Structure-Sensitive Behavior of Supported Vanadia-Based Catalysts for Combustion of Soot
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalytic Activity
2.2. Catalysts Structure and Vanadium Speciation
3. Materials and Methods
3.1. Materials
3.2. Characterization Techniques
3.3. Catalytic Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neha; Prasad, R.; Singh, S.V. A Review on Catalytic Oxidation of Soot Emitted from Diesel Fuelled Engines. J. Environ. Chem. Eng. 2020, 8, 103945. [Google Scholar] [CrossRef]
- Dong, R.; Zhang, Z.; Ye, Y.; Huang, H.; Cao, C. Review of Particle Filters for Internal Combustion Engines. Processes 2022, 10, 993. [Google Scholar] [CrossRef]
- Van Setten, B.A.A.L.; Makkee, M.; Moulijn, J.A. Science and Technology of Catalytic Diesel Particulate Filters. Catal. Rev.-Sci. Eng. 2001, 43, 489–564. [Google Scholar] [CrossRef]
- Fino, D.; Bensaid, S.; Piumetti, M.; Russo, N. A Review on the Catalytic Combustion of Soot in Diesel Particulate Filters for Automotive Applications: From Powder Catalysts to Structured Reactors. Appl. Catal. A Gen. 2016, 509, 75–96. [Google Scholar] [CrossRef]
- Neeft, J.P.A.; Makkee, M.; Moulijn, J.A. Diesel Particulate Emission Control. Fuel Process. Technol. 1996, 47, 1–69. [Google Scholar] [CrossRef]
- Di Sarli, V.; Landi, G.; Di Benedetto, A.; Lisi, L. Synergy Between Ceria and Metals (Ag or Cu) in Catalytic Diesel Particulate Filters: Effect of the Metal Content and of the Preparation Method on the Regeneration Performance. Top. Catal. 2021, 64, 256–269. [Google Scholar] [CrossRef]
- Krishna, K.; Makkee, M. Soot Oxidation over NOx Storage Catalysts: Activity and Deactivation. Catal. Today 2006, 114, 48–56. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.; Xu, C.; Duan, A.; Zhu, L.; Wang, X. Diesel Soot Oxidation over Supported Vanadium Oxide and K-Promoted Vanadium Oxide Catalysts. Appl. Catal. B Environ. 2005, 61, 36–46. [Google Scholar] [CrossRef]
- Stelmachowski, P.; Legutko, P.; Kopacz, A.; Jakubek, T.; Indyka, P.; Pietrzyk, P.; Wojtasik, M.; Markowski, J.; Krasodomski, W.; Ziemiański, L.; et al. Role of Chain Length of the Capping Agents of Iron Oxide Based Fuel Borne Catalysts in the Enhancement of Soot Combustion Activity. Appl. Catal. B Environ. 2016, 199, 485–493. [Google Scholar] [CrossRef]
- Fino, D. Diesel Emission Control: Catalytic Filters for Particulate Removal. Sci. Technol. Adv. Mater. 2007, 8, 93–100. [Google Scholar] [CrossRef]
- Hernández-Giménez, A.M.; Castelló, D.L.; Bueno-López, A. Diesel Soot Combustion Catalysts: Review of Active Phases. Chem. Pap. 2014, 68, 1154–1168. [Google Scholar] [CrossRef]
- Oi-Uchisawa, J.; Wang, S.; Nanba, T.; Ohi, A.; Obuchi, A. Improvement of Pt Catalyst for Soot Oxidation Using Mixed Oxide as a Support. Appl. Catal. B Environ. 2003, 44, 207–215. [Google Scholar] [CrossRef]
- Tang, M.; Liu, S.; Fu, W.; Wang, J.; Yin, K.; Zhu, M.; Tian, J.; Sun, Y.; Dai, Y. Surface Oxygen Vacancies Promoted Pt Nanoparticles on Celery-like CeO2 Nanofibers for Enhanced Sinter-Resistance and Catalytic Performance. Mater. Today Nano 2022, 20, 100249. [Google Scholar] [CrossRef]
