Tranfo, G. Safe and Effective Use of Ozone as Air and Surface Disinfectant in the Conjuncture of COVID-19. Gases 2020, 1, 19–32. [Google Scholar] [CrossRef]
- Sheffield, P.E.; Zhou, J.; Shmool, J.L.C.; Clougherty, J.E. Ambient ozone exposure and children’s acute asthma in New York City: A case-crossover analysis Children s Environmental Health. Environ. Health 2015, 14, 25. [Google Scholar] [CrossRef]
- Yu, Q.; Pan, H.; Zhao, M.; Liu, Z.; Wang, J.; Chen, Y.; Gong, M. Influence of calcination temperature on the performance of Pd-Mn/SiO2-Al2O3 catalysts for ozone decomposition. J. Hazard. Mater. 2009, 172, 631–634. [Google Scholar] [CrossRef]
- Wang, T.; Fu, Q.; Wang, S.; Xing, D.; Bai, Y.; Wang, S. Enhanced water-resistance of Mn-based catalysts for ambient temperature ozone elimination: Roles of N and Pd modification. Chemosphere 2022, 303, 135014. [Google Scholar] [CrossRef]
- Li, X.; Ma, J.; He, H. Tuning the Chemical State of Silver on Ag-Mn Catalysts to Enhance the Ozone Decomposition Performance. Environ. Sci. Technol. 2020, 54, 11566–11575. [Google Scholar] [CrossRef]
- Yang, L.; Ma, J.; Li, X.; Zhang, C.; He, H. Enhancing Oxygen Vacancies of Ce-OMS-2 via Optimized Hydrothermal Conditions to Improve Catalytic Ozone Decomposition. Ind. Eng. Chem. Res. 2020, 59, 118–128. [Google Scholar] [CrossRef]
- Zhang, B.; Ji, J.; Liu, B.; Zhang, D.; Liu, S.; Huang, H. Highly efficient ozone decomposition against harsh environments over long-term stable amorphous MnOx catalysts. Appl. Catal. B Environ. 2022, 315, 121552. [Google Scholar] [CrossRef]
- Gong, S.; Wang, A.; Wang, Y.; Liu, H.; Han, N.; Chen, Y. Heterostructured Ni/NiO Nanocatalysts for Ozone Decomposition. ACS Appl. Nano Mater. 2020, 3, 597–607. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Itoh, T. Removal of ozone from air by activated carbon treatment. Sep. Technol. 1993, 3, 168–175. [Google Scholar] [CrossRef]
- Lee, P.; Davidson, J. Evaluation of activated carbon filters for removal of ozone at the PPB level. Am. Ind. Hyg. Assoc. J. 1999, 60, 589–600. [Google Scholar] [CrossRef]
- Subrahmanyam, C.; Bulushev, D.A.; Kiwi-Minsker, L. Dynamic behaviour of activated carbon catalysts during ozone decomposition at room temperature. Appl. Catal. B Environ. 2005, 61, 98–106. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, J.; Zhao, X.; Ma, G. Synthesis of Highly Porous Cu2O Catalysts for Efficient Ozone Decomposition. Catalyst 2021, 11, 600. [Google Scholar] [CrossRef]
- Sun, Z.B.; Si, Y.N.; Zhao, S.N.; Wang, Q.Y.; Zang, S.Q. Ozone Decomposition by a Manganese-Organic Framework over the Entire Humidity Range. J. Am. Chem. Soc. 2021, 143, 5150–5157. [Google Scholar] [CrossRef]
- Yu, Y.; Ji, J.; Li, K.; Huang, H.; Shrestha, R.P.; Oanh, N.T.K.; Winijkul, E.; Deng, J. Activated carbon supported MnO nanoparticles for efficient ozone decomposition at room temperature. Catal. Today 2020, 355, 573–579. [Google Scholar] [CrossRef]
- Namdari, M.; Lee, C.S.; Haghighat, F. A systematic comparative study of granular activated carbons and catalysts for ozone removal. Build. Environ. 2022, 224, 109510. [Google Scholar] [CrossRef]
- Goswami, L.; Kushwaha, A.; Kafle, S.R.; Kim, B.S. Surface Modification of Biochar for Dye Removal from Wastewater. Catalysts 2022, 12, 817. [Google Scholar] [CrossRef]
- Garcia, B.; Alves, O.; Rijo, B.; Lourinho, G.; Nobre, C. Biochar: Production, Applications, and Market Prospects in Portugal. Environments 2022, 9, 95. [Google Scholar] [CrossRef]
