Effect of HCl Treatment on Acidity of Pd/TiO2 for Furfural Hydrogenation
Abstract
1. Introduction
2. Results
2.1. Characterization of Supports
2.2. Characterization of Catalysts
2.3. FF Hydrogenation
3. Materials and Methods
3.1. Material
3.2. Preparation of TiO2 Supports (TiO2 NP)
3.3. Pre-Treatment of TiO2 Supports
3.4. Preparation of Pd/TiO2 Catalysts
3.5. Characterization
3.6. FF Hydrogenation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Jia, P.; Wang, T. Furfural: A promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catal. 2016, 6, 7621–7640. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, D.; Rodríguez-Padrón, D.; Len, C. Recent advances in catalytic hydrogenation of furfural. Catalysts 2019, 9, 796. [Google Scholar] [CrossRef]
- Matsagar, B.M.; Hsu, C.-Y.; Chen, S.S.; Ahamad, T.; Alshehri, S.M.; Tsang, D.C.W.; Wu, K.C.-W. Selective hydrogenation of furfural to tetrahydrofurfuryl alcohol over a Rh-loaded carbon catalyst in aqueous solution under mild conditions. Sustain. Energy Fuels 2020, 4, 293–301. [Google Scholar] [CrossRef]
- Ma, R.; Wu, X.-P.; Tong, T.; Shao, Z.-J.; Wang, Y.; Liu, X.; Xia, Q.; Gong, X.-Q. The critical role of water in the ring opening of furfural alcohol to 1,2-pentanediol. ACS Catal. 2017, 7, 333–337. [Google Scholar] [CrossRef]
- Yan, K.; Jarvis, C.; Lafleur, T.; Qiao, Y.; Xie, X. Novel synthesis of Pd nanoparticles for hydrogenation of biomass-derived platform chemicals showing enhanced catalytic performance. RSC Adv. 2013, 3, 25865–25871. [Google Scholar] [CrossRef]
- Taylor, M.J.; Durndell, L.J.; Isaacs, M.A.; Parlett, C.M.A.; Wilson, K.; Lee, A.F.; Kyriakou, G. Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions. Appl. Cat. B 2016, 180, 580–585. [Google Scholar] [CrossRef]
- Lesiak, M.; Binczarski, M.; Karski, S.; Maniukiewicz, W.; Rogowski, J.; Szubiakiewicz, E.; Berlowska, J.; Dziugan, P.; Witońska, I. Hydrogenation of furfural over Pd−Cu/Al2O3 catalysts. The role of interaction between palladium and copper on determining catalytic properties. J. Mol. Cat. A Chem. 2014, 395, 337–348. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Nakazawa, H.; Watanabe, H.; Tomishige, K. Total hydrogenation of furfural over a silica-supported nickel catalyst prepared by the reduction of a nickel nitrate precursor. ChemCatChem 2012, 4, 1791–1797. [Google Scholar] [CrossRef]
- Bagheri, S.; Muhd Julkapli, N.; Bee Abd Hamid, S. Titanium dioxide as a catalyst support in heterogeneous catalysis. Sci. World J. 2014, 2014, 727496. [Google Scholar] [CrossRef]
- Parapat, R.Y.; Saputra, O.H.I.; Ang, A.P.; Schwarze, M.; Schomäcker, R. Support effect in the preparation of supported metal catalysts via microemulsion. RSC Adv. 2014, 4, 50955–50963. [Google Scholar] [CrossRef]
- Lashdaf, M.; Tiitta, M.; Venäläinen, T.; Österholm, H.; Krause, A.O.I. Ruthenium on beta zeolite in cinnamaldehyde hydrogenation. Cat. Lett. 2004, 94, 7–14. [Google Scholar] [CrossRef]
