Synthesis and Characterization of ZnO Doped TiO2 Nanocomposites for Their Potential Photocatalytic and Antimicrobial Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. X-ray Diffraction Analysis
2.2. Structural and Elemental Analysis
2.3. UV-Vis Measurements
2.4. FTIR Analysis
2.5. Raman Spectroscopy Analysis
2.6. Photocatalytic Analysis
2.7. BET Analysis
2.8. Antibacterial Activity
2.8.1. An Overview of Inoculum Preparation
2.8.2. Antimicrobial Susceptibility Test
2.9. Screening of Antifungal Activity
2.9.1. Tested Fungi
2.9.2. Determination of Antifungal Activity
3. Experimental
3.1. Preparation of Pure Zinc Oxide and ZnO Doped TiO2 Nanocomposites
3.2. Characterization Studies
3.3. Photocatalytic Performance Measurement
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jayakumar, G.; Irudayaraj, A.; Raj, A.; Sundaram, S.; Kaviyarasu, K. Electrical and magnetic properties of Ni doped CeO2 nanostructured for optoelectronic applications. J. Phys. Chem. Solids 2022, 160, 110369. [Google Scholar] [CrossRef]
- Alhokbany, N.; Ahamad, T.; Alshehri, S.M. Fabrication of highly porous ZnO/Ag2O nanocomposites embedded in N-doped graphitic carbon for photocatalytic degradation of tetracycline. J. Environ. Chem. Eng. 2022, 10, 107681. [Google Scholar] [CrossRef]
- Sharath, R.; Fang, F.; Futter, J.; Trompetter, W.; Singh, G.; Vinu, A.; Kennedy, J. Nitrogen defect engineering in porous g-C3N4 via one-step thermal approach. Emergent Mater. 2022, 421, 1–9. [Google Scholar] [CrossRef]
- Panimalar, S.; Logambal, S.; Thambidurai, R.; Inmozhi, C.; Uthrakumar, R.; Muthukumaran, A.; Rasheed, R.A.; Gatasheh, M.; Raja, A.; Kennedy, J.; et al. Effect of Ag doped MnO2 nanostructures suitable for wastewater treatment and other environmental pollutant applications. Environ. Res. 2022, 205, 112560. [Google Scholar] [CrossRef]
- Jamil, M.; Wei, S.; Taylor, M.P.; Chen, J.J.; Kennedy, J.V. Hybrid anode materials for rechargeable batteries-A review of Sn/TiO based nanocomposites. Energy Rep. 2021, 7, 2836–2848. [Google Scholar] [CrossRef]
- Fang, F.; Futter, J.; Markwitz, A.; Kennedy, J. UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method. Nanotechnology 2009, 20, 245502. [Google Scholar] [CrossRef]
- Kennedy, J.; Murmu, P.; Manikandan, E.; Lee, S. Investigation of structural and photoluminescence properties of gas and metal ions doped zinc oxide single crystals. J. Alloy. Compd. 2014, 616, 614–617. [Google Scholar] [CrossRef]
- Singh, P.; Nanda, A. Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: An in vitro comparative study. Int. J. Cosmet. Sci. 2014, 36, 273–283. [Google Scholar] [CrossRef]
- Rekha, K.; Nirmala, M.; Nair, M.G.; Anukaliani, A. Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanocomposites. Phys. B Condens. Matter. 2010, 405, 3180–3185. [Google Scholar] [CrossRef]
- Nagasundari, S.M.; Muthu, K.; Kaviyarasu, K.; AlFarraj, D.A.; Alkufeidy, R.M. Current trends of Silver doped Zinc oxide nanowires photocatalytic degradation for energy and environmental application. Surf. Interfaces 2021, 23, 100931. [Google Scholar] [CrossRef]
- Vinayagam, R.; Sharma, G.; Murugesan, G.; Pai, S.; Gupta, D.; Narasimhan, M.; Kaviyarasu, K.; Varadavenkatesan, T.; Selvaraj, R. Rapid photocatalytic degradation of 2,4-dichlorophenoxy acetic acid by ZnO nanocomposites synthesized using the leaf extract of Muntingia calabura. J. Mol. Struct. 2022, 1263, 133127. [Google Scholar] [CrossRef]
- Justine, M.; Prabu, H.J.; Johnson, I.; Raj, D.M.A.; Sundaram, S.J.; Kaviyarasu, K. Synthesis and characterizations studies of ZnO and ZnO-SiO2 nanocomposite for biodiesel applications. Mater. Today Proc. 2021, 36, 440–446. [Google Scholar] [CrossRef]
