Visible-Light-Driven α-C(sp3)–H Bond Functionalization of Glycine Derivatives
Abstract
:1. Introduction
2. Visible-Light-Driven α-C(sp3)–H Bond Functionalization of Glycine Derivatives with Transition-Metal Complexes
2.1. α-C(sp3)–C Bond Formation
2.1.1. α-C(sp3)–H Alkylation
2.1.2. α-C(sp3)–H Arylation
2.2. α-C(sp3)–N Formation
3. Visible-Light-Driven α-C(sp3)–H Bond Functionalization of Glycine Derivatives with Organic Dyes
3.1. α-C(sp3)–C Formation
3.1.1. α-C(sp3)–H Alkylation
3.1.2. α-C(sp3)–H Arylation
4. Visible-Light-Driven α-C(sp3)–H Bond Functionalization of Glycine Derivatives with Heterogeneous Photocatalysts
5. External Photocatalyst-Free Visible-Light-Driven α-C(sp3)–H Bond Functionalization of Glycine Derivatives
6. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yoon, T.P.; Ischay, M.A.; Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2010, 2, 527–532. [Google Scholar] [CrossRef]
- Schultz, D.M.; Yoon, T.P. Solar Synthesis: Prospects in Visible Light Photocatalysis. Science 2014, 343, 1239176. [Google Scholar] [CrossRef] [PubMed]
- Shaw, M.H.; Twilton, J.; MacMillan, D.W.C. Photoredox Catalysis in Organic Chemistry. J. Org. Chem. 2016, 81, 6898–6926. [Google Scholar] [CrossRef] [PubMed]
- Marzo, L.; Pagire, S.K.; Reiser, O.; König, B. Visible-Light Photocatalysis: Does It Make a Difference in Organic Synthesis? Angew. Chem. Int. Ed. 2018, 57, 10034–10072. [Google Scholar] [CrossRef] [PubMed]
- Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discovery 2021, 20, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Henninot, A.; Collins, J.C.; Nuss, J.M. The Current State of Peptide Drug Discovery: Back to the Future? J. Med. Chem. 2018, 61, 1382–1414. [Google Scholar] [CrossRef]
- Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther. 2022, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Noisier, A.F.M.; Brimble, M.A. C–H Functionalization in the Synthesis of Amino Acids and Peptides. Chem. Rev. 2014, 114, 8775–8806. [Google Scholar] [CrossRef]
- Brandhofer, T.; García Mancheño, O. Site-Selective C–H Bond Activation/Functionalization of Alpha-Amino Acids and Peptide-Like Derivatives. Eur. J. Org. Chem. 2018, 2018, 6050–6067. [Google Scholar] [CrossRef]
- Zhu, Z.; Xiao, L.; Xie, Z. Recent Advances in the α-C(sp3)-H Bond Functionalization of Glycine Derivatives. Chin. J. Org. Chem. 2019, 39, 2345–2364. [Google Scholar] [CrossRef]
- Zhang, R.K.; Huang, X.; Arnold, F.H. Selective C-H bond functionalization with engineered heme proteins: New tools to generate complexity. Curr. Opin. Chem. Biol. 2019, 49, 67–75. [Google Scholar] [CrossRef]
- Hartwig, J.F.; Larsen, M.A. Undirected, Homogeneous C–H Bond Functionalization: Challenges and Opportunities. ACS Cent. Sci. 2016, 2, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Godula, K.; Sames, D. C-H Bond Functionalization in Complex Organic Synthesis. Science 2006, 312, 67–72. [Google Scholar] [CrossRef]
- Aguilar Troyano, F.J.; Merkens, K.; Anwar, K.; Gómez-Suárez, A. Radical-Based Synthesis and Modification of Amino Acids. Angew. Chem. Int. Ed. 2021, 60, 1098–1115. [Google Scholar] [CrossRef]
- Beak, P.; Zajdel, W.J.; Reitz, D.B. Metalation and electrophilic substitution of amine derivatives adjacent to nitrogen:.alpha.-metallo amine synthetic equivalents. Chem. Rev. 1984, 84, 471–523. [Google Scholar] [CrossRef]
- Easton, C.J.; Scharfbillig, I.M.; Wui Tan, E. Selective modification of glycine residues in dipeptides. Tetrahedron Lett. 1988, 29, 1565–1568. [Google Scholar] [CrossRef]
- Easton, C.J.; Hutton, C.A.; Rositano, G.; Tan, E.W. Regioselective functionalization of N-phthaloyl-substituted amino acid and peptide derivatives. J. Org. Chem. 1991, 56, 5614–5618. [Google Scholar] [CrossRef]
- Knowles, H.S.; Hunt, K.; Parsons, A.F. Photochemical alkylation of glycine leading to phenylalanines. Tetrahedron Lett. 2000, 41, 7121–7124. [Google Scholar] [CrossRef]
- Xue, H.; Guo, M.; Wang, C.; Shen, Y.; Qi, R.; Wu, Y.; Xu, Z.; Chang, M. Photo-induced preparation of unnatural α-amino acids: Synthesis and characterization of novel Leu5-enkephalin analogues. Org. Chem. Front. 2020, 7, 2426–2431. [Google Scholar] [CrossRef]
- Tian, H.; Xu, W.; Liu, Y.; Wang, Q. Unnatural α-Amino Acid Synthesized through α-Alkylation of Glycine Derivatives by Diacyl Peroxides. Org. Lett. 2020, 22, 5005–5008. [Google Scholar] [CrossRef]
