Highly Efficient Biosynthesis of Nicotinic Acid by Immobilized Whole Cells of E. coli Expressing Nitrilase in Semi-Continuous Packed-Bed Bioreactor
Abstract
:1. Introduction
2. Results
2.1. Expression of Recombinant Bacteria
2.2. Immobilization of Whole Cells of E. coli pRSF-AfNit2 by Different Entrapment Method
2.3. Enzymatic Properties of SA-GA/PEI Immobilized Cells and Free Cells
2.4. Storage Stability of Immobilized Cells
2.5. Research on Semi-Continuous Synthesis of NA in a Packed-Bed Reactor with Immobilized Cells
2.6. Reusability of Immobilized Cells in the Bioreactor
3. Discussion
4. Materials and Methods
4.1. Chemicals, Plasmids and Strains
4.2. Construction of Recombinant E. coli Strains Expressing Nitrilase
4.3. Cultivation of Recombinant E. coli Expressing Nitrilase
4.4. Enzyme Assay
4.5. Analytical Methods
4.6. Preparation of Immobilized Cells and Enzyme Assay
4.7. Determination of Mechanical Strength of Immobilized Cells
4.8. Effect of Different Reaction Temperature and pH on the Activity of Free and Immobilized Cells
4.9. Semi-Continuous Packed-Bed Bioreactor
4.10. Preparation of NA
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chuck, R. Technology development in nicotinate production. Appl. Catal. A Gen. 2005, 280, 75–82. [Google Scholar]
- Chuck, R. A catalytic green process for the production of NA. Chim. Int. J. Chem. 2000, 54, 508–513. [Google Scholar]
- Velankar, H.; Clarke, K.G.; Preez, R.; Cowan, D.A.; Burton, S.G. Developments in nitrile and amide biotransformation processes. Trends Biotechnol. 2010, 28, 561–569. [Google Scholar] [PubMed]
- Gong, J.S.; Lu, Z.M.; Li, H.; Shi, J.S.; Zhou, Z.M.; Xu, Z.H. Nitrilases in nitrile biocatalysis: Recent progress and forthcoming research. Microb. Cell Factories 2012, 11, 142–144. [Google Scholar]
- Banerjee, A.; Sharma, R.; Banerjee, U. The nitrile-degrading enzymes: Current status and future prospects. Appl. Microbiol. Biotechnol. 2002, 60, 33–44. [Google Scholar]
- Chen, J.; Zheng, R.C.; Zheng, Y.G.; Shen, Y.C. Microbial transformation of nitriles to high-value acids or amides. Adv. Biochem. Eng.-Biotechnol. 2009, 113, 33–77. [Google Scholar] [PubMed]
- Park, W.J.; Kriechbaumer, V.; Müller, A.; Piotrowski, M.; Meeley, R.B.; Gierl, A.; Glawischnig, E. The nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid. Plant Physiol. 2003, 133, 794–802. [Google Scholar] [CrossRef]
- Mathew, C.D.; Nagasawa, T.; Kobayashi, M.; Yamada, H. Nitrilase-Catalyzed Production of Nicotinic Acid from 3-Cyanopyridine in Rhodococcus rhodochrous J1. Appl. Environ. Microbiol. 1988, 54, 1030–1032. [Google Scholar]
- Cantarella, L.; Gallifuoco, A.; Malandra, A.; Martínková, L.; Pasquarelli, F.; Spera, A.; Cantarella, M. Application of continuous stirred membrane reactor to 3-cyanopyridine bioconversion using the nitrile hydratase–amidase cascade system of Microbacterium imperiale CBS 498-74. Enzym. Microb. Technol. 2010, 47, 64–70. [Google Scholar]
- Straathof, A.J.J.; Panke, S.; Schmid, A. The production of fine chemicals by biotransformations. Curr. Opin. Biotechnol. 2003, 13, 548–556. [Google Scholar]
- Zhou, Z.M.; Hashimoto, Y.; Kobayashi, M. Nitrile degradation by rhodococcus: Useful microbial metabolism for industrial productiions. Actinomycetologica 2005, 19, 18–26. [Google Scholar] [CrossRef]