- Song, W.; Liu, Y.; Baráth, E.; Zhao, C.; Lercher, J.A. Synergistic effects of Ni and acid sites for hydrogenation and C–O bond cleavage of substituted phenols. Green. Chem. 2015, 17, 1204–1218. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, L.; Ke, C.; Fan, G.; Yang, L.; Li, F. Highly efficient catalytic transfer hydrogenation of furfural over defect-rich amphoteric ZrO2 with abundant surface acid-base sites. Dalton Trans. 2021, 50, 2616–2626. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Yang, C.; Zhang, D.; Wang, J.; Fu, H.; Chen, H.; Li, X. Catalytic transfer hydrogenolysis of α-methylbenzyl alcohol using palladium catalysts and formic acid. Appl. Cat. A 2009, 354, 38–43. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, J.; Tan, X.; Pei, Y.; Qiao, M.; Fan, K.; Zong, B. Effect of support acidity on liquid-phase hydrogenation of benzene to cyclohexene over Ru–B/ZrO2 catalysts. Ind. Eng. Chem. Res. 2012, 51, 12205–12213. [Google Scholar]
- Lin, L.; Qiu, C.; Zhuo, Z.; Zhang, D.; Zhao, S.; Wu, H.; Liu, Y.; He, M. Acid strength controlled reaction pathways for the catalytic cracking of 1-butene to propene over ZSM-5. J. Cat. 2014, 309, 136–145. [Google Scholar] [CrossRef]
- Byun, M.Y.; Park, D.-W.; Lee, M.S. Effect of oxide supports on the activity of Pd based catalysts for furfural hydrogenation. Catalysts 2020, 10, 837. [Google Scholar] [CrossRef]
- Wang, F.; Ma, J.; He, G.; Chen, M.; Wang, S.; Zhang, C.; He, H. Synergistic effect of TiO2−SiO2 in Ag/Si–Ti catalyst for the selective catalytic oxidation of ammonia. Ind. Eng. Chem. Res. 2018, 57, 11903–11910. [Google Scholar] [CrossRef]
- Fu, X.; Clark, L.A.; Yang, Q.; Anderson, M.A. Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environ. Sci. Technol. 1996, 30, 647–653. [Google Scholar] [CrossRef]
- Tresatayawed, A.; Glinrun, P.; Jongsomjit, B. Ethanol dehydration over WO3/TiO2 catalysts using Titania derived from sol-gel and solvothermal methods. Int. J. Chem. Eng. 2019, 2019, 1–11. [Google Scholar] [CrossRef]
- Camposeco, R.; Castillo, S.; Mejía-Centeno, I.; Navarrete, J.; Nava, N. Boosted surface acidity in TiO2 and Al2O3-TiO2 nanotubes as catalytic supports. Appl. Surf. Sci. 2015, 356, 115–123. [Google Scholar] [CrossRef]
- Wang, W.; Deng, S.; Tong, Q.; Zhang, X.; Wu, S.; Xu, B.; He, L.; Li, S.; Gong, J.; Fan, Y.; et al. The properties and SCR de-NOx application of supported V2O5/TiO2 catalysts with different polymerization state of VOx species controlled by the pH value of their precursors. ChemistrySelect 2020, 5, 12952–12959. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, J.; Yu, J.; Zhou, J.; Zhou, X.; Li, H.; He, Z.; Long, H.; Wang, Y.; Lu, P.; et al. Surface modification of metal materials for high-performance electrocatalytic carbon dioxide reduction. Matter 2021, 4, 888–926. [Google Scholar] [CrossRef]
- Songtawee, S.; Rungtaweevoranit, B.; Klaysom, C.; Faungnawakij, K. Tuning Brønsted and Lewis acidity on phosphated titanium dioxides for efficient conversion of glucose to 5-hydroxymethylfurfural. RSC Adv. 2021, 11, 29196–29206. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wang, Y.; Song, D.; An, C.; Wang, J. Catalysis of a nanometre solid super acid of SO42−/TiO2 on the thermal decomposition of ammonium nitrate. Nanomater. Nanotechnol. 2016, 6, 23. [Google Scholar] [CrossRef]