- Zhao, L.; Li, C.-J. Functionalizing Glycine Derivatives by Direct C-C Bond Formation. Angew. Chem. Int. Ed. 2008, 47, 7075–7078. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-J. Cross-Dehydrogenative Coupling (CDC): Exploring C−C Bond Formations beyond Functional Group Transformations. Acc. Chem. Res. 2009, 42, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Baslé, O.; Li, C.-J. Site-specific C-functionalization of free-(NH) peptides and glycine derivatives via direct C–H bond functionalization. Proc. Natl. Acad. Sci. USA 2009, 106, 4106–4111. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Peng, F.; Qing, C.; Huo, C.; Wang, X. Catalytic Radical Cation Salt Induced Csp3–H Functionalization of Glycine Derivatives: Synthesis of Substituted Quinolines. Org. Lett. 2012, 14, 4030–4033. [Google Scholar] [CrossRef] [PubMed]
- Huo, C.; Yuan, Y.; Wu, M.; Jia, X.; Wang, X.; Chen, F.; Tang, J. Auto-Oxidative Coupling of Glycine Derivatives. Angew. Chem. Int. Ed. 2014, 53, 13544–13547. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Wang, Y.; Peng, F.; Huo, C.; Yu, L.; Liu, J.; Wang, X. Catalytic sp3 C–H Oxidation of Peptides and Their Analogues by Radical Cation Salts: From Glycine Amides to Quinolines. J. Org. Chem. 2013, 78, 9450–9456. [Google Scholar] [CrossRef] [PubMed]
- Huo, C.; Wang, C.; Sun, C.; Jia, X.; Wang, X.; Chang, W.; Wu, M. Triarylaminium Salt-Initiated Aerobic Double Friedel–Crafts Reaction of Glycine Derivatives with Indoles. Adv. Synth. Catal. 2013, 355, 1911–1916. [Google Scholar] [CrossRef]
- Huo, C.; Wang, C.; Wu, M.; Jia, X.; Xie, H.; Yuan, Y. Copper(I) Chloride-Catalyzed Aerobic Oxidative Arylation of Glycine Ester and Amide Derivatives. Adv. Synth. Catal. 2014, 356, 411–415. [Google Scholar] [CrossRef]
- Zhi, H.; Ung, S.P.-M.; Liu, Y.; Zhao, L.; Li, C.-J. Phosphorylation of Glycine Derivatives via Copper(I)-Catalyzed Csp3−H Bond Functionalization. Adv. Synth. Catal. 2016, 358, 2553–2557. [Google Scholar] [CrossRef]
- Liu, P.; Wang, Z.; Lin, J.; Hu, X. An Efficient Route to Quinolines and Other Compounds by Iron-Catalysed Cross-Dehydrogenative Coupling Reactions of Glycine Derivatives. Eur. J. Org. Chem. 2012, 2012, 1583–1589. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Yu, L.; Huo, C.; Wang, X.; Jia, X. Cerium(IV)-Catalyzed sp3 C-H Bond Oxidation of Glycine Derivatives: Radical Cation Prompted Dioxygen Activation in the Presence of Triarylamine. Adv. Synth. Catal. 2014, 356, 3214–3218. [Google Scholar] [CrossRef]
- Sun, B.; Wang, Y.; Li, D.; Jin, C.; Su, W. A copper/O2-mediated direct sp3 C–H/N–H cross-dehydrogen coupling reaction of acylated amines and N-aryl glycine esters. Org. Biomol. Chem. 2018, 16, 2902–2909. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.-R.; Li, B.; Li, G.; He, G.; Chen, G. Postassembly Modifications of Peptides via Metal-Catalyzed C–H Functionalization. CCS Chem. 2020, 3, 1797–1820. [Google Scholar] [CrossRef]
- Liang, J.; Fu, Y.; Bao, X.; Ou, L.; Sang, T.; Yuan, Y.; Huo, C. Cyanation of glycine derivatives. Chem. Commun. 2021, 57, 3014–3017. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-J. On Inventing Cross-Dehydrogenative Coupling (CDC): Forming C—C Bond from Two Different C—H Bonds. Chin. J. Chem. 2022, 40, 838–845. [Google Scholar] [CrossRef]
- Song, S.; Cheng, X.; Cheng, S.; Lin, Y.-M.; Gong, L. Fe-Catalyzed Aliphatic C−H Methylation of Glycine Derivatives and Peptides. Chem. Eur. J. 2023, 29, e202203404. [Google Scholar] [CrossRef]
- Xie, J.; Jin, H.; Xu, P.; Zhu, C. When C–H bond functionalization meets visible-light photoredox catalysis. Tetrahedron Lett. 2014, 55, 36–48. [Google Scholar] [CrossRef]
- Xie, J.; Zhu, C. Functionalization of C(sp3)–H Bond by Visible-Light Photoredox Catalysis. In Sustainable C(sp3)-H Bond Functionalization; Xie, J., Zhu, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 61–81. [Google Scholar] [CrossRef]
- Thakur, A.; Manisha; Kumar, I.; Sharma, U. Visible Light-induced Functionalization of C−H Bonds: Opening of New Avenues in Organic Synthesis. Asian J. Org. Chem. 2022, 11, e202100804. [Google Scholar] [CrossRef]
- Revathi, L.; Ravindar, L.; Fang, W.-Y.; Rakesh, K.P.; Qin, H.-L. Visible Light-Induced C−H Bond Functionalization: A Critical Review. Adv. Synth. Catal. 2018, 360, 4652–4698. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Visible light-driven organic photochemical synthesis in China. Sci. China Chem. 2019, 62, 24–57. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, X.; Liu, C.; Zhang, Y.; Rao, Y. Recent Advances in Rapid Synthesis of Non-proteinogenic Amino Acids from Proteinogenic Amino Acids Derivatives via Direct Photo-Mediated C–H Functionalization. Molecules 2020, 25, 5270. [Google Scholar] [CrossRef]
- Malins, L.R. Decarboxylative couplings as versatile tools for late-stage peptide modifications. Pept. Sci. 2018, 110, e24049. [Google Scholar] [CrossRef]