- Gupta, N.; Balomajumder, C.; Agarwal, V.K. Enzymatic mechanism and biochemistry for cyanide degradation: A review. J. Hazard. Mater. 2010, 176, 1–13. [Google Scholar] [PubMed]
- Fischer-Colbrie, G.; Matama, T.; Heumann, S.; Martinkova, L.; Cavaco Paulo, A.; Guebitz, G. Surface hydrolysis of polyacrylonitrile with nitrile hydrolysing enzymes from Micrococcus luteus BST20. J. Biotechnol. 2007, 129, 62–68. [Google Scholar]
- Robins, K.; Gordon, J. Whole Cell Production of Fine Chemicals and Intermediates. In Biocatalysis for Green Chemistry and Chemical Process Development; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 299–326. [Google Scholar]
- Pace, H.C.; Brenner, C. The nitrilase superfamily: Classification, structure and function. Genome Biol. 2001, 2, reviews0001.1. [Google Scholar] [CrossRef]
- Desantis, G.; Zhu, Z.; Greenberg, W.A.; Wong, K.; Chaplin, J.; Hanson, S.R.; Farwell, B.; Nicholson, L.W.; Rand, C.L.; Weiner, D.P.; et al. An enzyme library approach to biocatalysis: Development of nitrilases for enantioselective production of carboxylic acid derivatives. J. Am. Chem. Soc. 2002, 124, 9024–9025. [Google Scholar] [CrossRef]
- Obanijesu, E.O.; Bello, O.O.; Osinowo, F.A.O.; Macaulay, S.R.A. Development of a packed-bed reactor for the recovery of metals from industrial wastewaters. Int. J. Environ. Pollut. 2004, 22, 701–702. [Google Scholar]
- Jorge, R.M.F.; Livingston, A.G. Microbial dynamics in a continuous stirred tank bioreactor exposed to alternating organic compounds. Biotechnol. Bioeng. 2000, 69, 409–417. [Google Scholar] [CrossRef]
- England, E.; Fitch, M.W.; Mormile, M.; Roberts, M. Toluene removal in membrane bioreactors under recirculating and non-recirculating liquid conditions. Clean Technol. Environ. Policy 2005, 7, 259–269. [Google Scholar]
- Pham, S.Q.; Gao, P.; Li, Z. Engineering of recombinant E. coli cells coexpressing P450pyrTM monooxygenase and glucose dehydrogenase for highly region and stereoselective hydroxylation of alicycles with cofactor recycling. Biotechnol. Bioeng. 2013, 110, 363–373. [Google Scholar]
- Chen, Y.T.; Ma, B.D.; Cao, S.S.; Wu, X.M.; Xu, Y. Efficient synthesis of Ibrutinib chiral intermediate in high space-time yield by recombinant E. coli coexpressing alcohol dehydrogenase and glucose dehydrogenase. RSC Adv. 2019, 9, 2325–2331. [Google Scholar] [CrossRef]
- Wu, J.; Ma, B.D.; Xu, Y. One–pot synthesis of β–alanine from maleic acid via three–enzyme cascade biotransformation. Catalysts 2023, 13, 267. [Google Scholar]
- Qiu, J.W.; Zheng, X.S.; Ma, B.D.; Xu, Y. Efficient Improvement the Production of Recombinant Nitrilase by Optimizing Culture Conditions Using Response Surface Methodology (RSM). J. Comput. Theor. Nanosci. 2016, 13, 2269–2276. [Google Scholar] [CrossRef]
- Li, H.; Dong, W.L.; Zhang, Y.; Liu, K.; Zhang, W.M.; Zhang, M.; Ma, J.F.; Jiang, M. Enhanced catalytic efficiency of nitrilase from Acidovorax facilis 72W and application in bioconversion of 3-cyanopyridine to nicotinic acid. J. Mol. Catal. B Enzym. 2017, 133, 459–467. [Google Scholar] [CrossRef]
- He, L.; Chen, Y.; Wu, X.M.; Xu, Y. Magnetic Fe3O4/Alginate Cell Beads: Application in Enzymatic Synthesis of Pharmaceutical Intermediate. J. Comput. Theor. Nanosci. 2016, 13, 2264–2268. [Google Scholar]
- Kaul, P.; Banerjee, A.; Banerjee, U.C. Stereoselective Nitrile Hydrolysis by Immobilized Whole-Cell Biocatalyst. Biomacromolecules 2006, 7, 1536–1541. [Google Scholar]
