Mechanistic Studies of Improving Pt Catalyst Stability at High Potential via Designing Hydrophobic Micro-Environment with Ionic Liquid in PEMFC
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Part
3.1. Hydrophobic Treatment of Pt/C Catalyst
3.2. Preparation of MEAs
3.3. Electrochemical Measurements
3.4. Characterization of Basic Physical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cullen, D.A.; Neyerlin, K.C.; Ahluwalia, R.K.; Mukundan, R.; More, K.L.; Borup, R.L.; Weber, A.Z.; Myers, D.J.; Kusoglu, A. New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 2021, 6, 462–474. [Google Scholar] [CrossRef]
- Satyapal, S. Hydrogen and Fuel Cell Program Overview (Hydrogen and Fuel Cells Program Annual Merit Review Proceedings, 2019). Available online: https://www.hydrogen.energy.gov/pdfs/review19/plenary_overview_satyapal_2019.pdf (accessed on 13 January 2023).
- How Hydrogen Empowers the Energy Transition (Hydrogen Council, 2017). Available online: https://hydrogencouncil.com/wp-content/uploads/2017/06/Hydrogen-Council-Vision-Document.pdf (accessed on 13 January 2023).
- Mitsushima, S.; Kawahara, S.; Ota, K.-i.; Kamiya, N. Consumption Rate of Pt under Potential Cycling. J. Electrochem. Soc. 2007, 154, 2. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, J.; Kongkanand, A.; Wagner, F.T.; Li, J.C.M.; Jorné, J. Transient Platinum Oxide Formation and Oxygen Reduction on Carbon-Supported Platinum and Platinum-Cobalt Alloy Electrocatalysts. J. Electrochem. Soc. 2013, 161, F10–F15. [Google Scholar] [CrossRef]
- Zago, M.; Baricci, A.; Bisello, A.; Jahnke, T.; Yu, H.; Maric, R.; Zelenay, P.; Casalegno, A. Experimental analysis of recoverable performance loss induced by platinum oxide formation at the polymer electrolyte membrane fuel cell cathode. J. Power Sour. 2020, 455, 227990. [Google Scholar] [CrossRef]
- Holewinski, A.; Linic, S. Elementary Mechanisms in Electrocatalysis: Revisiting the ORR Tafel Slope. J. Electroch. Soc. 2012, 159, H864–H870. [Google Scholar] [CrossRef]
- Wei, G.-F.; Fang, Y.-H.; Liu, Z.-P. First Principles Tafel Kinetics for Resolving Key Parameters in Optimizing Oxygen Electrocatalytic Reduction Catalyst. J. Phys. Chem. C 2012, 116, 12696–12705. [Google Scholar] [CrossRef]
- Subramanian, N.P.; Greszler, T.A.; Zhang, J.; Gu, W.; Makharia, R. Pt-Oxide Coverage-Dependent Oxygen Reduction Reaction (ORR) Kinetics. J. Electrochem. Soc. 2012, 159, B531–B540. [Google Scholar] [CrossRef]
- Bunch, J.S.; van der Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Electromechanical resonators from graphene sheets. Science 2007, 315, 490–493. [Google Scholar] [CrossRef]
- Jinnouchi, R.; Anderson, A.B. Electronic structure calculations of liquid-solid interfaces: Combination of density functional theory and modified Poisson-Boltzmann theory. Phys. Rev. B 2008, 77, 245417. [Google Scholar] [CrossRef]
- Conway, B.E. Electrochemical oxide film formation at noble metals as a surface-chemical process. Prog. Surf. Sci. 1995, 49, 331–452. [Google Scholar] [CrossRef]
- Nagy, Z.; You, H. Applications of surface X-ray scattering to electrochemistry problems. Electrochim. Acta 2002, 47, 3037–3055. [Google Scholar] [CrossRef]