- Ryu, K.A.; Kaszuba, C.M.; Bissonnette, N.B.; Oslund, R.C.; Fadeyi, O.O. Interrogating biological systems using visible-light-powered catalysis. Nat. Rev. Chem. 2021, 5, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Yousif, A.M.; Colarusso, S.; Bianchi, E. Katritzky Salts for the Synthesis of Unnatural Amino Acids and Late-Stage Functionalization of Peptides. Eur. J. Org. Chem. 2023, 26, e202201274. [Google Scholar] [CrossRef]
- Hong, B.; Luo, T.; Lei, X. Late-Stage Diversification of Natural Products. ACS Cent. Sci. 2020, 6, 622–635. [Google Scholar] [CrossRef]
- Baudoin, O. Multiple Catalytic C−H Bond Functionalization for Natural Product Synthesis. Angew. Chem. Int. Ed. 2020, 59, 17798–17809. [Google Scholar] [CrossRef] [PubMed]
- Hari Babu, M.; Sim, J. Radical-Mediated C−H Alkylation of Glycine Derivatives: A Straightforward Strategy for Diverse α-Unnatural Amino Acids. Eur. J. Org. Chem. 2022, 2022, e202200859. [Google Scholar] [CrossRef]
- Lang, Y.; Li, C.-J.; Zeng, H. Photo-induced transition-metal and external photosensitizer-free organic reactions. Org. Chem. Front. 2021, 8, 3594–3613. [Google Scholar] [CrossRef]
- Deb, M.L.; Saikia, B.S.; Borpatra, P.J.; Baruah, P.K. Progress of Metal-Free Visible-Light-Driven α-C−H Functionalization of Tertiary Amines: A Decade Journey. Asian J. Org. Chem. 2022, 11, e202100706. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, X.; He, F.; Yang, X. Asymmetric synthesis of oxazolines bearing α-stereocenters through radical addition–enantioselective protonation enabled by cooperative catalysis. Org. Chem. Front. 2021, 8, 5804–5809. [Google Scholar] [CrossRef]
- Deng, Q.-H.; Zou, Y.-Q.; Lu, L.-Q.; Tang, Z.-L.; Chen, J.-R.; Xiao, W.-J. De Novo Synthesis of Imidazoles by Visible-Light-Induced Photocatalytic Aerobic Oxidation/[3+2] Cycloaddition/Aromatization Cascade. Chem. Asian J. 2014, 9, 2432–2435. [Google Scholar] [CrossRef]
- Meng, Q.-Y.; Gao, X.-W.; Lei, T.; Liu, Z.; Zhan, F.; Li, Z.-J.; Zhong, J.-J.; Xiao, H.; Feng, K.; Chen, B.; et al. Identifying key intermediates generated in situ from Cu(II) salt–catalyzed C–H functionalization of aromatic amines under illumination. Sci. Adv. 2017, 3, e1700666. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhu, Z.-Q.; Guo, D.; Liu, S.; Ji, J.-J.; Tang, J.; Yuan, E.; Xie, Z.-B.; Le, Z.-G. Cascade cyclization of glycine derivatives with β-ketoesters for polysubstituted 1,4-dihydropyridines by visible light photoredox catalysis. Tetrahedron 2020, 76, 131353. [Google Scholar] [CrossRef]
- Dong, W.; Hu, B.; Gao, X.; Li, Y.; Xie, X.; Zhang, Z. Visible-Light-Induced Photocatalytic Aerobic Oxidation/Povarov Cyclization Reaction: Synthesis of Substituted Quinoline-Fused Lactones. J. Org. Chem. 2016, 81, 8770–8776. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Chen, X.; Li, B.; He, G.; Chen, G. Construction of Peptide Macrocycles via Radical-Mediated Intramolecular C–H Alkylations. Org. Lett. 2021, 23, 716–721. [Google Scholar] [CrossRef]
- Yang, X.; Li, L.; Li, Y.; Zhang, Y. Visible-Light-Induced Photocatalytic Aerobic Oxidative Csp3–H Functionalization of Glycine Derivatives: Synthesis of Substituted Quinolines. J. Org. Chem. 2016, 81, 12433–12442. [Google Scholar] [CrossRef]
- Wang, S.; Ye, Y.; Hu, Y.; Meng, X.; Liu, Z.; Liu, J.; Chen, K.; Zhang, Z.; Zhang, Y. Visible-light-induced Csp3–H functionalization of glycine derivatives by cerium catalysis. Chem. Commun. 2023, 59, 2628–2631. [Google Scholar] [CrossRef]
- Wang, S.; Gao, Y.; Hu, Y.; Zhou, J.; Chen, Z.; Liu, Z.; Zhang, Y. Direct annulation between glycine derivatives and thiiranes through photoredox/iron cooperative catalysis. Chem. Commun. 2023, 59, 12783–12786. [Google Scholar] [CrossRef]
- Gao, X.-W.; Meng, Q.-Y.; Xiang, M.; Chen, B.; Feng, K.; Tung, C.-H.; Wu, L.-Z. Combining Visible Light Catalysis and Transition Metal Catalysis for the Alkylation of Secondary Amines. Adv. Synth. Catal. 2013, 355, 2158–2164. [Google Scholar] [CrossRef]
- Gao, X.-W.; Meng, Q.-Y.; Li, J.-X.; Zhong, J.-J.; Lei, T.; Li, X.-B.; Tung, C.-H.; Wu, L.-Z. Visible Light Catalysis Assisted Site-Specific Functionalization of Amino Acid Derivatives by C–H Bond Activation without Oxidant: Cross-Coupling Hydrogen Evolution Reaction. ACS Catal. 2015, 5, 2391–2396. [Google Scholar] [CrossRef]
- Chen, X.; Engle, K.M.; Wang, D.-H.; Yu, J.-Q. Palladium(II)-Catalyzed C-H Activation/C-C Cross-Coupling Reactions: Versatility and Practicality. Angew. Chem. Int. Ed. 2009, 48, 5094–5115. [Google Scholar] [CrossRef] [PubMed]
- Xuan, J.; Zeng, T.-T.; Feng, Z.-J.; Deng, Q.-H.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J.; Alper, H. Redox-Neutral α-Allylation of Amines by Combining Palladium Catalysis and Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. 2015, 54, 1625–1628. [Google Scholar] [CrossRef]