- Li, Y.; Xing, B.; Ding, Y.; Han, X.; Wang, S. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresour. Technol. 2020, 312, 123614. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.; Xu, S.; Liu, R.; Yu, T.; Zhuo, X.; Leng, S.; Xiong, Q.; Huang, H. Nitrogen containing functional groups of biochar: An overview. Bioresour. Technol. 2020, 298, 122286. [Google Scholar] [CrossRef] [PubMed]
- Ramos, R.; Abdelkader-fernández, V.K.; Matos, R.; Peixoto, A.F.; Fernandes, D.M. Metal-Supported Biochar Catalysts for Sustainable Biorefinery, Electrocatalysis and Energy Storage Applications: A Review. Catalysts 2022, 12, 207. [Google Scholar] [CrossRef]
- Creamer, A.E.; Gao, B. Carbon-based adsorbents for postcombustion CO2 capture: A critical review. Environ. Sci. Technol. 2016, 50, 7276–7289. [Google Scholar] [CrossRef]
- Andrew, O.E.; Olushola, A.A.; Dada, W.O.; Opeoluwa, O.G. Detoxification of chromium (VI) ions in aqueous solution via adsorption by raw and activated Carbon prepared from sugarcane bio waste. Covenant J. Phys. Life Sci. 2014, 2, 110–122. [Google Scholar]
- Khan, S.R.; Zeeshan, M. Catalytic potential of low-cost natural zeolite and influence of various pretreatments of biomass on pyro-oil up-gradation during co-pyrolysis with scrap rubber tire. Energy 2022, 238, 121820. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Román, S.; Nabais, J.M.V.; Ledesma, B.; González, J.F.; Laginhas, C.; Titirici, M.M. Production of low-cost adsorbents with tunable surface chemistry by conjunction of hydrothermal carbonization and activation processes. Microporous Mesoporous Mater. 2013, 165, 127–133. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, Y.; Lyu, Y.; Luo, Y.; Duan, T.; Li, W.; Li, P. Impact of deashing treatment on biochar physicochemical properties and sorption mechanisms of naphthalene and 1-naphthol. Environ. Technol. Innov. 2021, 24, 101960. [Google Scholar] [CrossRef]
- Parthasarathy, P.; Narayanan, S.K. Characterization of Biochar from Fast Pyrolysis and Gasification Systems. Environ. Prog. Sustain. Energy 2014, 33, 676–680. [Google Scholar] [CrossRef]
- Yue, Y.; Lin, Q.; Irfan, M.; Chen, Q.; Zhao, X. Characteristics and potential values of bio-oil, syngas and biochar derived from Salsola collina Pall. in a fixed bed slow pyrolysis system. Bioresour. Technol. 2016, 220, 378–383. [Google Scholar] [CrossRef]
- Qiu, B.; Tao, X.; Wang, J.; Liu, Y.; Li, S.; Chu, H. Research progress in the preparation of high-quality liquid fuels and chemicals by catalytic pyrolysis of biomass: A review. Energy Convers. Manag. 2022, 261, 115647. [Google Scholar] [CrossRef]
- Wang, W.; Gu, Y.; Zhou, C.; Hu, C. Current Challenges and Perspectives for the Catalytic Pyrolysis. Catalyst 2022, 12, 1524. [Google Scholar] [CrossRef]
- Xu, L.; Wu, C.; Chai, C.; Cao, S.; Bai, X.; Ma, K.; Jin, X.; Shi, X.; Jin, P. Adsorption of micropollutants from wastewater using iron and nitrogen co-doped biochar: Performance, kinetics and mechanism studies. J. Hazard. Mater. 2022, 424, 127606. [Google Scholar] [CrossRef]
- Bai, L.; Su, X.; Feng, J.; Ma, S. Preparation of sugarcane bagasse biochar/nano-iron oxide composite and mechanism of its Cr (VI) adsorption in water. J. Clean. Prod. 2021, 320, 128723. [Google Scholar] [CrossRef]