- Shao-Horn, Y.; Sheng, W.C.; Chen, S.; Ferreira, P.J.; Holby, E.F.; Morgan, D. Instability of Supported Platinum Nanoparticles in Low-Temperature Fuel Cells. Top. Catal. 2007, 46, 285–305. [Google Scholar] [CrossRef]
- Stonehart, P. Potentiodynamic examination of electrode kinetics for electroactive adsorbed species: Applications to the reduction of noble metal surface oxides. Proc. R. Soc. London A Math. Phys. Sci. 1969, 310, 541–563. [Google Scholar]
- Yu, X.; Ye, S. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. J. Power Sour. 2007, 172, 145–154. [Google Scholar] [CrossRef]
- Zhang, Q.; Schulze, M.; Gazdzicki, P.; Friedrich, K.A. Comparison of different performance recovery procedures for polymer electrolyte membrane fuel cells. Appl. Energy 2021, 302, 117490. [Google Scholar] [CrossRef]
- Chu, T.; Wang, Q.; Xie, M.; Wang, B.; Yang, D.; Li, B.; Ming, P.; Zhang, C. Investigation of the reversible performance degradation mechanism of the PEMFC stack during long-term durability test. Energy 2022, 258, 124747. [Google Scholar] [CrossRef]
- Perez-Alonso, F.J.; McCarthy, D.N.; Nierhoff, A.; Hernandez-Fernandez, P.; Strebel, C.; Stephens, I.E.; Nielsen, J.H.; Chorkendorff, I. The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. Angew. Chem. Int. Ed. Engl. 2012, 51, 4641–4643. [Google Scholar] [CrossRef]
- Wang, C.; Daimon, H.; Onodera, T.; Koda, T.; Sun, S. A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew. Chem. Int. Ed. Engl. 2008, 47, 3588–3591. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Zhang, S.; Chen, G.; Yin, G.; Du, C.; Tan, Q.; Sun, Y.; Qu, Y.; Gao, Y. Polyelectrolyte assisted synthesis and enhanced oxygen reduction activity of Pt nanocrystals with controllable shape and size. ACS Appl. Mater. Interfaces 2014, 6, 14043–14049. [Google Scholar] [CrossRef]
- Roldan Cuenya, B. Metal nanoparticle catalysts beginning to shape-up. Acc Chem Res 2013, 46, 1682–1691. [Google Scholar] [CrossRef]
- Toshima, N.; Shiraishi, Y.; Teranishi, T.; Miyake, M.; Tominaga, T.; Watanabe, H.; Brijoux, W.; Bönnemann, H.; Schmid, G. Various ligand-stabilized metal nanoclusters as homogeneous and heterogeneous catalysts in the liquid phase. Appl. Organom. Chem. 2001, 15, 178–196. [Google Scholar] [CrossRef]
- Sonstrom, P.; Arndt, D.; Wang, X.; Zielasek, V.; Baumer, M. Ligand capping of colloidally synthesized nanoparticles--a way to tune metal-support interactions in heterogeneous gas-phase catalysis. Angew. Chem. Int. Ed. Engl. 2011, 50, 3888–3891. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, S.; Sun, S. Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. Engl. 2013, 52, 8526–8544. [Google Scholar] [CrossRef]
- Katsounaros, I.; Cherevko, S.; Zeradjanin, A.R.; Mayrhofer, K.J. Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem. Int. Ed. Engl. 2014, 53, 102–121. [Google Scholar] [CrossRef] [PubMed]
- Beard, K.D.; Borrelli, D.; Cramer, A.M.; Blom, D.; Van Zee, J.W.; Monnier, J.R. Preparation and structural analysis of carbon-supported Co core/Pt shell electrocatalysts using electroless deposition methods. ACS Nano 2009, 3, 2841–2853. [Google Scholar] [CrossRef]