- Murarka, S. N-(Acyloxy)phthalimides as Redox-Active Esters in Cross-Coupling Reactions. Adv. Synth. Catal. 2018, 360, 1735–1753. [Google Scholar] [CrossRef]
- Parida, S.K.; Hota, S.K.; Kumar, R.; Murarka, S. Late-Stage Alkylation of Heterocycles Using N-(Acyloxy)phthalimides. Chem. Asian J. 2021, 16, 879–889. [Google Scholar] [CrossRef] [PubMed]
- Niu, P.; Li, J.; Zhang, Y.; Huo, C. One-Electron Reduction of Redox-Active Esters to Generate Carbon-Centered Radicals. Eur. J. Org. Chem. 2020, 2020, 5801–5814. [Google Scholar] [CrossRef]
- He, S.; Li, H.; Chen, X.; Krylov, I.B.; Terent’ev, A.O.; Qu, L.; Yu, B. Advances of N-Hydroxyphthalimide Esters in Photocatalytic Alkylation Reactions. Chin. J. Org. Chem. 2021, 41, 4661–4689. [Google Scholar] [CrossRef]
- Budnikov, A.S.; Krylov, I.B.; Lastovko, A.V.; Yu, B.; Terent’ev, A.O. N-Alkoxyphtalimides as Versatile Alkoxy Radical Precursors in Modern Organic Synthesis. Asian J. Org. Chem. 2022, 11, e202200262. [Google Scholar] [CrossRef]
- Wang, C.; Guo, M.; Qi, R.; Shang, Q.; Liu, Q.; Wang, S.; Zhao, L.; Wang, R.; Xu, Z. Visible-Light-Driven, Copper-Catalyzed Decarboxylative C(sp3)−H Alkylation of Glycine and Peptides. Angew. Chem. Int. Ed. 2018, 57, 15841–15846. [Google Scholar] [CrossRef]
- Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013, 113, 5322–5363. [Google Scholar] [CrossRef]
- Zheng, J.; Breit, B. Regiodivergent Hydroaminoalkylation of Alkynes and Allenes by a Combined Rhodium and Photoredox Catalytic System. Angew. Chem. Int. Ed. 2019, 58, 3392–3397. [Google Scholar] [CrossRef]
- Wang, C.; Yu, Y.; Liu, W.-L.; Duan, W.-L. Site-Tunable Csp3–H Bonds Functionalization by Visible-Light-Induced Radical Translocation of N-Alkoxyphthalimides. Org. Lett. 2019, 21, 9147–9152. [Google Scholar] [CrossRef] [PubMed]
- Qi, R.; Wang, C.; Huo, Y.; Chai, H.; Wang, H.; Ma, Z.; Liu, L.; Wang, R.; Xu, Z. Visible Light Induced Cu-Catalyzed Asymmetric C(sp3)–H Alkylation. J. Am. Chem. Soc. 2021, 143, 12777–12783. [Google Scholar] [CrossRef] [PubMed]
- Qi, R.; Wang, C.; Ma, Z.; Wang, H.; Chen, Q.; Liu, L.; Pan, D.; Ren, X.; Wang, R.; Xu, Z. Visible-Light-Promoted Stereoselective C(sp3)−H Glycosylation for the Synthesis of C-Glycoamino Acids and C-Glycopeptides. Angew. Chem. Int. Ed. 2022, 61, e202200822. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.-N.; Li, N.; Huang, Y.-C.; An, Y.; Liang, Y.-M. Visible-Light-Induced Copper-Catalyzed Asymmetric C(sp3)–C(sp3)–H Glycosylation: Access to C-Glycopeptides. Org. Lett. 2022, 24, 4519–4523. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, X.; Cui, W.; Wu, Q.; Wang, L.; Lv, J.; Yang, D. Visible-Light Copper Catalysis for the Synthesis of α-Alkyl-Acetophenones by the Radical-Type Ring Opening of Sulfonium Salts and Oxidative Alkylation of Alkenes. Org. Lett. 2023, 25, 3260–3265. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jiang, M.; Zuo, J.; Song, X.; Lv, J.; Yang, D. Anti-Markovnikov ring-opening of sulfonium salts with alkynes by visible light/copper catalysis. Sci. China Chem. 2023, 66, 791–798. [Google Scholar] [CrossRef]
- Li, X.; Jiang, M.; Zhu, X.; Song, X.; Deng, Q.; Lv, J.; Yang, D. A desulphurization strategy for Sonogashira couplings by visible light/copper catalysis. Org. Chem. Front. 2022, 9, 386–393. [Google Scholar] [CrossRef]
- Hossain, A.; Bhattacharyya, A.; Reiser, O. Copper’s rapid ascent in visible-light photoredox catalysis. Science 2019, 364, eaav9713. [Google Scholar] [CrossRef]
- Wang, J.; Ye, Y.; Sang, T.; Zhou, C.; Bao, X.; Yuan, Y.; Huo, C. C(sp3)–H/C(sp3)–H Dehydrogenative Radical Coupling of Glycine Derivatives. Org. Lett. 2022, 24, 7577–7582. [Google Scholar] [CrossRef] [PubMed]
- Correia, J.T.M.; Fernandes, V.A.; Matsuo, B.T.; Delgado, J.A.C.; de Souza, W.C.; Paixão, M.W. Photo-induced deaminative strategies: Katritzky salts as alkyl radical precursors. Chem. Commun. 2020, 56, 503–514. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, Z.-J.; Liu, Z.-P.; Lou, H. Visible-light-mediated deaminative alkylation of N-arylamines with alkyl Katritzky salts. Org. Chem. Front. 2019, 6, 3902–3905. [Google Scholar] [CrossRef]
- Leng, L.; Ready, J.M. Photocatalytic α-Alkylation of Amines with Alkyl Halides. ACS Catal. 2020, 10, 13196–13201. [Google Scholar] [CrossRef]
- Che, C.; Li, Y.-N.; Cheng, X.; Lu, Y.-N.; Wang, C.-J. Visible-Light-Enabled Enantioconvergent Synthesis of α-Amino Acid Derivatives via Synergistic Brønsted Acid/Photoredox Catalysis. Angew. Chem. Int. Ed. 2021, 60, 4698–4704. [Google Scholar] [CrossRef]