- Visser, N.L.; Verschoor, J.C.; Smulders, L.C.J.; Mattarozzi, F.; Morgan, D.J.; Meeldijk, J.D.; van der Hoeven, J.E.S.; Stewart, J.A.; Vandegehuchte, B.D.; de Jongh, P.E. Influence of carbon support surface modification on the performance of nickel catalysts in carbon dioxide hydrogenation. Cat. Today 2023, 418, 114071. [Google Scholar] [CrossRef]
- Hao, Z.; Liu, G.; Ma, N.; Zhang, H.; Li, Y.; Xia, Y.; Zhang, D.; Zhan, S. Oxygen-vacancy mediated acidity and redox properties on WOx/Cu-doped CeO2 for the removal of NOx. J. Environ. Chem. Eng. 2021, 9, 106024. [Google Scholar] [CrossRef]
- Lim, C.S.; Oh, W.-C. Reaction morphology depending on the amounts of HCl and NH₄OH and effect of pH on the preparation of TiO₂ nanopowder. Anal. Sci. Technol. 2007, 20, 302–307. [Google Scholar]
- Keluo, C.; Zhang, T.; Xiaohui, C.; Yingjie, H.; Liang, X. Model construction of micro-pores in shale: A case study of Silurian Longmaxi Formation shale in Dianqianbei area, SW China. Petrol. Explor. Dev. 2018, 45, 412–421. [Google Scholar] [CrossRef]
- Sych, N.V.; Trofymenko, S.I.; Poddubnaya, O.I.; Tsyba, M.M.; Sapsay, V.I.; Klymchuk, D.O.; Puziy, A.M. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob. Appl. Surf. Sci. 2012, 261, 75–82. [Google Scholar] [CrossRef]
- Cychosz, K.A.; Thommes, M. Progress in the physisorption characterization of nanoporous gas storage materials. Engineering 2018, 4, 559–566. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, H.; Ji, X.; Lan, Q.; Fan, Q. Activated Carbon Modified by Ester Hydrolysis of Ethyl Acetate for Water Vapor Adsorption Enhancement. Processes 2022, 10, 1527. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q.; Zhang, T.; Ma, X.; Guo, J.; Wang, J.; Liu, F.; Li, S. Effect of acid/alkali treatment on the structure and catalytic performance of 3DOM CeCo0.7Mn0.3O3 catalyst. Environ. Sci. Pollut. Res. 2023, 30, 101358–101365. [Google Scholar] [CrossRef] [PubMed]
- Hanna, A.A.; Ali, A.F. Removal of organic matter from crude wet-process phosphoric acid. J. Chem. Technol. Biotechnol. 1992, 55, 205–208. [Google Scholar] [CrossRef]
- Marikutsa, A.; Rumyantseva, M.; Konstantinova, E.A.; Gaskov, A. The key role of active sites in the development of selective metal oxide sensor materials. Sensors 2021, 21, 2554. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Kim, J.; Kang, M. Photodecomposition of concentrated ammonia over nanometer-sized TiO2, V-TiO~2, and Pt/V-TiO2 photocatalysts. Bull. Korean Chem. Soc. 2007, 28, 581–588. [Google Scholar] [CrossRef][Green Version]