- Anand, G.; Nithiyavathi, R.; Ramesh, R.; Sundaram, S.; Kaviyarasu, K. Structural and optical properties of nickel oxide nanocomposites: Investigation of antimicrobial applications. Surf. Interfaces 2020, 18, 100460. [Google Scholar] [CrossRef]
- Kaviyarasu, K.; Magdalane, C.M.; Kanimozhi, K.; Kennedy, J.; Siddhardh, B.; Reddy, E.S.; Rotte, N.K.; Sharma, C.S.; Thema, F.; Letsholathebe, D.; et al. Elucidation of photocatalysis, photoluminescence and antibacterial studies of ZnO thin films by spin coating method. J. Photochem. Photobiol. B Biol. 2017, 173, 466–475. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekar, M.; Panimalar, S.; Uthrakumar, R.; Kumar, M.; Saravanan, M.R.; Madheswaran, G.G.P.; Inmozhi, C.; Kaviyarasu, K. Preparation and characterization studies of pure and Li+ doped ZnO nanocomposites for optoelectronic applications. Mater. Today Proc. 2021, 36, 228–231. [Google Scholar] [CrossRef]
- Reinert, A.; Payne, C.; Wang, L.; Ciston, J.; Zhu, Y.; Khalifah, P.G. Synthesis and characterization of visible light absorbing (GaN)1−x(ZnO)x semiconductor nanorods. Inorg. Chem. 2013, 52, 8389–8398. [Google Scholar] [CrossRef]
- Magdalane, C.; Priyadharsini, G.; Kaviyarasu, K.; Jothi, A.; Simiyon, G. Synthesis and characterization of TiO2 doped cobalt ferrite nanocomposites via microwave method: Investigation of photocatalytic performance of congo red degradation dye. Surf. Interfaces 2021, 25, 101296. [Google Scholar] [CrossRef]
- Alhaji, N.; Nathiya, D.; Kaviyarasu, K.; Meshram, M.; Ayeshamariam, A. A comparative study of structural and photocatalytic mechanism of AgGaO2 nanocomposites for equilibrium and kinetics evaluation of adsorption parameters. Surf. Interfaces 2019, 17, 100375. [Google Scholar] [CrossRef]
- Choi, M.; Lim, J.; Baek, M.; Choi, W.; Kim, W.; Yong, K. Investigating the Unrevealed Photocatalytic Activity and Stability of Nanostructured Brookite TiO2 Film as an Environmental Photocatalyst. ACS Appl. Mater. Interfaces 2017, 9, 16252–16260. [Google Scholar] [CrossRef]
- Perumal, V.; Uthrakumar, R.; Chinnathambi, M.; Inmozhi, C.; Robert, R.; Rajasaravanan, M.; Raja, A.; Kaviyarasu, K. Electron-hole recombination effect of SnO2-CuO nanocomposite for improving methylene blue photocatalytic activity in wastewater treatment under visible light. J. King Saud Univ. Sci. 2023, 35, 102388. [Google Scholar] [CrossRef]
- Zhuang, B.; Shi, H.; Zhang, H.; Zhang, Z. Sodium doping in brookite TiO2 enhances its photocatalytic activity. Beilstein J. Nanotechnol. 2022, 13, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Luttrell, T.; Halpegamage, S.; Tao, J. Why is anatase a better photocatalyst than rutile?-Model studies on epitaxial TiO2 films. Sci. Rep. 2014, 4, 4043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Zhao, H.; Andino, J.; Li, Y. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile and brookite polymorphs and exploration of surface chemistry. ACS Catal. 2012, 2, 1817–1828. [Google Scholar] [CrossRef]
- Ye, X.; Sha, J.; Jiao, Z.; Zhang, L. Thermoanalytical characteristic of nanocrystalline brookite-based titanium dioxide. Nanostructured Mater. 1997, 8, 919–927. [Google Scholar] [CrossRef]
- Kandiel, T.; Robben, L.; Alkaima, A. Brookite versus anatase TiO2 photocatalysts: Phase transformations and photocatalytic activities. Photochem. Photobiol. Sci. 2013, 12, 602–609. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhou, P.; Liu, J.; Yu, J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16, 20382–20386. [Google Scholar] [CrossRef]