- Zhong, X.; Yang, S.M.; Su, X.Y.; Shen, X.X.; Zhao, W.; Chan, Z. Production of Cyanocarboxylic Acid by Acidovorax facilis 72W Nitrilase Displayed on the Spore Surface of Bacillus subtilis. J. Microbiol. Biotechnol. 2019, 29, 749–757. [Google Scholar]
- Liu, Q.G.; Zhao, N.; Zou, Y.N.; Ying, H.J.; Liu, D.; Chen, Y. Feasibility study on long-term continuous ethanol production from Cassava supernatant by immobilized yeast cells in packed bed reactor. J. Microbiol. Biotechnol. 2020, 30, 1227–1234. [Google Scholar] [CrossRef]
- Chauhan, S.; Wu, S.; Blumerman, S.; Fallon, R.D.; Gavagan, J.E.; Dicosimo, R.; Payne, M.S. Purification, cloning, sequencing and over-expression in Escherichia coli of a regioselective aliphatic nitrilase from Acidovorax facilis 72W. Appl. Microbiol. Biotechnol. 2003, 61, 118–122. [Google Scholar] [CrossRef]
- Gong, J.S.; Dong, T.T.; Gu, B.C.; Li, H.; Dou, W.F.; Lu, Z.M.; Zhou, Z.M.; Shi, J.S.; Xu, Z.H. Semi-rational engineering accelerates the laboratory evolution of nitrilase catalytic efficiency for nicotinic acid biosynthesis. ChemCatChem 2017, 9, 3395–3401. [Google Scholar]
- Gong, J.S.; Li, H.; Lu, Z.M.; Zhang, X.J.; Zhang, Q.; Yu, J.H.; Zhou, Z.M.; Shi, J.S.; Xu, Z.H. Engineering of a fungal nitrilase for improving catalytic activity and reducing by-product formation in the absence of structural information. Catal. Sci. Technol. 2016, 6, 4134–4141. [Google Scholar] [CrossRef]
- Roy, R.B.; Merten, J.J. Evaluation of urea-acid system as medium of extraction for the B-group vitamins. Part II. Simplified semi-automated chemical analysis for niacin and niacinamide in cereal products. J. Assoc. Off. Anal. Chem. 1983, 66, 291–296. [Google Scholar] [CrossRef] [PubMed]
Immobilization Method | Bead Dimeter (mm) | Color | Mechanical Strength a | Relative Activity (%) |
---|---|---|---|---|
SA gel beads | 3 | milky | * | 87.3 ± 0.1 |
Fe3O4-SA | 5 | dark brown | * | 70.3 ± 0.3 |
SA-GA | 3 | light pink | ** | 91.7 ± 0.2 |
SA-GA/PEI | 3 | pink | *** | 95.1 ± 0.1 |
Activated carbon-SA | 4 | black | * | 78.8 ± 0.4 |
PVA-SA | 3 | white | ** | 87.7 ± 0.5 |
Substrate Concentration (M) | 0.2 | 0.5 | 0.8 | 1.0 | 1.25 |
---|---|---|---|---|---|
Full conversion time (h) | 1.5 | 1.5 | 1.5 | 3.0 | 3.0 |
Space–time yield (g/(L·d)) | 393 ± 1.0 | 984 ± 0.5 | 1576 ± 0.7 | 981 ± 0.5 | 1227 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.-J.; Ma, B.-D.; Wu, X.-M.; Xu, Y. Highly Efficient Biosynthesis of Nicotinic Acid by Immobilized Whole Cells of E. coli Expressing Nitrilase in Semi-Continuous Packed-Bed Bioreactor. Catalysts 2023, 13, 371. https://doi.org/10.3390/catal13020371
Liu X-J, Ma B-D, Wu X-M, Xu Y. Highly Efficient Biosynthesis of Nicotinic Acid by Immobilized Whole Cells of E. coli Expressing Nitrilase in Semi-Continuous Packed-Bed Bioreactor. Catalysts. 2023; 13(2):371. https://doi.org/10.3390/catal13020371
Chicago/Turabian StyleLiu, Xue-Jiao, Bao-Di Ma, Xiao-Mei Wu, and Yi Xu. 2023. "Highly Efficient Biosynthesis of Nicotinic Acid by Immobilized Whole Cells of E. coli Expressing Nitrilase in Semi-Continuous Packed-Bed Bioreactor" Catalysts 13, no. 2: 371. https://doi.org/10.3390/catal13020371
APA StyleLiu, X.-J., Ma, B.-D., Wu, X.-M., & Xu, Y. (2023). Highly Efficient Biosynthesis of Nicotinic Acid by Immobilized Whole Cells of E. coli Expressing Nitrilase in Semi-Continuous Packed-Bed Bioreactor. Catalysts, 13(2), 371. https://doi.org/10.3390/catal13020371