- Shao, Y.; Sun, K.; Li, Q.; Liu, Q.; Zhang, S.; Liu, Q.; Hu, G.; Hu, X. Copper-based catalysts with tunable acidic and basic sites for the selective conversion of levulinic acid/ester to γ-valerolactone or 1,4-pentanediol. Green. Chem. 2019, 21, 4499–4511. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, T.; Sun, K.; Zhang, Z.; Zhang, L.; Li, Q.; Zhang, S.; Hu, G.; Hu, X. Competition between acidic sites and hydrogenation sites in Cu/ZrO2 catalysts with different crystal phases for conversion of biomass-derived organics. Green. Energy Environ. 2021, 6, 557–566. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, L.; Zhang, Y.; Du, W.; Zhang, Y. The study of C3H6 impact on selective catalytic reduction by ammonia (NH3-SCR) performance over Cu-SAPO-34 catalysts. Catalysts 2021, 11, 1327. [Google Scholar] [CrossRef]
- Yang, E.; Jang, E.J.; Lee, J.G.; Yoon, S.; Lee, J.; Musselwhite, N.; Somorjai, G.A.; Kwak, J.H.; An, K. Acidic effect of porous alumina as supports for Pt nanoparticle catalysts in n-hexane reforming. Catal. Sci. Technol. 2018, 8, 3295–3303. [Google Scholar] [CrossRef]
- Yuan, R.; Chen, T.; Fei, E.; Lin, J.; Ding, Z.; Long, J.; Zhang, Z.; Fu, X.; Liu, P.; Wu, L. Surface chlorination of TiO2-based photocatalysts: A way to remarkably improve photocatalytic activity in both UV and visible region. ACS Catal. 2011, 1, 200–206. [Google Scholar] [CrossRef]
- Schwoeble, A.S.; Strohmeier, B.R.; Bunker, K.L.; McAllister, D.R.; Marquis Jr, J.P.; Piasecki, J.D.; McAllister, N.M. Application of X-ray photoelectron spectroscopy (XPS) for the surface characterization of Gunshot Residue (GSR). Microsc. Today 2011, 19, 40–45. [Google Scholar] [CrossRef]
- Huang, H.; Leung, D.Y.C. Complete oxidation of formaldehyde at room temperature using TiO2 supported metallic Pd nanoparticles. ACS Catal. 2011, 1, 348–354. [Google Scholar] [CrossRef]
- Kim, Y.E.; Byun, M.Y.; Lee, K.Y.; Lee, M.S. Effects of chlorinated Pd precursors and preparation methods on properties and activity of Pd/TiO2 catalysts. RSC Adv. 2020, 10, 41462–41470. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, B.L.; Anderson, M.A. Peptization process in the sol-gel preparation of porous anatase (TiO2). Chem. Mater. 1995, 7, 1772–1778. [Google Scholar] [CrossRef]
- Bright, E.; Readey, D.W. Dissolution kinetics of TiO2 in HF-HC1 solutions. J. Am. Ceram. Soc. 1987, 70, 900–906. [Google Scholar] [CrossRef]
- Dai, S.; Wu, Y.; Sakai, T.; Du, Z.; Sakai, H.; Abe, M. Preparation of highly crystalline TiO(2) nanostructures by acid-assisted hydrothermal treatment of hexagonal-structured nanocrystalline titania/cetyltrimethyammonium bromide nanoskeleton. Nanoscale Res. Lett. 2010, 5, 1829–1835. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Yu, J.; Sun, X.; Zhuang, J.; He, Q.; You, X.; Guo, J.; Tao, L. Hydrothermal treatment of a TiO2 film by hydrochloric acid for efficient dye-sensitized solar cells. New J. Chem. 2016, 40, 3233–3237. [Google Scholar] [CrossRef]
- Tran, S.B.T.; Choi, H.; Oh, S.; Park, J.Y. Influence of Support Acidity of Pt/Nb2O5 Catalysts on Selectivity of CO2 Hydrogenation. Catal. Lett. 2019, 149, 2823–2835. [Google Scholar] [CrossRef]