- Yang, H.; Yang, X.; Xiao, J.; Yu, Y.; Xu, L.; Li, X.; Cao, C.; Liu, G. Silver-Modified NiCo2O4 Nanosheets Monolithic Catalysts Used for Catalytic Soot Elimination. Fuel 2022, 326, 125036. [Google Scholar] [CrossRef]
- Hu, C.; Chen, Z.; Wei, C.; Wan, X.; Li, W.; Lin, Q. Au Nanoparticles Supported on Iron-Based Oxides for Soot Oxidation: Physicochemical Properties Before and After the Reaction. ACS Omega 2021, 6, 11510–11518. [Google Scholar] [CrossRef]
- Yang, L.; Hu, J.; Zhang, C.; Song, Q.; Xue, Z.; Zhang, X.; Tong, L. Mechanism of Pd and K Co-Doping to Enhance the Simultaneous Removal of NOxand Soot over LaMnO3. Catal. Sci. Technol. 2020, 10, 6013–6024. [Google Scholar] [CrossRef]
- Torregrosa-Rivero, V.; Sánchez-Adsuar, M.-S.; Illán-Gómez, M.-J. Analyzing the Role of Copper in the Soot Oxidation Performance of BaMnO3-Perovskite-Based Catalyst Obtained by Modified Sol-Gel Synthesis. Fuel 2022, 328, 125258. [Google Scholar] [CrossRef]
- Neha; Singh, S.V. Facile and Template-Free Synthesis of Nano-Macroporous LaCoO3 Perovskite Oxide for Efficient Diesel Soot Oxidation. React. Kinet. Mech. Catal. 2022, 135, 1607–1620. [Google Scholar] [CrossRef]
- Huo, Z.; Zhao, P.; Miu, P.; Ren, L.; Tan, B.; Feng, N.; Wan, H.; Guan, G. Enhanced Catalytic Oxidation of Soot over 3DOM LaMnO3 by Adding Ag and CeO2: Improving the Generation and Delivery of Active Oxygen Species. Appl. Surf. Sci. 2022, 600, 154204. [Google Scholar] [CrossRef]
- López-Suárez, F.E.; Bueno-López, A.; Illán-Gómez, M.J.; Adamski, A.; Ura, B.; Trawczynski, J. Copper Catalysts for Soot Oxidation: Alumina versus Perovskite Supports. Environ. Sci. Technol. 2008, 42, 7670–7675. [Google Scholar] [CrossRef]
- Legutko, P.; Jakubek, T.; Kaspera, W.; Stelmachowski, P.; Sojka, Z.; Kotarba, A. Soot Oxidation over K-Doped Manganese and Iron Spinels—How Potassium Precursor Nature and Doping Level Change the Catalyst Activity. Catal. Commun. 2014, 43, 34–37. [Google Scholar] [CrossRef]
- Álvarez-Docio, C.M.; Portela, R.; Reinosa, J.J.; Rubio-Marcos, F.; Pascual, L.; Fernández, J.F. Performance and Stability of Wet-Milled CoAl2O4, Ni/CoAl2O4, and Pt,Ni/CoAl2O4 for Soot Combustion. Catalysts 2020, 10, 406. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Ao, C.; Zhang, L.; Lei, L. Interactive Effects of NOx Synergistic and Hydrothermal Aging on Soot Catalytic Combustion in Ce-Based Catalysts. Combust. Flame 2022, 245, 112289. [Google Scholar] [CrossRef]
- Sacco, N.A.; Miró, E.E.; Milt, V.G.; Banús, E.D.; Bortolozzi, J.P. Kinetic, Stability and Characterization Studies of Ce, Mn and Mn-Doped Ceria Paper Catalysts Towards Soot Combustion Under Different Reaction Conditions. Top. Catal. 2022, 65, 1262–1272. [Google Scholar] [CrossRef]
- Neri, G.; Rizzo, G.; Galvagno, S.; Donato, A.; Musolino, M.G.; Pietropaolo, R. K- and Cs-FeV Al2O3 Soot Combustion Catalysts for Diesel Exhaust Treatment. Appl. Catal. B Environ. 2003, 42, 381–391. [Google Scholar] [CrossRef]
- Li, Q.; Xin, Y.; Zhang, Z.; Cao, X. Electron Donation Mechanism of Superior Cs-Supported Oxides for Catalytic Soot Combustion. Chem. Eng. J. 2018, 337, 654–660. [Google Scholar] [CrossRef]
- Yongtao, W.; Lina, S.U.I.; Hongquan, K.; Liyan, Y.U. Research on K-V-Rare Earth Metal Catalysts for Diesel Soot Oxidation. J. Wuhan Univ. Technol. Sci. Ed. 2018, 33, 331–337. [Google Scholar]