- Wang, J.; Su, Y.; Quan, Z.; Li, J.; Yang, J.; Yuan, Y.; Huo, C. Visible-light promoted α-alkylation of glycine derivatives with alkyl boronic acids. Chem. Commun. 2021, 57, 1959–1962. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, K.; Ye, T.; Huang, L.; Wu, H.; Zhang, J.; Xie, H.; Liu, Y.; Zeng, J.; Cheng, P. Visible-Light-Promoted α-Benzylation of N-Phenyl α-Amino Acids to α-Amino Phenylpropanoids. J. Org. Chem. 2023, 88, 11924–11934. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, L.-Z. Recent advances in visible-light-driven organic reactions. Nat. Sci. Rev. 2017, 4, 359–380. [Google Scholar] [CrossRef]
- Wang, C.; Qi, R.; Wang, R.; Xu, Z. Photo-induced C(sp3)–H Functionalization of Glycine Derivatives: Preparation of Unnatural α-Amino Acids and Late-Stage Modification of Peptides. Acc. Chem. Res. 2023, 56, 2110–2125. [Google Scholar] [CrossRef] [PubMed]
- He, Y.-H.; Xiang, Y.; Yang, D.-C.; Guan, Z. Combining enzyme and photoredox catalysis for aminoalkylation of indoles via a relay catalysis strategy in one pot. Green Chem. 2016, 18, 5325–5330. [Google Scholar] [CrossRef]
- Shen, M.-L.; Shen, Y.; Wang, P.-S. Merging Visible-Light Photoredox and Chiral Phosphate Catalysis for Asymmetric Friedel–Crafts Reaction with in Situ Generation of N-Acyl Imines. Org. Lett. 2019, 21, 2993–2997. [Google Scholar] [CrossRef]
- Tang, Z.; Pi, C.; Wu, Y.; Cui, X. Visible-light-promoted tandem decarboxylation coupling/cyclization of N-aryl glycines with quinoxalinones: Easy access to tetrahydroimidazo[1,5-a]quinoxalin-4(5H)-ones. Green Synth. Catal. 2022, in press. [Google Scholar] [CrossRef]
- Zhu, Z.-Q.; Liu, S.; Hu, Z.-Y.; Xie, Z.-B.; Tang, J.; Le, Z.-G. Visible-Light-Induced Aerobic Oxidative Csp3−H Functionalization of Glycine Derivatives for 2-Substituted Benzoxazoles. Adv. Synth. Catal. 2021, 363, 2568–2572. [Google Scholar] [CrossRef]
- Zhu, S.; Rueping, M. Merging visible-light photoredox and Lewis acid catalysis for the functionalization and arylation of glycine derivatives and peptides. Chem. Commun. 2012, 48, 11960–11962. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-Q.; Hu, M.; Huang, X.-C.; Gong, L.-B.; Xie, Y.-X.; Li, J.-H. Direct α-Arylation of α-Amino Carbonyl Compounds with Indoles Using Visible Light Photoredox Catalysis. J. Org. Chem. 2012, 77, 8705–8711. [Google Scholar] [CrossRef]
- Wang, S.; Ye, Y.; Shen, H.; Liu, J.; Liu, Z.; Jiang, Z.; Lei, J.; Zhang, Y. Visible-light induced C(sp3)–H arylation of glycine derivatives by cerium catalysis. Org. Biomol. Chem. 2023, 21, 8364–8371. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhang, J.; Zuo, J.; Wang, F.; Lv, J.; Hun, X.; Yang, D. Recent Advances in Visible-Light-Catalyzed C—C Bonds and C—Heteroatom Bonds Formation Using Sulfonium Salts. Chin. J. Org. Chem. 2022, 42, 4037–4059. [Google Scholar] [CrossRef]
- Creutz, S.E.; Lotito, K.J.; Fu, G.C.; Peters, J.C. Photo-induced Ullmann C–N Coupling: Demonstrating the Viability of a Radical Pathway. Science 2012, 338, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, B.; Xu, J.; Tang, Q.; Cai, Z.; Jiang, X. Visible-Light-Driven Redox Neutral Direct C−H Amination of Glycine Derivatives and Peptides with N-Acyloxyphthalimides. Chem. Eur. J. 2021, 27, 12540–12544. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Cui, H.; Meng, N.; Yue, H.; Wei, W. Recent advances in the application of sulfinic acids for the construction of sulfur-containing compounds. Chin. Chem. Lett. 2022, 33, 97–114. [Google Scholar] [CrossRef]
- Fukuzumi, S.; Ohkubo, K. Organic synthetic transformations using organic dyes as photoredox catalysts. Org. Biomol. Chem. 2014, 12, 6059–6071. [Google Scholar] [CrossRef]
- Nicewicz, D.A.; Nguyen, T.M. Recent Applications of Organic Dyes as Photoredox Catalysts in Organic Synthesis. ACS Catal. 2014, 4, 355–360. [Google Scholar] [CrossRef]
- Chen, L.; Chao, C.S.; Pan, Y.; Dong, S.; Teo, Y.C.; Wang, J.; Tan, C.-H. Amphiphilic methyleneamino synthon through organic dye catalyzed-decarboxylative aminoalkylation. Org. Biomol. Chem. 2013, 11, 5922–5925. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dong, X.; Deng, G.; Zhou, L. Synthesis of aziridines by visible-light induced decarboxylative cyclization of N-arylglycines and diazo compounds. Sci. China Chem. 2016, 59, 199–202. [Google Scholar] [CrossRef]
- Luo, C.; Zhou, T.; Wang, W.; Han, P.; Jing, L. An Efficient Approach to Access 2,2-Diarylanilines via Visible-Light-Promoted Decarboxylative Cross-Coupling Reactions. Asian J. Org. Chem. 2021, 10, 2342–2346. [Google Scholar] [CrossRef]