- Samjeske, G.; Nagamatsu, S.; Takao, S.; Nagasawa, K.; Imaizumi, Y.; Sekizawa, O.; Yamamoto, T.; Uemura, Y.; Uruga, T.; Iwasawa, Y. Performance and characterization of a Pt-Sn(oxidized)/C cathode catalyst with a SnO2-decorated Pt3Sn nanostructure for oxygen reduction reaction in a polymer electrolyte fuel cell. Phys. Chem. Chem. Phys. 2013, 15, 17208–17218. [Google Scholar] [CrossRef]
- Zhang, G.R.; Wolker, T.; Sandbeck, D.J.S.; Munoz, M.; Mayrhofer, K.J.J.; Cherevko, S.; Etzold, B.J.M. Tuning the Electrocatalytic Performance of Ionic Liquid Modified Pt Catalysts for the Oxygen Reduction Reaction via Cationic Chain Engineering. ACS Catal. 2018, 8, 8244–8254. [Google Scholar] [CrossRef]
- Yamazaki, S.-i.; Asahi, M.; Ioroi, T. Promotion of oxygen reduction on a porphyrazine-modified Pt catalyst surface. Electrochim. Acta 2019, 297, 725–734. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, X.; Zhang, H.; Yi, B.; Jiang, S. Microwave-assisted synthesis of PTFE/C nanocomposite for polymer electrolyte fuel cells. Electrochem. Communicat. 2006, 8, 1158–1162. [Google Scholar] [CrossRef]
- Avcioglu, G.S.; Ficicilar, B.; Bayrakceken, A.; Eroglu, I. High performance PEM fuel cell catalyst layers with hydrophobic channels. Int. J. Hydrogen Energy 2015, 40, 7720–7731. [Google Scholar] [CrossRef]
- Avcioglu, G.S.; Ficicilar, B.; Eroglu, I. Effect of PTFE nanoparticles in catalyst layer with high Pt loading on PEM fuel cell performance. Int. J. Hydrogen Energy 2016, 41, 10010–10020. [Google Scholar] [CrossRef]
- Avcioglu, G.S.; Ficicilar, B.; Eroglu, I. Influence of FEP nanoparticles in catalyst layer on water management and performance of PEM fuel cell with high Pt loading. Int. J. Hydrogen Energy 2017, 42, 496–506. [Google Scholar] [CrossRef]
- Kernchen, U.; Etzold, B.; Korth, W.; Jess, A. Solid Catalyst with Ionic Liquid Layer (SCILL)—A New Concept to Improve Selectivity Illustrated by Hydrogenation of Cyclooctadiene. Chem. Eng. Technol. 2007, 30, 985–994. [Google Scholar] [CrossRef]
- Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G.A.; Rogers, R.D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001, 3, 156–164. [Google Scholar] [CrossRef]
- Sobota, M.; Happel, M.; Amende, M.; Paape, N.; Wasserscheid, P.; Laurin, M.; Libuda, J. Ligand effects in SCILL model systems: Site-specific interactions with Pt and Pd nanoparticles. Adv. Mater. 2011, 23, 2617–2621. [Google Scholar] [CrossRef]
- Tang, Y.; Lin, L.; Kumar, A.; Guo, M.; Sevilla, M.; Zeng, X. Hydrogen Electrooxidation in Ionic Liquids Catalyzed by the NTf(2) Radical. J. Phys. Chem. C Nanomater. Interfaces 2017, 121, 5161–5167. [Google Scholar] [CrossRef]
- Parvulescu, V.I.; Hardacre, C. Catalysis in ionic liquids. Chem. Rev. 2007, 107, 2615–2665. [Google Scholar] [CrossRef]
- Endres, F. Physical chemistry of ionic liquids. Phys. Chem. Chem. Phys. 2010, 12, 1648. [Google Scholar]
- Khan, A.; Lu, X.; Aldous, L.; Zhao, C. Oxygen Reduction Reaction in Room Temperature Protic Ionic Liquids. J. Phys. Chem. C 2013, 117, 18334–18342. [Google Scholar] [CrossRef]
- Maleki, N.; Safavi, A.; Tajabadi, F. High-performance carbon composite electrode based on an ionic liquid as a binder. Anal. Chem. 2006, 78, 3820–3826. [Google Scholar] [CrossRef]