- Wu, S.; Liu, H.; Yang, C.; Li, X.; Lin, Y.; Yin, K.; Sun, J.; Teng, Q.; Du, C.; Zhong, Y. High-performance porous carbon catalysts doped by iron and nitrogen for degradation of bisphenol F via peroxymonosulfate activation. Chem. Eng. J. 2020, 392, 123683. [Google Scholar] [CrossRef]
- Long, Y.; Huang, Y.; Wu, H.; Shi, X.; Xiao, L. Peroxymonosulfate activation for pollutants degradation by Fe-N-codoped carbonaceous catalyst: Structure-dependent performance and mechanism insight. Chem. Eng. J. 2019, 369, 542–552. [Google Scholar] [CrossRef]
- Casoni, A.I.; Mendioroz, P.; Volpe, M.A.; Gutierrez, V.S. Magnetic amendment material based on bio-char from edible oil industry waste. Its performance on aromatic pollutant removal from water. J. Environ. Chem. Eng. 2020, 8, 103559. [Google Scholar] [CrossRef]
- Chang, J.; Yu, S.; Liao, Y.; Guan, X.; Gao, H.; Li, Y. One-Step Pyrolysis Fabrication of Magnetic Bagasse Biochar Composites with Excellent Lead Adsorption Performance. ACS Omega 2022, 7, 42854–42864. [Google Scholar] [CrossRef]
- Xu, D.; Sun, T.; Jia, H.; Sun, Y.; Zhu, X. The performance and mechanism of Cr(VI) adsorption by biochar derived from Potamogeton crispus at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2022, 167, 105662. [Google Scholar] [CrossRef]
- Adilina, I.B.; Widjaya, R.R.; Hidayati, L.N.; Supriadi, E.; Safaat, M.; Oemry, F.; Restiawaty, E.; Bindar, Y.; Parker, S.F. Understanding the surface characteristics of biochar and its catalytic activity for the hydrodeoxygenation of guaiacol. Catalysts 2021, 11, 1434. [Google Scholar] [CrossRef]
- Doumer, M.E.; Arízaga, G.G.C.; da Silva, D.A.; Yamamoto, C.I.; Novotny, E.H.; Santos, J.M.; dos Santos, L.O.; Wisniewski Jr, A.; de Andrade, J.B.; Mangrich, A.S. Slow pyrolysis of different Brazilian waste biomasses as sources of soil conditioners and energy, and for environmental protection. J. Anal. Appl. Pyrolysis 2015, 113, 434–443. [Google Scholar] [CrossRef]
- da Silva Veiga, P.A.; Cerqueira, M.H.; Goncalves, M.G.; da Silva Matos, T.T.; Pantano, G.; Schultz, J.; de Andrade, J.B.; Mangrich, A.S. Upgrading from batch to continuous flow process for the pyrolysis of sugarcane bagasse: Structural characterization of the biochars produced. J. Environ. Manag. 2021, 285, 112145. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, K.; Chen, L.; Huang, Z.; Liu, G.; Li, M.; Wen, Y. Mass preparation of micro/nano-powders of biochar with water-dispersibility and their potential application. New J. Chem. 2017, 41, 9649–9657. [Google Scholar] [CrossRef]
- Zhang, W.; Tan, X.; Gu, Y.; Liu, S.; Liu, Y.; Hu, X.; Li, J.; Zhou, Y.; Liu, S.; He, Y. Rice waste biochars produced at different pyrolysis temperatures for arsenic and cadmium abatement and detoxification in sediment. Chemosphere 2020, 250, 126268. [Google Scholar] [CrossRef]
- Novak, J.M.; Cantrell, K.B.; Watts, D.W.; Busscher, W.J.; Johnson, M.G. Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks. J. Soils Sediments 2014, 14, 330–343. [Google Scholar] [CrossRef]
- Kameyama, K.; Miyamoto, T.; Iwata, Y. The preliminary study of water-retention related properties of biochar produced from various feedstock at different pyrolysis temperatures. Materials 2019, 12, 1732. [Google Scholar] [CrossRef]
- Manyatshe, A.; Balogun, M.O.; Nkambule, T.T.I.; Cele, Z.E.D.; Msagati, T.A.M. Chemical modification of sugarcane bagasse with chitosan for the removal of phosphates in aqueous solution. AIP Conf. Proc. 2020, 2289, 020064. [Google Scholar] [CrossRef]