- Chen, P.; Wang, X.; Yu, R.; Gu, Y.; Lyu, Y.; Tian, Y.; Fu, J.; Liu, X. Enhancing metal dispersion over an Mo/ZSM-5 catalyst for methane dehydroaromatization. Inorg. Chem. Front. 2022, 9, 4642–4650. [Google Scholar] [CrossRef]
- Li, X.; Chen, L.; Chen, G.; Zhang, J.; Liu, J. The relationship between acidity, dispersion of nickel, and performance of Ni/Al-SBA-15 catalyst on eugenol hydrodeoxygenation. Renew. Energy 2020, 149, 609–616. [Google Scholar] [CrossRef]
- Park, S.K.; Shin, H. Effect of HCl and H2SO4 treatment of TiO2 powder on the photosensitized degradation of aqueous rhodamine b under visible light. J. Nanosci. Nanotechnol. 2014, 14, 8122–8128. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Puigdollers, A.; Schlexer, P.; Tosoni, S.; Pacchioni, G. Increasing oxide reducibility: The role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catal. 2017, 7, 6493–6513. [Google Scholar] [CrossRef]
- Luhakhra, N.; Tiwari, S.K. Polaron and bipolaron mediated photocatalytic activity of polypyrrole nanoparticles under visible light. Colloids Surf. A Physicochem. Eng. Aspects 2023, 667, 131380. [Google Scholar] [CrossRef]
- Gao, Z.; Yang, L.; Fan, G.; Li, F. Promotional role of surface defects on carbon-supported ruthenium-based catalysts in the transfer hydrogenation of furfural. ChemCatChem 2016, 8, 3769–3779. [Google Scholar] [CrossRef]
- Nelson, N.C.; Manzano, J.S.; Sadow, A.D.; Overbury, S.H.; Slowing, I.I. Selective hydrogenation of phenol catalyzed by palladium on high-surface-area ceria at room temperature and ambient pressure. ACS Catal. 2015, 5, 2051–2061. [Google Scholar] [CrossRef]
- Gelder, E.A.; Jackson, S.D.; Lok, C.M. A study of nitrobenzene hydrogenation over palladium/carbon catalysts. Catal. Lett. 2002, 84, 205–208. [Google Scholar] [CrossRef]
- Kim, K.D.; Wang, Z.; Tao, Y.; Ling, H.; Yuan, Y.; Zhou, C.; Liu, Z.; Gaborieau, M.; Huang, J.; Yu, A. The comparative effect of particle size and support acidity on hydrogenation of aromatic ketones. ChemCatChem 2019, 11, 4810–4817. [Google Scholar] [CrossRef]
- Mao, C.; Zheng, J.; Matsagar, B.M.; Kankala, R.K.; Ahamad, T.; Yang, Y.; Wu, K.C.-W.; Zhang, X. Highly-efficient Ru/Al–SBA-15 catalysts with strong Lewis acid sites for the water-assisted hydrogenation of p-phthalic acid. Catal. Sci. Technol. 2020, 10, 2443–2451. [Google Scholar] [CrossRef]
- Nzuzo, Y.; Ntshibongo, S.; Matsinha, L.; Adeyinka, A.; Obodo, K.O.; Bingwa, N. Hydrogenation of furfural-to-furfuryl alcohol over La-based inorganic perovskites: A study of oxygen vacancies as catalytic descriptors. Catal. Commun. 2023, 181, 106717. [Google Scholar] [CrossRef]
- Hou, Q.; Cai, J.; Zuo, L.; Chen, H.; Fu, Y.; Shen, J. Selective hydrogenation of furfural over supported nickel and nickel phosphide catalysts. Appl. Surf. Sci. 2023, 619, 156738. [Google Scholar] [CrossRef]
- Vasiliades, M.A.; Govender, N.S.; Govender, A.; Crous, R.; Moodley, D.; Botha, T.; Efstathiou, A.M. The effect of H2 pressure on the carbon path of methanation reaction on Co/γ-Al2O3: Transient isotopic and operando methodology studies. ACS Catal. 2022, 12, 15110–15129. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, J.; Jia, X.; Du, Z.; Duan, Y.; Xu, J. Aqueous phase hydrogenation of furfural to tetrahydrofurfuryl alcohol on alkaline earth metal modified Ni/Al2O3. RSC Adv. 2016, 6, 51221–51228. [Google Scholar] [CrossRef]