- Peng, C.; Yu, D.; Zhang, C.; Chen, M.; Wang, L.; Yu, X.; Fan, X.; Zhao, Z.; Cheng, K.; Chen, Y.; et al. Alkali/Alkaline-Earth Metal-Modified MnOx Supported on Three-Dimensionally Ordered Macroporous–Mesoporous TixSi1−XO2 Catalysts: Preparation and Catalytic Performance for Soot Combustion. J. Environ. Sci. 2023, 125, 82–94. [Google Scholar] [CrossRef]
- Legutko, P.; Pęza, J.; Villar Rossi, A.; Marzec, M.; Jakubek, T.; Kozieł, M.; Adamski, A. Elucidation of Unexpectedly Weak Catalytic Effect of Doping with Cobalt of the Cryptomelane and Birnessite Systems Active in Soot Combustion. Top. Catal. 2019, 62, 599–610. [Google Scholar] [CrossRef]
- Legutko, P.; Gryboś, J.; Fedyna, M.; Janas, J.; Wach, A.; Szlachetko, J.; Adamski, A.; Yu, X.; Zhao, Z.; Kotarba, A.; et al. Soot Combustion over Niobium-Doped Cryptomelane (K-OMS-2) Nanorods—Redox State of Manganese and the Lattice Strain Control the Catalysts Performance. Catalysts 2020, 10, 1390. [Google Scholar] [CrossRef]
- Liu, S.; Wu, X.; Weng, D.; Ran, R. Ceria-Based Catalysts for Soot Oxidation: A Review. J. Rare Earths 2015, 33, 567–590. [Google Scholar] [CrossRef]
- Mishra, A.; Prasad, R. Preparation and Application of Perovskite Catalysts for Diesel Soot Emissions Control: An Overview. Catal. Rev.-Sci. Eng. 2014, 56, 57–81. [Google Scholar] [CrossRef]
- Legutko, P.; Stelmachowski, P.; Yu, X.; Zhao, Z.; Sojka, Z.; Kotarba, A. Catalytic Soot Combustion—General Concepts and Alkali Promotion. ACS Catal. 2023, 13, 3395–3418. [Google Scholar] [CrossRef]
- Lisi, L.; Landi, G.; Di Sarli, V. The Issue of Soot-Catalyst Contact in Regeneration of Catalytic Diesel Particulate Filters: A Critical Review. Catalysts 2020, 10, 1307. [Google Scholar] [CrossRef]
- Weckhuysen, B.M.; Keller, D.E. Chemistry, Spectroscopy and the Role of Supported Vanadium Oxides in Heterogeneous Catalysis. Catal. Today 2003, 78, 25–46. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.; Xu, C.; Duan, A.; Jiang, G. CeO2-Supported Vanadium Oxide Catalysts for Soot Oxidation: The Roles of Molecular Structure and Nanometer Effect. J. Rare Earths 2010, 28, 198–204. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.; Xu, C.; Duan, A.; Zhu, L.; Wang, X. The Structures of VOx/MOx and Alkali-VOx/MOx Catalysts and Their Catalytic Performances for Soot Combustion. Catal. Today 2006, 118, 315–322. [Google Scholar] [CrossRef]
- Ciambelli, P.; Parrella, P.; Vaccaro, S. Kinetics of Soot Oxidation on Potassium-Copper-Vanadium Catalyst. Stud. Surf. Sci. Catal. 1991, 71, 323–335. [Google Scholar]
- Ahlström, A.F.; Odenbrand, C.U.I. Combustion of Soot Deposits from Diesel Engines on Mixed Oxides of Vanadium Pentoxide and Cupric Oxide. Appl. Catal. 1990, 60, 157–172. [Google Scholar] [CrossRef]
- Trawczynski, J. Catalytic Combustion of Soot. React. Kinet. Catal. Lett. 1998, 63, 41–45. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, Z.; Xu, C.; Duan, A.; Jiang, G.; Gao, J.; Lin, W.; Wachs, I.E. In-Situ UV-Raman Study on Soot Combustion over TiO2 or ZrO2-Supported Vanadium Oxide Catalysts. Sci. China Ser. B Chem. 2008, 51, 551–561. [Google Scholar] [CrossRef]