- de Almeida, S.G.C.; Tarelho, L.A.C.; Hauschild, T.; Costa, M.A.M.; Dussán, K.J. Biochar production from sugarcane biomass using slow pyrolysis: Characterization of the solid fraction. Chem. Eng. Process. Process Intensif. 2022, 179, 109054. [Google Scholar] [CrossRef]
- Manyatshe, A.; Cele, Z.E.D.; Balogun, M.O.; Nkambule, T.T.I.; Msagati, T.A.M. Chitosan modified sugarcane bagasse biochar for the adsorption of inorganic phosphate ions from aqueous solution. J. Environ. Chem. Eng. 2022, 10, 108243. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, H.; Li, G.; Gu, J.; Shao, J.; Zhang, S.; Yang, H.; Chen, H. Ammoniated and activated microporous biochar for enhancement of SO2 adsorption. J. Anal. Appl. Pyrolysis 2021, 156, 105119. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, L.; Duan, F. Effects of acid pickling and nitrogen doping on the biochar–NO reaction performance of different biochars under high O2 conditions. J. Energy Inst. 2022, 103, 128–137. [Google Scholar] [CrossRef]
- Suwanree, S.; Knijnenburg, J.T.N.; Kasemsiri, P.; Kraithong, W.; Chindaprasirt, P.; Jetsrisuparb, K. Engineered biochar from sugarcane leaves with slow phosphorus release kinetics. Biomass Bioenergy 2022, 156, 106304. [Google Scholar] [CrossRef]
- Guimarães, T.; De Oliveira, A.F.; Lopes, R.P.; De Carvalho Teixeira, A.P. Biochars obtained from arabica coffee husks by a pyrolysis process: Characterization and application in Fe(ii) removal in aqueous systems. New J. Chem. 2020, 44, 3310–3322. [Google Scholar] [CrossRef]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, X.; Chen, W.; Yang, H.; Chen, H. The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresour. Technol. 2017, 246, 101–109. [Google Scholar] [CrossRef]
- Al-Rabaiai, A.; Menezes-Blackburn, D.; Al-Ismaily, S.; Janke, R.; Pracejus, B.; Al-Alawi, A.; Al-Kindi, M.; Bol, R. Customized biochar for soil applications in arid land: Effect of feedstock type and pyrolysis temperature on soil microbial enumeration and respiration. J. Anal. Appl. Pyrolysis 2022, 168, 105693. [Google Scholar] [CrossRef]
- Li, W.H.; Yue, Q.Y.; Gao, B.Y.; Wang, X.J.; Qi, Y.F.; Zhao, Y.Q.; Li, Y.J. Preparation of sludge-based activated carbon made from paper mill sewage sludge by steam activation for dye wastewater treatment. Desalination 2011, 278, 179–185. [Google Scholar] [CrossRef]
- Zhao, B.; Xu, X.; Zeng, F.; Li, H.; Chen, X. The hierarchical porous structure bio-char assessments produced by co-pyrolysis of municipal sewage sludge and hazelnut shell and Cu(II) adsorption kinetics. Environ. Sci. Pollut. Res. 2018, 25, 19423–19435. [Google Scholar] [CrossRef]
- Waqas, M.; Aburiazaiza, A.S.; Miandad, R.; Rehan, M.; Barakat, M.A.; Nizami, A.S. Development of biochar as fuel and catalyst in energy recovery technologies. J. Clean. Prod. 2018, 188, 477–488. [Google Scholar] [CrossRef]
- Wang, X.; Chi, Q.; Liu, X.; Wang, Y. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge. Chemosphere 2019, 216, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Chacón, F.J.; Cayuela, M.L.; Roig, A.; Sánchez-Monedero, M.A. Understanding, measuring and tuning the electrochemical properties of biochar for environmental applications. Rev. Environ. Sci. Biotechnol. 2017, 16, 695–715. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, B.; Chen, Z.; Zhu, L.; Schnoor, J.L. Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. Environ. Sci. Technol. 2018, 52, 5027–5047. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, W.S.; Cunha, I.F.; Pereira, M.S.; Ataíde, C.H. Thermal decomposition profile and product selectivity of analytical pyrolysis of sweet sorghum bagasse: Effect of addition of inorganic salts. Ind. Crops Prod. 2015, 74, 372–380. [Google Scholar] [CrossRef]