- Kasinathan, K.; Kennedy, J.; Elayaperumal, M.; Henini, M.; Malik, M. Photodegradation of organic pollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications. Sci. Rep. 2016, 6, 38064. [Google Scholar] [CrossRef] [Green Version]
- Geetha, N.; Sivaranjani, S.; Ayeshamariam, A.; Bharathy, M.S.; Nivetha, S.; Kaviyarasu, K.; Jayachandran, M. High performance photo-catalyst based on nanosized ZnO-TiO2 nanoplatelets for removal of RhB under visible light irradiation. J. Adv. Microsc. Res. 2018, 13, 12–19. [Google Scholar] [CrossRef]
- Kaviyarasu, K.; Devarajan, P.A. A convenient route to synthesize hexagonal pillar shaped ZnO nanoneedles via CTAB surfactant. Adv. Mater. Lett. 2013, 4, 582–585. [Google Scholar] [CrossRef]
- Dhayagude, A.; Nikam, S.; Kapoor, S.; Joshi, S. Effect of electrolytic media on the photophysical properties and photocatalytic activity of zinc oxide nanocomposites synthesized by simple electrochemical method. J. Mol. Liq. 2017, 232, 290–303. [Google Scholar] [CrossRef]
- Stan, M.; Popa, A.; Toloman, D.; Silipas, T.; Vodnar, D. Antibacterial and antioxidant activities of ZnO nanocomposites synthesized using extracts of Allium sativum, Rosmarinus ocinalis and Ocimum basilicum. Acta Met. Sin. Engl. Lett. 2016, 29, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Cao, Q. First-principles study on infrared absorptions of transition metal-doped ZnO with oxygen vacancy. Acta. Metall. Sin. Engl. Lett. 2013, 26, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Raja, A.; Ashokkumar, S.; Marthandam, R.P.; Jayachandiran, J.; Khatiwada, C.P.; Kaviyarasu, K.; Raman, R.G.; Swaminathan, M. Eco-friendly preparation of zinc oxide nanocomposites using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J. Photochem. Photobio. B Biol. 2018, 181, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Archana, K.J.; Preetha, A.C.; Balasubramanian, K. Influence of Urbach energy in enhanced photocatalytic activity of Cu doped ZnO nanocomposites. Opt. Mater. 2022, 127, 112245. [Google Scholar] [CrossRef]
- Othman, A.; Osman, M.; Ibrahim, E.; Ali, M. Sonochemically synthesized ZnO nanosheets and nanorods: Annealing temperature effects on the structure, and optical properties. Ceram. Int. 2017, 43, 527–533. [Google Scholar] [CrossRef]
- Gancheva, M.; Velichkova, M.M.; Atanasova, G.; Kovacheva, D.; Uzunov, I.; Cukeva, R. Design and photocatalytic activity of nanosized zinc oxides. Appl. Surf. Sci. 2016, 368, 258–266. [Google Scholar] [CrossRef]
- Gancheva, M.; Uzunov, I.; Iordanova, R.; Papazova, K. Influence of the preparation method on the structure, optical and photocatalytic properties of nanosized ZnO. Mater. Chem. Phys. 2015, 164, 36–45. [Google Scholar] [CrossRef]
- Vafaee, M.; Ghamsari, M.; Radiman, S. Highly concentrated zinc oxide nanocrystals sol with strong blue emission. J. Lumin. 2011, 131, 155–158. [Google Scholar] [CrossRef]
- Dette, C.; Osorio, M.P.; Kley, C.; Punke, P.; Patrick, C.; Jacobson, P.; Giustino, F.; Jung, S.; Kern, K. TiO2 Anatase with a Bandgap in the Visible Region. Nano Lett. 2014, 14, 6533–6538. [Google Scholar] [CrossRef]
- Vinayagam, R.; Kandati, S.; Murugesan, G.; Goveas, L.C.; Baliga, A.; Pai, S.; Varadavenkatesan, T.; Kaviyarasu, K.; Selvaraj, R. Bioinspiration synthesis of hydroxyapatite nanoparticles using eggshells as a calcium source: Evaluation of Congo red dye adsorption potential. J. Mater. Res. Technol. 2023, 22, 169–180. [Google Scholar] [CrossRef]