- Švancara, I.; Vytřas, K.; Kalcher, K.; Walcarius, A.; Wang, J. Carbon Paste Electrodes in Facts, Numbers, and Notes: A Review on the Occasion of the 50-Years Jubilee of Carbon Paste in Electrochemistry and Electroanalysis. Electroanalysis 2009, 21, 7–28. [Google Scholar] [CrossRef]
- Snyder, J.; Fujita, T.; Chen, M.W.; Erlebacher, J. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nat. Mater. 2010, 9, 904–907. [Google Scholar] [CrossRef]
- Snyder, J.; Livi, K.; Erlebacher, J. Oxygen Reduction Reaction Performance of [MTBD][beti]-Encapsulated Nanoporous NiPt Alloy Nanoparticles. Adv. Funct. Mater. 2013, 23, 5494–5501. [Google Scholar] [CrossRef]
- Benn, E.; Uvegi, H.; Erlebacher, J. Characterization of Nanoporous Metal-Ionic Liquid Composites for the Electrochemical Oxygen Reduction Reaction. J. Electrochem. Soc. 2015, 162, H759–H766. [Google Scholar] [CrossRef]
- Zhang, G.R.; Munoz, M.; Etzold, B.J. Boosting performance of low temperature fuel cell catalysts by subtle ionic liquid modification. ACS Appl. Mater. Interfaces 2015, 7, 3562–3570. [Google Scholar] [CrossRef]
- Zhang, G.R.; Munoz, M.; Etzold, B.J. Accelerating Oxygen-Reduction Catalysts through Preventing Poisoning with Non-Reactive Species by Using Hydrophobic Ionic Liquids. Angew. Chem. Int. Ed. Engl. 2016, 55, 2257–2261. [Google Scholar] [CrossRef]
- Huang, K.; Song, T.; Morales-Collazo, O.; Jia, H.; Brennecke, J.F. Enhancing Pt/C Catalysts for the Oxygen Reduction Reaction with Protic Ionic Liquids: The Effect of Anion Structure. J. Electrochem. Soc. 2017, 164, F1448–F1459. [Google Scholar] [CrossRef]
- Rivera-Rubero, S.; Baldelli, S. Influence of water on the surface of hydrophilic and hydrophobic room-temperature ionic liquids. J. Am. Chem. Soc. 2004, 126, 11788–11789. [Google Scholar] [CrossRef]
- Anthony, J.L.; Maginn, E.J.; Brennecke, J.F. Solution Thermodynamics of Imidazolium-Based Ionic Liquids and Water. J. Phys. Chem. B 2001, 105, 10942–10949. [Google Scholar] [CrossRef]
- Huang, Y.; Wagner, F.T.; Zhang, J.; Jorné, J. On the nature of platinum oxides on carbon-supported catalysts. J. Electroanalyt. Chem. 2014, 728, 112–117. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, J.; Liu, Y.; Subramanian, N.P.; Wagner, F.T.; Jorne, J.; Li, J. Transient Platinum Oxide Formation and Oxygen Reduction on Carbon-Supported Platinum and Platinum-Alloy Electrocatalysts. ECS Trans. 2011, 41, 1009–1020. [Google Scholar] [CrossRef]
- Cleghorn, S.J.C.; Mayfield, D.K.; Moore, D.A.; Moore, J.C.; Rusch, G.; Sherman, T.W.; Sisofo, N.T.; Beuscher, U. A polymer electrolyte fuel cell life test: 3 years of continuous operation. J. Power Sour. 2006, 158, 446–454. [Google Scholar] [CrossRef]
- Darling, R.M.; Meyers, J.P. Kinetic Model of Platinum Dissolution in PEMFCs. J. Electrochem. Soc. 2003, 150, A1523. [Google Scholar] [CrossRef]
- Xu, H.; Kunz, R.; Fenton, J.M. Investigation of Platinum Oxidation in PEM Fuel Cells at Various Relative Humidities. Electrochem. Solid State Lett. 2007, 10, B1. [Google Scholar] [CrossRef]