- Neri, G.; Rizzo, G.; Galvagno, S.; Musolino, M.G.; Donato, A.; Pietropaolo, R. Thermal Analysis Characterization of Promoted Vanadium Oxide-Based Catalysts. Thermochim. Acta 2002, 381, 165–172. [Google Scholar] [CrossRef]
- Cousin, R.; Capelle, S.; Abi-Aad, E.; Courcot, D.; Aboukaïs, A. Copper-Vanadium-Cerium Oxide Catalysts for Carbon Black Oxidation. Appl. Catal. B Environ. 2007, 70, 247–253. [Google Scholar] [CrossRef]
- Schobing, J.; Tschamber, V.; Brilhac, J.-F.; Auclaire, A.; Hohl, Y. Simultaneous Soot Combustion and NOx Reduction over a Vanadia-Based Selective Catalytic Reduction Catalyst. Comptes Rendus Chim. 2018, 21, 221–231. [Google Scholar] [CrossRef]
- Zheng, L.; Casapu, M.; Grunwaldt, J.D. Understanding the Multiple Interactions in Vanadium-Based SCR Catalysts during Simultaneous NOx and Soot Abatement. Catal. Sci. Technol. 2022, 12, 3969–3981. [Google Scholar] [CrossRef]
- Wu, H.; Zhu, X.; Wu, X.; Tu, X.; Chen, G.; Yang, G. Plasma-Catalytic Reactions for Soot Oxidation on VOx/M (M=KIT-6, SBA-15 and SiO2) Catalysts: Influence of Pore Structure. ChemistrySelect 2022, 7, e202103545. [Google Scholar] [CrossRef]
- Zhu, X.; Wu, H.; Luo, J.; Liu, J.; Yan, J.; Zhou, Z.; Yang, Z.; Jiang, Y.; Chen, G.; Yang, G. Soot Oxidation in a Plasma-Catalytic Reactor: A Case Study of Zeolite-Supported Vanadium Catalysts. Catalysts 2022, 12, 677. [Google Scholar] [CrossRef]
- Yamaguchi, T. Application of ZrO2 as a Catalyst and a Catalyst Support. Catal. Today 1994, 20, 199–217. [Google Scholar] [CrossRef]
- Mercera, P.D.L.; van Ommen, J.G.; Doesburg, E.B.M.; Burggraaf, A.J.; Ross, J.R.H. Zirconia as a Support for Catalysts Influence of Additives on the Thermal Stability of the Porous Texture of Monoclinic Zirconia. Appl. Catal. 1991, 71, 363–391. [Google Scholar] [CrossRef]
- Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and Catalytic Applications of CeO2-Based Materials. Chem. Rev. 2016, 116, 5987–6041. [Google Scholar] [CrossRef]
- Aneggi, E.; de Leitenburg, C.; Dolcetti, G.; Trovarelli, A. Promotional Effect of Rare Earths and Transition Metals in the Combustion of Diesel Soot over CeO2 and CeO2-ZrO2. Catal. Today 2006, 114, 40–47. [Google Scholar] [CrossRef]
- Azambre, B.; Collura, S.; Trichard, J.M.; Weber, J.V. Nature and Thermal Stability of Adsorbed Intermediates Formed during the Reaction of Diesel Soot with Nitrogen Dioxide. Appl. Surf. Sci. 2006, 253, 2296–2303. [Google Scholar] [CrossRef]
- Peralta, M.A.; Zanuttini, M.S.; Ulla, M.A.; Querini, C.A. Diesel Soot and NOx Abatement on K/La2O3 Catalyst: Influence of K Precursor on Soot Combustion. Appl. Catal. A Gen. 2011, 399, 161–171. [Google Scholar] [CrossRef]
- Fino, D.; Russo, N.; Saracco, G.; Specchia, V. The Role of Suprafacial Oxygen in Some Perovskites for the Catalytic Combustion of Soot. J. Catal. 2003, 217, 367–375. [Google Scholar] [CrossRef]
- Howard, C.J.; Hill, R.J.; Reichert, B.E. Structures of ZrO2 Polymorphs at Room Temperature by High-Resolution Neutron Powder Diffraction. Acta Crystallogr. Sect. B Struct. Sci. 1988, 44, 116–120. [Google Scholar] [CrossRef]
- Adamski, A.; Sojka, Z.; Dyrek, K.; Che, M. An XRD and ESR Study of V2O5/ZrO2 Catalysts: Influence of the Phase Transitions of ZrO2 on the Migration of V4+ Ions into Zirconia. Solid State Ionics 1999, 117, 113–122. [Google Scholar] [CrossRef]