- Cheng, G.; Akhtar, M.S.; Yang, O.-B.; Stadler, F.J. Structure modification of anatase TiO2 nanomaterials-based photoanodes for efficient dye-sensitized solar cells. Electrochim. Acta 2013, 113, 527–535. [Google Scholar] [CrossRef]
- Byun, M.Y.; Kim, Y.E.; Baek, J.H.; Jae, J.; Lee, M.S. Effect of surface properties of TiO2 on the performance of Pt/TiO2 catalysts for furfural hydrogenation. RSC Adv. 2021, 12, 860–868. [Google Scholar] [CrossRef]
Supports | SBET a (m2/g) | VTotal b (cm3/g) | Pore Diameter b (nm) | Acidity (mmol·g–1) c | |||
---|---|---|---|---|---|---|---|
Weak (<250 °C) | Medium (250–400 °C) | Strong (>400 °C) | Total | ||||
TiO2 | 257.6 | 0.32 | 4.65 | 0.48 | 0.71 | 0.19 | 1.38 |
0.5H-T | 256.8 | 0.34 | 5.02 | 0.73 | 1.00 | 0.35 | 2.08 |
2H-T | 259.0 | 0.33 | 4.81 | 1.34 | 1.80 | 0.51 | 3.64 |
4H-T | 245.5 | 0.33 | 5.50 | 0.55 | 0.77 | 0.30 | 1.62 |
5H-T | 251.0 | 0.30 | 4.54 | 0.70 | 0.85 | 0.21 | 1.77 |
Supports | Atomic % | ||
---|---|---|---|
Cl 2p | O 1s | Ti 2p | |
0.5H-T | 0.1 | 74.3 | 25.6 |
2H-T | 0.0 | 76.9 | 23.1 |
4H-T | 0.1 | 75.1 | 24.9 |
5H-T | 0.1 | 75.3 | 24.6 |
Catalysts | SBET a (m2/g) | VTotal b (cm3/g) | Pore Diameter b (nm) | Crystallite Size c (nm) | Acidity (mmol·g–1) d | |||
---|---|---|---|---|---|---|---|---|
Weak (<250 °C) | Medium (250–400 °C) | Strong (>400 °C) | Total | |||||
Pd/TiO2 | 251.6 | 0.30 | 4.64 | — | 0.86 | 0.42 | 0.09 | 1.37 |
Pd/0.5H-T | 215.9 | 0.29 | 5.07 | 9.06 | 0.85 | 0.53 | 0.13 | 1.51 |
Pd/2H-T | 208.0 | 0.29 | 5.18 | 7.04 | 0.92 | 0.51 | 0.21 | 1.64 |
Pd/4H-T | 229.7 | 0.35 | 5.89 | 9.58 | 0.89 | 0.51 | 0.11 | 1.51 |
Pd/5H-T | 225.6 | 0.30 | 5.24 | 10.21 | 0.97 | 0.56 | 0.04 | 1.57 |
Catalysts | Metal Dispersion (%) | Metallic Surface Area (m2/g metal) |
DPd (nm) |
---|---|---|---|
Pd/TiO2 | 17.7 | 78.9 | 5.3 |
Pd/0.5H-T | 23.2 | 103.4 | 4.0 |
Pd/2H-T | 25.0 | 111.6 | 3.7 |
Pd/4H-T | 24.8 | 110.4 | 3.8 |
Pd/5H-T | 19.3 | 86.2 | 4.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.J.; Kim, Y.E.; Jae, J.; Lee, M.S. Effect of HCl Treatment on Acidity of Pd/TiO2 for Furfural Hydrogenation. Catalysts 2023, 13, 1481. https://doi.org/10.3390/catal13121481
Song HJ, Kim YE, Jae J, Lee MS. Effect of HCl Treatment on Acidity of Pd/TiO2 for Furfural Hydrogenation. Catalysts. 2023; 13(12):1481. https://doi.org/10.3390/catal13121481
Chicago/Turabian StyleSong, Hye Jin, Ye Eun Kim, Jungho Jae, and Man Sig Lee. 2023. "Effect of HCl Treatment on Acidity of Pd/TiO2 for Furfural Hydrogenation" Catalysts 13, no. 12: 1481. https://doi.org/10.3390/catal13121481
APA StyleSong, H. J., Kim, Y. E., Jae, J., & Lee, M. S. (2023). Effect of HCl Treatment on Acidity of Pd/TiO2 for Furfural Hydrogenation. Catalysts, 13(12), 1481. https://doi.org/10.3390/catal13121481