- Piras, A.; Olla, C.; Reekmans, G.; Kelchtermans, A.; Sloovere, D.; Elen, K.; Carbonaro, C.; Fusaro, L.; Adriaensens, P.; Hardy, A.; et al. Photocatalytic Performance of Undoped and Al-Doped ZnO Nanocomposites in the Degradation of Rhodamine B under UV-Visible Light: The Role of Defects and Morphology. Int. J. Mol. Sci. 2022, 23, 15459. [Google Scholar] [CrossRef] [PubMed]
- Bazzani, M.; Neroni, A.; Calzolari, A.; Catellani, A. Optoelectronic Properties of Al:ZnO: Critical Dosage for an Optimal Transparent Conductive Oxide. Appl. Phys. Lett. 2011, 98, 121907. [Google Scholar] [CrossRef]
- Abrinaei, F.; Molahasani, N. Effects of Mn Doping on the Structural, Linear, and Nonlinear Optical Properties of ZnO Nanocomposites. J. Opt. Soc. Am. B 2018, 35, 2015. [Google Scholar] [CrossRef]
- Calzolari, A.; Catellani, A. Doping, Co-Doping, and Defect Effects on the Plasmonic Activity of ZnO-Based Transparent Conductive Oxides. Oxide-Based Mater. Devices VIII 2017, 12, 101050G. [Google Scholar]
- Mahdavi, R.; Talesh, S. The effect of ultrasonic irradiation on the structure, morphology and photocatalytic performance of ZnO nanocomposites by sol-gel method. Ultrason. Sonochem. 2017, 39, 504. [Google Scholar] [CrossRef]
- Ghoderao, K.; Jamble, S.; Kale, R. Influence of pH on hydrothermally derived ZnO nanostructures. Optik 2018, 156, 758. [Google Scholar] [CrossRef]
- Nandi, P.; Das, D. Photocatalytic Degradation of Rhodamine-B Dye by Stable ZnO Nanostructures with Different Calcination Temperature Induced Defects. Appl. Surf. Sci. 2019, 465, 546–556. [Google Scholar] [CrossRef]
- Djelloul, A.; Aida, M.; Bougdira, J. Photoluminescence, FTIR and X-ray Diffraction Studies on Undoped and Al-Doped ZnO Thin Films Grown on Polycrystalline α-Alumina Substrates by Ultrasonic Spray Pyrolysis. J. Lumin. 2010, 130, 2113–2117. [Google Scholar] [CrossRef]
- Munawaroh, H.; Wahyuningsih, S.; Ramelan, A. Synthesis and Characterization of Al Doped ZnO (AZO) by Sol-Gel Method. IOP Conf. Ser. Mater. Sci. Eng. 2017, 176, 012049. [Google Scholar] [CrossRef] [Green Version]
- Achehboune, M.; Khenfouch, M.; Boukhoubza, I.; Leontie, L.; Doroftei, C.; Carlescu, A.; Bulai, G.; Mothudi, B.; Zorkani, I.; Jorio, A. Microstructural, FTIR and Raman Spectroscopic Study of Rare Earth Doped ZnO Nanostructures. Mater. Today Proc. 2022, 53, 319–323. [Google Scholar] [CrossRef]
- Adesoye, S.; Dellinger, K. ZnO and TiO2 nanostructures for surface-enhanced Raman scattering-based bio-sensing: A review. Sens. Bio-Sens. Res. 2022, 37, 100499. [Google Scholar] [CrossRef]
- Sudakar, C.; Kharel, P.; Lawes, G.; Suryanarayanan, R.; Naik, R.; Naik, V. Raman spectroscopic studies of oxygen defects in Co-doped ZnO films exhibiting room-temperature ferromagnetism. J. Phys. Condens. Matter 2007, 19, 026212. [Google Scholar] [CrossRef]
- Hieu, N.; Lien, T.; Van, T.; Juang, R. Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites. Sep. Purif. Technol. 2020, 232, 115962. [Google Scholar]
- Abdullah, K.A.; Awad, S.; Zaraket, J.; Salame, C. Synthesis of ZnO Nanopowders By Using Sol-Gel and Studying Their Structural and Electrical Properties at Different Temperature. Energy Procedia 2017, 119, 565–570. [Google Scholar] [CrossRef]
- Muhammad, W.; Ullahb, N.; Haroona, M.; Abbasi, B.H. Optical, morphological and biological analysis of zinc oxide nanocomposites (ZnO NPs) using Papaver somniferum L. RSC Adv. 2019, 9, 29541–29548. [Google Scholar] [CrossRef] [Green Version]
- Roguai, S.; Djelloul, A. Structural, microstructural and photocatalytic degradation of methylene blue of zinc oxide and Fe-doped ZnO nanocomposites prepared by simple coprecipitation method. Solid State Commun. 2021, 45, 334–335. [Google Scholar]