- Zhu, Z.-Q.; Guo, D.; Ji, J.-J.; Zhu, X.; Tang, J.; Xie, Z.-B.; Le, Z.-G. Visible-Light-Induced Dehydrogenative Imidoylation of Imidazo[1,2-a]pyridines with α-Amino Acid Derivatives and α-Amino Ketones. J. Org. Chem. 2020, 85, 15062–15071. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yan, B.; Tao, H.; Zhang, Y.; Li, Y. Metal-free photocatalyzed aerobic oxidative Csp3–H functionalization of glycine derivatives: One-step generation of quinoline-fused lactones. Org. Biomol. Chem. 2018, 16, 3816–3823. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, L.; Guo, Y.; Li, S.; Wang, S.; Li, Y.; Zhang, Y. Visible-light-enabled aerobic oxidative Csp3–H functionalization of glycine derivatives using an organic photocatalyst: Access to substituted quinoline-2-carboxylates. Org. Biomol. Chem. 2020, 18, 8179–8185. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, X.; Li, S.; Zhu, Y.; Li, Y.; Zhang, Y. Visible light-induced aerobic oxidative cross-coupling of glycine esters with α-angelicalactone: A facile pathway to γ-lactams. Org. Biomol. Chem. 2018, 16, 6728–6734. [Google Scholar] [CrossRef]
- Okamura, I.; Park, S.; Han, J.H.; Notsu, S.; Sugiyama, H. A Combination of Visible-light Photoredox and Metal Catalysis for the Mannich-type Reaction of N-Aryl Glycine Esters. Chem. Lett. 2017, 46, 1597–1600. [Google Scholar] [CrossRef]
- Xin, H.; Yuan, Z.-H.; Yang, M.; Wang, M.-H.; Duan, X.-H.; Guo, L.-N. Metal-free, visible-light driven C–H ketoalkylation of glycine derivatives and peptides. Green Chem. 2021, 23, 9549–9553. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, H.; Guo, J.; Shao, Y.; Ding, Y.; Zhu, L.; Yao, X. Visible-Light-Induced Oxidative α-Alkylation of Glycine Derivatives with Ethers under Metal-Free Conditions. Eur. J. Org. Chem. 2021, 2021, 5914–5921. [Google Scholar] [CrossRef]
- Guin, S.; Majee, D.; Samanta, S. Recent Advances in Visible-Light-Driven Photocatalyzed γ-Cyanoalkylation Reactions. Asian J. Org. Chem. 2021, 10, 1595–1618. [Google Scholar] [CrossRef]
- Zhou, S.-Y.; Zhang, D.; Liu, X.-J.; Qin, J.-H.; Fu, Z.-L.; Li, S.-L.; Cai, F.-J.; Li, Y.; Li, J.-H. Visible-light-driven photoredox-catalyzed C(sp3)–C(sp3) cross-coupling of N-arylamines with cycloketone oxime esters. Org. Chem. Front. 2022, 9, 2534–2540. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Q.; Liu, R.; Ji, Z.; Li, Y.; Zhao, X.; Wei, W. Visible-light-initiated 4CzIPN catalyzed multi-component tandem reactions to assemble sulfonated quinoxalin-2(1H)-ones. Chin. Chem. Lett. 2022, 33, 1479–1482. [Google Scholar] [CrossRef]
- Chen, X.; Ouyang, W.-T.; Li, X.; He, W.-M. Visible-Light Induced Organophotocatalysis for the Synthesis of Difluoroethylated Benzoxazines. Chin. J. Org. Chem. 2023, 202307026. [Google Scholar]
- Chen, J.-Y.; Wu, H.-Y.; Song, H.-Y.; Li, H.-X.; Jiang, J.; Yang, T.-B.; He, W.-M. Visible-Light-Induced Annulation of Iodonium Ylides and 2-Isocyanobiaryls to Access 6-Arylated Phenanthridines. J. Org. Chem. 2023, 88, 8360–8368. [Google Scholar] [CrossRef] [PubMed]
- Shang, T.-Y.; Lu, L.-H.; Cao, Z.; Liu, Y.; He, W.-M.; Yu, B. Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) in photocatalytic transformations. Chem. Commun. 2019, 55, 5408–5419. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, J.; Wei, C.; Li, Y.; Zhang, K.; Song, L.; Cai, L. Photo-induced β-fragmentation of aliphatic alcohol derivatives for forging C–C bonds. Nat. Commun. 2022, 13, 7450. [Google Scholar] [CrossRef]
- Zhang, G.-Y.; Xiang, Y.; Guan, Z.; He, Y.-H. Enzyme and photoredox sequential catalysis for the synthesis of 1,3-oxazine derivatives in one pot. Catal. Sci. Technol. 2017, 7, 1937–1942. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Zhu, Y.; Yang, X.; Zhou, H.; Li, Y. Visible Light-Induced Oxidative Cross Dehydrogenative Coupling of Glycine Esters with β-Naphthols: Access to 1,3-Benzoxazines. J. Org. Chem. 2020, 85, 6261–6270. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Zhou, H.; Li, S.; Zhu, Y.; Li, Y. Visible light-induced aerobic oxidative cross-coupling of glycine derivatives with indoles: A facile access to 3,3′ bisindolylmethanes. Org. Chem. Front. 2018, 5, 2120–2125. [Google Scholar] [CrossRef]
- Li, S.; Yang, X.; Wang, Y.; Zhou, H.; Zhang, B.; Huang, G.; Zhang, Y.; Li, Y. Visible Light-Induced Aerobic Oxidative Csp3−H Arylation of Glycine Derivatives. Adv. Synth. Catal. 2018, 360, 4452–4456. [Google Scholar] [CrossRef]
- Sun, B.; Deng, J.; Li, D.; Jin, C.; Su, W. Photocatalytic aerobic cross-coupling reaction of N-substituted anilines with N-aryl glycine esters: Synthesis of α-aryl α-amino esters. Tetrahedron Lett. 2018, 59, 4364–4369. [Google Scholar] [CrossRef]
- Ni, C.; Chen, W.; Jiang, C.; Lu, H. Visible light-induced aerobic oxidative cross-coupling reaction: Preparation of α-indolyl glycine derivatives. New J. Chem. 2020, 44, 313–316. [Google Scholar] [CrossRef]
- Shi, A.; Sun, K.; Chen, X.; Qu, L.; Zhao, Y.; Yu, B. Perovskite as Recyclable Photocatalyst for Annulation Reaction of N-Sulfonyl Ketimines. Org. Lett. 2022, 24, 299–303. [Google Scholar] [CrossRef]