- Li, R.; Wang, J.J.; Gaston, L.A.; Zhou, B.; Li, M.; Xiao, R.; Wang, Q.; Zhang, Z.; Huang, H.; Liang, W.; et al. An overview of carbothermal synthesis of metal–biochar composites for the removal of oxyanion contaminants from aqueous solution. Carbon 2018, 129, 674–687. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, G.K.; Mondal, M.K. Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis. Energy 2019, 181, 665–676. [Google Scholar] [CrossRef]
- Tomin, O.; Vahala, R.; Yazdani, M.R. Tailoring metal-impregnated biochars for selective removal of natural organic matter and dissolved phosphorus from the aqueous phase. Microporous Mesoporous Mater. 2021, 328, 111499. [Google Scholar] [CrossRef]
- Jang, H.M.; Kan, E. Engineered biochar from agricultural waste for removal of tetracycline in water. Bioresour. Technol. 2019, 284, 437–447. [Google Scholar] [CrossRef]
- Liu, Z.; He, M.; Tang, L.; Shao, B.; Liang, Q.; Wu, T.; Pan, Y.; Zhang, X.; Luo, S.; He, Q.; et al. Dual redox cycles of Mn (Ⅱ)/Mn (III) and Mn (III)/Mn (IV) on porous Mn/N co-doped biochar surfaces for promoting peroxymonosulfate activation and ciprofloxacin degradation. J. Colloid Interface Sci. 2022, 634, 255–267. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, P.; Li, J.; Jiang, C. The effects of Mn loading on the structure and ozone decomposition activity of MnOx supported on activated carbon. Chin. J. Catal. 2014, 35, 335–341. [Google Scholar] [CrossRef]
- Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, Y.S.; Jiang, Y.; Gao, B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem. Eng. J. 2019, 366, 608–621. [Google Scholar] [CrossRef]
- Merényi, G.; Lind, J.; Naumov, S.; Von Sonntag, C. The reaction of ozone with the hydroxide ion: Mechanistic considerations based on thermokinetic and quantum chemical calculations and the role of HO4− in superoxide dismutation. Chem. Eur. J. 2010, 16, 1372–1377. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, P.; Wang, C.; Jia, H.; Shang, X.; Tang, J.; Sun, H. Metal-rich hyperaccumulator-derived biochar as an efficient persulfate activator: Role of intrinsic metals (Fe, Mn and Zn) in regulating characteristics, performance and reaction mechanisms. J. Hazard. Mater. 2022, 424, 127225. [Google Scholar] [CrossRef]
- Mytareva, A.I.; Mashkovsky, I.S.; Kanaev, S.A.; Bokarev, D.A.; Baeva, G.N.; Kazakov, A.V.; Stakheev, A.Y. Removal of VOCs by Ozone: n-Alkane Oxidation under Mild Conditions. Catalysts 2021, 11, 506. [Google Scholar] [CrossRef]
- Tian, S.Q.; Qi, J.Y.; Wang, Y.P.; Liu, Y.L.; Wang, L.; Ma, J. Heterogeneous catalytic ozonation of atrazine with Mn-loaded and Fe-loaded biochar. Water Res. 2021, 193, 116860. [Google Scholar] [CrossRef]
Sample | Biochar Yield (%) | C (%) | H (%) | O (%) | N (%) | O/C | H/C |
---|---|---|---|---|---|---|---|
SCB350 | 31.61 | 72.30 | 3.47 | 17.08 | 1.07 | 0.23 | 0.05 |
SCB450 | 27.04 | 81.13 | 2.83 | 11.25 | 1.15 | 0.14 | 0.03 |
SCB550 | 23.39 | 84.45 | 1.96 | 9.82 | 0.98 | 0.12 | 0.03 |
SCB650 | 22.09 | 86.73 | 1.42 | 9.30 | 1.04 | 0.11 | 0.02 |