- Rataboul, F.; Nayral, C.; Casanove, M.; Maisonnat, A.; Chaudret, B. Synthesis and characterization of monodisperse zinc and zinc oxide nanocomposites from the organometallic precursor [Zn(C6H11)2]. J. Organometalic Chem. 2002, 85, 643–644. [Google Scholar]
- Rasmussen, J.; Martinez, E.; Louka, P.; Wingett, D. Zinc oxide nanocomposites for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv. 2010, 7, 1063–1077. [Google Scholar] [CrossRef] [Green Version]
- Vandebriel, R.; De Jong, W. A review of mammalian toxicity of ZnO nanocomposites, Nanotechnology. Sci. Appl. 2012, 5, 61–71. [Google Scholar]
- Naserian, F.; Mesgar, A. Development of antibacterial and superabsorbent wound composite sponges containing carboxymethyl cellulose/gelatin/Cu-doped ZnO nanocomposites. Colloids Surf. B Biointerfaces 2022, 218, 112729. [Google Scholar] [CrossRef]
- Elmer, W.; White, J. The use of metallic oxide nanocomposites to enhance growth of tomatoes and eggplants in disease infested soil or soillessmedium. Environ. Sci. Nano 2016, 3, 1072–1079. [Google Scholar] [CrossRef]
- Mani, M.; Pavithra, S.; Mohanraj, K.; Kumaresan, S.; Alotaibi, S.S.; Eraqi, M.M.; Gandhi, A.D.; Babujanarthanam, R.; Maaza, M.; Kaviyarasu, K. Studies on the spectrometric analysis of metallic silver nanocomposites (Ag NPs) using Basella alba leaf for the antibacterial activities. Environ. Res. 2021, 199, 111274. [Google Scholar] [CrossRef] [PubMed]
- Espitia, P.; Soares, N.; Coimbra, J.; De Andrade, N.; Cruz, R.; Medeiros, E. Zinc oxide nanocomposites: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 2012, 5, 1447–1464. [Google Scholar] [CrossRef]
- Rajkumari, J.; Magdalane, C.M.; Siddhardha, B.; Madhavan, J.; Ramalingam, G.; Al-Dhabi, N.A.; Arasu, M.V.; Ghilan, A.; Duraipandiayan, V.; Kaviyarasu, K. Synthesis of titanium oxide nanocomposites using Aloe barbadensis mill and evaluation of its antibiofilm potential against Pseudomonas aeruginosa PAO1. J. Photochem. Photobiol. B Biol. 2019, 201, 111667. [Google Scholar] [CrossRef] [PubMed]
- Parasuraman, P.; Antony, A.P.; Sharan, A.; Siddhardha, B.; Kasinathan, K.; Bahkali, N.; Dawoud, T.M.; Syed, A. Antimicrobial photodynamic activity of toluidine blue encapsulated in mesoporous silica nanocomposites against Pseudomonas aeruginosa and Staphylococcus aureus. Biofouling 2019, 35, 89–103. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunasekaran, A.; Rajamani, A.K.; Masilamani, C.; Chinnappan, I.; Ramamoorthy, U.; Kaviyarasu, K. Synthesis and Characterization of ZnO Doped TiO2 Nanocomposites for Their Potential Photocatalytic and Antimicrobial Applications. Catalysts 2023, 13, 215. https://doi.org/10.3390/catal13020215
Gunasekaran A, Rajamani AK, Masilamani C, Chinnappan I, Ramamoorthy U, Kaviyarasu K. Synthesis and Characterization of ZnO Doped TiO2 Nanocomposites for Their Potential Photocatalytic and Antimicrobial Applications. Catalysts. 2023; 13(2):215. https://doi.org/10.3390/catal13020215
Chicago/Turabian StyleGunasekaran, Anguraj, Ashok Kumar Rajamani, Chandrasekar Masilamani, Inmozhi Chinnappan, Uthrakumar Ramamoorthy, and Kasinathan Kaviyarasu. 2023. "Synthesis and Characterization of ZnO Doped TiO2 Nanocomposites for Their Potential Photocatalytic and Antimicrobial Applications" Catalysts 13, no. 2: 215. https://doi.org/10.3390/catal13020215
APA StyleGunasekaran, A., Rajamani, A. K., Masilamani, C., Chinnappan, I., Ramamoorthy, U., & Kaviyarasu, K. (2023). Synthesis and Characterization of ZnO Doped TiO2 Nanocomposites for Their Potential Photocatalytic and Antimicrobial Applications. Catalysts, 13(2), 215. https://doi.org/10.3390/catal13020215