- Reddy, B.M.; Khan, A.; Lakshmanan, P.; Aouine, M.; Loridant, S.; Volta, J.C. Structural Characterization of Nanosized CeO2-SiO2, CeO2-TiO2, and CeO2-ZrO2 Catalysts by XRD, Raman, and HREM Techniques. J. Phys. Chem. B 2005, 109, 3355–3363. [Google Scholar] [CrossRef]
- Daniell, W.; Ponchel, A.; Kuba, S.; Anderle, F.; Weingand, T.; Gregory, D.H.; Knözinger, H. Characterization and Catalytic Behavior of VOx-CeO2 Catalysts for the Oxidative Dehydrogenation of Propane. Top. Catal. 2002, 20, 65–74. [Google Scholar] [CrossRef]
- Iglesias-Juez, A.; Martínez-Huerta, M.V.; Rojas-García, E.; Jehng, J.-M.; Bañares, M.A. On the Nature of the Unusual Redox Cycle at the Vanadia Ceria Interface. J. Phys. Chem. C 2018, 122, 1197–1205. [Google Scholar] [CrossRef]
- Opara Krasovec, U. Structural and Spectroelectrochemical Investigations of Tetragonal CeVO4 and Ce/V-Oxide Sol-Gel Derived Ion-Storage Films. Solid State Ionics 1999, 118, 195–214. [Google Scholar] [CrossRef]
- Sullivan, J.A.; Dulgheru, P.; Atribak, I.; Bueno-López, A.; García-García, A. Attempts at an in Situ Raman Study of Ceria/Zirconia Catalysts in PM Combustion. Appl. Catal. B Environ. 2011, 108–109, 134–139. [Google Scholar] [CrossRef]
- Martinez-Huerta, M.; Coronado, J.; Fernández-García, M.; Iglesias-Juez, A.; Deo, G.; Fierro, J.L.G.; Bañares, M.A. Nature of the Vanadia-Ceria Interface in V5+/CeO2 Catalysts and Its Relevance for the Solid-State Reaction toward CeVO4 and Catalytic Properties. J. Catal. 2004, 225, 240–248. [Google Scholar] [CrossRef]
- Abi-Aad, E.; Matta, J.; Courcot, D.; Aboukaïs, A. EPR and TPR Investigation of the Redox Properties of Vanadia Based Ceria Catalysts. J. Mater. Sci. 2006, 41, 1827–1833. [Google Scholar] [CrossRef]
- Mercera, P.D.L.; Van Ommen, J.G.; Doesburg, E.B.M.; Burggraaf, A.J.; Ross, J.R.H. Zirconia as a Support for Catalysts. Appl. Catal. 1990, 57, 127–148. [Google Scholar] [CrossRef]
- Spałek, T.; Pietrzyk, P.; Sojka, Z. Application of the Genetic Algorithm Joint with the Powell Method to Nonlinear Least-Squares Fitting of Powder EPR Spectra. J. Chem. Inf. Model. 2005, 45, 18–29. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rzadki, T.; Legutko, P.; Adamski, A.; Kotarba, A.; Trawczyński, J. Structure-Sensitive Behavior of Supported Vanadia-Based Catalysts for Combustion of Soot. Catalysts 2023, 13, 1406. https://doi.org/10.3390/catal13111406
Rzadki T, Legutko P, Adamski A, Kotarba A, Trawczyński J. Structure-Sensitive Behavior of Supported Vanadia-Based Catalysts for Combustion of Soot. Catalysts. 2023; 13(11):1406. https://doi.org/10.3390/catal13111406
Chicago/Turabian StyleRzadki, Tomasz, Piotr Legutko, Andrzej Adamski, Andrzej Kotarba, and Janusz Trawczyński. 2023. "Structure-Sensitive Behavior of Supported Vanadia-Based Catalysts for Combustion of Soot" Catalysts 13, no. 11: 1406. https://doi.org/10.3390/catal13111406
APA StyleRzadki, T., Legutko, P., Adamski, A., Kotarba, A., & Trawczyński, J. (2023). Structure-Sensitive Behavior of Supported Vanadia-Based Catalysts for Combustion of Soot. Catalysts, 13(11), 1406. https://doi.org/10.3390/catal13111406