Biochar | SBET (m2/g) | Smicro (m2/g) | Vtotal (cm3/g) | Vmicro (cm3/g) | dave (nm) |
---|---|---|---|---|---|
SCB550 | 299.6 | 264.5 | 0.112 | 0.123 | 1.49 |
SCB550-Mn | 345.5 | 293.7 | 0.158 | 0.136 | 1.91 |
SCB550-Fe | 371.1 | 318.4 | 0.159 | 0.148 | 1.76 |
Sample Name | Type of Material | O3 Concentration | Temperature & RH | 3-hour Removal Efficiency | Reference |
---|---|---|---|---|---|
ZZU-281 | Metal organic framework | 50 ppm | 25 °C, 40% | 100% | [20] |
Ce-OMS-2 (95 °C, 24 h) | Catalyst | 40 ppm | 30 °C, 90% | 92% | [13] |
MnO/AC-700 | Mn supported on activated carbon | 30 ppm | 25 °C, 45% | 94% | [21] |
AC | Activated Carbon | 45 ppm | 25 °C, 60% | 51% | [74] |
SCB550-Fe | Catalytic Biochar | 20 ppm | 23 °C, 35% | 78% | This work |
SCB550-Fe | Catalytic Biochar | 40 ppm | 23 °C, 35% | 64% | This work |
SCB550-Mn | Catalytic Biochar | 20 ppm | 23 °C, 35% | 68% | This work |
SCB550-Mn | Catalytic Biochar | 40 ppm | 23 °C, 35% | 52% | This work |
Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|
Qmax (mg/g) | KL | R2 | n | KF | R2 | |
SCB550 | 39 | 0.0232 | 0.9913 | 1.3170 | 1.5007 | 0.9812 |
SCB550-Mn | 200 | 0.0162 | 0.9982 | 1.6119 | 7.6913 | 0.9992 |
SCB550-Fe | 204 | 0.0170 | 0.9972 | 1.6388 | 8.4004 | 0.9990 |
O3 Concentration | Pseudo First-Order | Pseudo Second-Order | |||
---|---|---|---|---|---|
K1 | R2 | K2 | R2 | ||
SCB550 | 5 ppm | 0.0009 | 0.9868 | 0.0352 | 0.9989 |
10 ppm | 0.0008 | 0.9186 | 0.0591 | 0.9944 | |
15 ppm | 0.0004 | 0.9539 | 0.0619 | 0.9946 | |
20 ppm | 0.0002 | 0.9727 | 0.0563 | 0.9959 | |
SCB550-Mn | 20 ppm | 0.0005 | 0.7832 | 0.0773 | 0.9910 |
40 ppm | 0.0004 | 0.8692 | 0.0924 | 0.9957 | |
60 ppm | 0.0003 | 0.8285 | 0.1044 | 0.9925 | |
80 ppm | 0.0001 | 0.8556 | 0.2069 | 0.9948 | |
SCB550-Fe | 20 ppm | 0.0009 | 0.8948 | 0.0873 | 0.9929 |
40 ppm | 0.0005 | 0.8589 | 0.1185 | 0.9915 | |
60 ppm | 0.0004 | 0.8287 | 0.1524 | 0.9925 | |
80 ppm | 0.0001 | 0.8797 | 0.2801 | 0.9904 |
Concentration (ppm) | First Stage | Second Stage | Third Stage | |||
---|---|---|---|---|---|---|
K bd (mg g−1 min−0.5 ) | r2 | K fd (mg g−1 min−0.5) | r2 | Kid (mg g−1 min−0.5) | r2 | |
20 | 0.0019 | 0.9754 | 0.0049 | 0.9932 | 0.0008 | 0.9841 |
40 | 0.0026 | 0.9853 | 0.0074 | 0.9951 | 0.0013 | 0.9836 |
60 | 0.0031 | 0.9754 | 0.0079 | 0.9902 | 0.0017 | 0.9899 |
80 | 0.0036 | 0.9965 | 0.0073 | 0.9963 | 0.0020 | 0.9909 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verdida, R.A.; Caparanga, A.R.; Chang, C.-T. Facile Synthesis of Metal-Impregnated Sugarcane-Derived Catalytic Biochar for Ozone Removal at Ambient Temperature. Catalysts 2023, 13, 388. https://doi.org/10.3390/catal13020388
Verdida RA, Caparanga AR, Chang C-T. Facile Synthesis of Metal-Impregnated Sugarcane-Derived Catalytic Biochar for Ozone Removal at Ambient Temperature. Catalysts. 2023; 13(2):388. https://doi.org/10.3390/catal13020388
Chicago/Turabian StyleVerdida, Reginald A., Alvin R. Caparanga, and Chang-Tang Chang. 2023. "Facile Synthesis of Metal-Impregnated Sugarcane-Derived Catalytic Biochar for Ozone Removal at Ambient Temperature" Catalysts 13, no. 2: 388. https://doi.org/10.3390/catal13020388
APA StyleVerdida, R. A., Caparanga, A. R., & Chang, C.-T. (2023). Facile Synthesis of Metal-Impregnated Sugarcane-Derived Catalytic Biochar for Ozone Removal at Ambient Temperature. Catalysts, 13(2), 388. https://doi.org/10.3390/catal13020388