- Han, H.; Zheng, X.; Qiao, C.; Xia, Z.; Yang, Q.; Di, L.; Xing, Y.; Xie, G.; Zhou, C.; Wang, W.; et al. A Stable Zn-MOF for Photocatalytic Csp3–H Oxidation: Vinyl Double Bonds Boosting Electron Transfer and Enhanced Oxygen Activation. ACS Catal. 2022, 12, 10668–10679. [Google Scholar] [CrossRef]
- Zhang, Z.; Jia, J.; Zhi, Y.; Ma, S.; Liu, X. Porous organic polymers for light-driven organic transformations. Chem. Soc. Rev. 2022, 51, 2444–2490. [Google Scholar] [CrossRef]
- Song, H.-Y.; Jiang, J.; Wu, C.; Hou, J.-C.; Lu, Y.-H.; Wang, K.-L.; Yang, T.-B.; He, W.-M. Semi-heterogeneous g-C3N4/NaI dual catalytic C–C bond formation under visible light. Green Chem. 2023, 25, 3292–3296. [Google Scholar] [CrossRef]
- Shi, A.; Sun, K.; Wu, Y.; Xiang, P.; Krylov, I.B.; Terent’ev, A.O.; Chen, X.; Yu, B. Oxygen-doped carbon nitride for enhanced photocatalytic activity in visible-light-induced decarboxylative annulation reactions. J. Catal. 2022, 415, 28–36. [Google Scholar] [CrossRef]
- Gui, Q.-W.; Teng, F.; Yu, P.; Wu, Y.-F.; Nong, Z.-B.; Yang, L.-X.; Chen, X.; Yang, T.-B.; He, W.-M. Visible light-induced Z-scheme V2O5/g-C3N4 heterojunction catalyzed cascade reaction of unactivated alkenes. Chin. J. Catal. 2023, 44, 111–116. [Google Scholar] [CrossRef]
- Lu, Y.-H.; Wu, C.; Hou, J.-C.; Wu, Z.-L.; Zhou, M.-H.; Huang, X.-J.; He, W.-M. Ferrocene-Mediated Photocatalytic Annulation of N-Sulfonyl Ketimines on a Polycrystalline WSe2 Semiconductor Photocatalyst. ACS Catal. 2023, 13, 13071–13076. [Google Scholar] [CrossRef]
- Li, X.-B.; Tung, C.-H.; Wu, L.-Z. Semiconducting quantum dots for artificial photosynthesis. Nat. Rev. Chem. 2018, 2, 160–173. [Google Scholar] [CrossRef]
- Huang, C.; Qiao, J.; Ci, R.-N.; Wang, X.-Z.; Wang, Y.; Wang, J.-H.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Quantum dots enable direct alkylation and arylation of allylic C(sp3)–H bonds with hydrogen evolution by solar energy. Chem 2021, 7, 1244–1257. [Google Scholar] [CrossRef]
- Qiao, J.; Song, Z.-Q.; Huang, C.; Ci, R.-N.; Liu, Z.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Direct, Site-Selective and Redox-Neutral α-C−H Bond Functionalization of Tetrahydrofurans via Quantum Dots Photocatalysis. Angew. Chem. Int. Ed. 2021, 60, 27201–27205. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, S.; Yang, X.; Wang, S.; Zhang, Y. Direct synthesis of triphenylamine-based ordered mesoporous polymers for metal-free photocatalytic aerobic oxidation. J. Mater. Chem. A 2022, 10, 13978–13986. [Google Scholar] [CrossRef]
- Poletti, L.; Ragno, D.; Bortolini, O.; Presini, F.; Pesciaioli, F.; Carli, S.; Caramori, S.; Molinari, A.; Massi, A.; Di Carmine, G. Photoredox Cross-Dehydrogenative Coupling of N-Aryl Glycines Mediated by Mesoporous Graphitic Carbon Nitride: An Environmentally Friendly Approach to the Synthesis of Non-Proteinogenic α-Amino Acids (NPAAs) Decorated with Indoles. J. Org. Chem. 2022, 87, 7826–7837. [Google Scholar] [CrossRef]
- Kumar, G.; Pillai, R.S.; Khan, N.-u.H.; Neogi, S. Structural engineering in pre-functionalized, imine-based covalent organic framework via anchoring active Ru(II)-complex for visible-light triggered and aerobic cross-coupling of α-amino esters with indoles. Appl. Catal. B 2021, 292, 120149. [Google Scholar] [CrossRef]
- Ji, P.; Zhang, Y.; Wei, Y.; Huang, H.; Hu, W.; Mariano, P.A.; Wang, W. Visible-Light-Mediated, Chemo- and Stereoselective Radical Process for the Synthesis of C-Glycoamino Acids. Org. Lett. 2019, 21, 3086–3092. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, N.; Lv, Y.; Wei, W.; Yue, H.; Zhong, G. Photocatalyst-free visible-light-mediated three-component reaction of α-diazoesters, cyclic ethers and NaSCN to access organic thiocyanates. Chin. Chem. Lett. 2023, 34, 107599. [Google Scholar] [CrossRef]
- Xu, H.; Li, X.; Ma, J.; Zuo, J.; Song, X.; Lv, J.; Yang, D. An electron donor–acceptor photoactivation strategy for the synthesis of S-aryl dithiocarbamates using thianthrenium salts under mild aqueous micellar conditions. Chin. Chem. Lett. 2023, 34, 108403. [Google Scholar] [CrossRef]
- Xu, H.; Li, X.; Dong, Y.; Ji, S.; Zuo, J.; Lv, J.; Yang, D. Thianthrenium-Enabled Phosphorylation of Aryl C–H Bonds via Electron Donor–Acceptor Complex Photoactivation. Org. Lett. 2023, 25, 3784–3789. [Google Scholar] [CrossRef]
- Ji, H.-T.; Wang, K.-L.; Ouyang, W.-T.; Luo, Q.-X.; Li, H.-X.; He, W.-M. Photoinduced, additive- and photosensitizer-free multi-component synthesis of naphthoselenazol-2-amines with air in water. Green Chem. 2023, 25, 7983–7987. [Google Scholar] [CrossRef]