- Shibata, S.; Sumino, M.P. Kinetics and mechanism of reduction of oxide film on smooth platinum electrodes with hydrogen. Electrochim. Acta 1975, 20, 736–746. [Google Scholar] [CrossRef]
- Paik, C.H.; Jarvi, T.D.; O’Grady, W.E. Extent of PEMFC Cathode Surface Oxidation by Oxygen and Water Measured by CV. Electrochem. Solid State Lett. 2004, 7, A82. [Google Scholar] [CrossRef]
- Baroody, H.A.; Jerkiewicz, G.; Eikerling, M.H. Modelling oxide formation and growth on platinum. J. Chem. Phys. 2017, 146, 144102. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, L.; Liu, H. Recovery mechanisms in proton exchange membrane fuel cells after accelerated stress tests. J. Power Sour. 2015, 296, 327–334. [Google Scholar] [CrossRef]
- Mitzel, J.; Zhang, Q.; Gazdzicki, P.; Friedrich, K.A. Review on mechanisms and recovery procedures for reversible performance losses in polymer electrolyte membrane fuel cells. J. Power Sour. 2021, 488, 229375. [Google Scholar] [CrossRef]
- Gawas, R.; Snyder, J.; Tang, M. Modifying Interface Solvation and Oxygen Reduction Electrocatalysis with Hydrophobic Species. J. Phys. Chem. C 2022, 126, 14509–14517. [Google Scholar] [CrossRef]
- Arras, J.; Paki, E.; Roth, C.; Radnik, J.; Lucas, M.; Claus, P. How a Supported Metal Is Influenced by an Ionic Liquid: In-Depth Characterization of SCILL-Type Palladium Catalysts and Their Hydrogen Adsorption. J. Phys. Chem. C 2010, 114, 10520–10526. [Google Scholar] [CrossRef]
- Coleman, E.J.; Co, A.C. The Complex Inhibiting Role of Surface Oxide in the Oxygen Reduction Reaction. ACS Catal. 2015, 5, 7299–7311. [Google Scholar] [CrossRef]
- Liu, Y.; Mathias, M.; Zhang, J. Measurement of Platinum Oxide Coverage in a Proton Exchange Membrane Fuel Cell. Electrochem. Solid State Lett. 2010, 13, 96779221. [Google Scholar] [CrossRef]
Catalyst | Time | Relative Peak Area (%) | ||
---|---|---|---|---|
Pt Metal | Pt (II) | Pt (IV) | ||
Pt/C | 0 h | 61.59 | 38.42 | - |
after 10 h | 55.84 | 32.52 | 11.64 | |
recovered | 56.4 | 34.22 | 9.39 | |
Pt/C + IL | 0 h | 64.31 | 35.69 | - |
after 10 h | 57.42 | 34.38 | 8.21 | |
recovered | 59.32 | 40.68 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Zhou, F.; Zhang, H.; Tan, J.; Pan, M. Mechanistic Studies of Improving Pt Catalyst Stability at High Potential via Designing Hydrophobic Micro-Environment with Ionic Liquid in PEMFC. Catalysts 2023, 13, 374. https://doi.org/10.3390/catal13020374
Huang L, Zhou F, Zhang H, Tan J, Pan M. Mechanistic Studies of Improving Pt Catalyst Stability at High Potential via Designing Hydrophobic Micro-Environment with Ionic Liquid in PEMFC. Catalysts. 2023; 13(2):374. https://doi.org/10.3390/catal13020374
Chicago/Turabian StyleHuang, Lei, Fen Zhou, Hui Zhang, Jinting Tan, and Mu Pan. 2023. "Mechanistic Studies of Improving Pt Catalyst Stability at High Potential via Designing Hydrophobic Micro-Environment with Ionic Liquid in PEMFC" Catalysts 13, no. 2: 374. https://doi.org/10.3390/catal13020374
APA StyleHuang, L., Zhou, F., Zhang, H., Tan, J., & Pan, M. (2023). Mechanistic Studies of Improving Pt Catalyst Stability at High Potential via Designing Hydrophobic Micro-Environment with Ionic Liquid in PEMFC. Catalysts, 13(2), 374. https://doi.org/10.3390/catal13020374