- Lu, Y.-H.; Zhang, Z.-T.; Wu, H.-Y.; Zhou, M.-H.; Song, H.-Y.; Ji, H.-T.; Jiang, J.; Chen, J.-Y.; He, W.-M. TBAI/H2O-cooperative electrocatalytic decarboxylation coupling-annulation of quinoxalin-2(1H)-ones with N-arylglycines. Chin. Chem. Lett. 2023, 34, 108036. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, Y.; Xie, Z.; Li, Y.; Zhang, Y. Visible-Light-Induced Charge Transfer Enables Csp3–H Functionalization of Glycine Derivatives: Access to 1,3-Oxazolidines. Org. Lett. 2020, 22, 1638–1643. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Shi, J.; Li, S.; Dan, T.; Yang, W.; Yang, M. Selective editing of a peptide skeleton via C–N bond formation at N-terminal aliphatic side chains. Chem. Sci. 2022, 13, 14382–14386. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.-Q.; Hu, J.-Y.; Xie, Z.-B.; Tang, J.; Le, Z.-G. Visible-Light-Enabled Photosensitizer- and Additive-Free Decarboxylative Coupling Cyclization of Enaminone with N-Arylglycine for 3-Aminoalkyl Chromones. Adv. Synth. Catal. 2022, 364, 2169–2173. [Google Scholar] [CrossRef]
- Jiang, C.; Sha, X.; Ni, C.; Qin, W.; Zhu, X.; Wang, S.; Li, X.; Lu, H. Visible-Light-Promoted Cross Dehydrogenative/Decarboxylative Coupling Cascades of Glycine Ester Derivatives and β-Keto Acids. J. Org. Chem. 2022, 87, 8744–8751. [Google Scholar] [CrossRef] [PubMed]
- Song, H.-Y.; Xiao, F.; Jiang, J.; Wu, C.; Ji, H.-T.; Lu, Y.-H.; Wang, K.-L.; He, W.-M. External photocatalyst-free C-H alkylation of N-sulfonyl ketimines with alkanes under visible light. Chin. Chem. Lett. 2023, 34, 108509. [Google Scholar] [CrossRef]
- Song, H.-Y.; Liu, M.-Y.; Huang, J.; Wang, D.; Jiang, J.; Chen, J.-Y.; Yang, T.-B.; He, W.-M. Photosynthesis of 3-Alkylated Coumarins from Carboxylic Acids Catalyzed by a Na2S-Based Electron Donor–Acceptor Complex. J. Org. Chem. 2023, 88, 2288–2295. [Google Scholar] [CrossRef]
- Fu, M.-C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide. Science 2019, 363, 1429–1434. [Google Scholar] [CrossRef]
- Wang, G.-Z.; Fu, M.-C.; Zhao, B.; Shang, R. Photocatalytic decarboxylative alkylations of C(sp3)-H and C(sp2)-H bonds enabled by ammonium iodide in amide solvent. Sci. China Chem. 2021, 64, 439–444. [Google Scholar] [CrossRef]
- Liu, M.-T.; Liu, D.-G.; Qin, Z.-W.; Wang, G.-Z. Visible Light-induced Decarboxylative Alkylations Enabled by Electron Donor-Acceptor Complex. Asian J. Org. Chem 2022, 11, e202200335. [Google Scholar] [CrossRef]
- Wang, C.; Qi, R.; Xue, H.; Shen, Y.; Chang, M.; Chen, Y.; Wang, R.; Xu, Z. Visible-Light-Promoted C(sp3)−H Alkylation by Intermolecular Charge Transfer: Preparation of Unnatural α-Amino Acids and Late-Stage Modification of Peptides. Angew. Chem. Int. Ed. 2020, 59, 7461–7466. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.-Z.; Liu, D.-G.; Liu, M.-T.; Fu, Y. Photocatalyst- and additive-free site-specific C(sp3)–H hydrazination of glycine derivatives and peptides. Green Chem. 2021, 23, 5082–5087. [Google Scholar] [CrossRef]
- Litman, Z.C.; Wang, Y.; Zhao, H.; Hartwig, J.F. Cooperative asymmetric reactions combining photocatalysis and enzymatic catalysis. Nature 2018, 560, 355–359. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, S.; Sun, Y.; Li, S.; Shi, J.; Jiang, Z. Enzyme-photo-coupled catalytic systems. Chem. Soc. Rev. 2021, 50, 13449–13466. [Google Scholar] [CrossRef]
- Li, J.; Kumar, A.; Lewis, J.C. Non-native Intramolecular Radical Cyclization Catalyzed by a B12-Dependent Enzyme. Angew. Chem. Int. Ed. 2023, e202312893. [Google Scholar] [CrossRef]
- Hu, J.-Y.; Xie, Z.-B.; Tang, J.; Le, Z.-G.; Zhu, Z.-Q. Combining Enzyme and Photoredox Catalysis for the Construction of 3-Aminoalkyl Chromones. J. Org. Chem. 2022, 87, 14965–14969. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Bu, X.; Chen, Y.; Wang, L.; E, J.; Zeng, J.; Xu, H.; Han, A.; Yang, X.; Zhao, Z. Visible-Light-Driven α-C(sp3)–H Bond Functionalization of Glycine Derivatives. Catalysts 2023, 13, 1502. https://doi.org/10.3390/catal13121502
Tian Y, Bu X, Chen Y, Wang L, E J, Zeng J, Xu H, Han A, Yang X, Zhao Z. Visible-Light-Driven α-C(sp3)–H Bond Functionalization of Glycine Derivatives. Catalysts. 2023; 13(12):1502. https://doi.org/10.3390/catal13121502
Chicago/Turabian StyleTian, Yao, Xiubin Bu, Yuanrui Chen, Luohe Wang, Junnan E, Jing Zeng, Hao Xu, Aihong Han, Xiaobo Yang, and Zhen Zhao. 2023. "Visible-Light-Driven α-C(sp3)–H Bond Functionalization of Glycine Derivatives" Catalysts 13, no. 12: 1502. https://doi.org/10.3390/catal13121502
APA StyleTian, Y., Bu, X., Chen, Y., Wang, L., E, J., Zeng, J., Xu, H., Han, A., Yang, X., & Zhao, Z. (2023). Visible-Light-Driven α-C(sp3)–H Bond Functionalization of Glycine Derivatives. Catalysts, 13(12), 1502. https://doi.org/10.3390/catal13121502