Enhancing the Production of Syngas from Spent Green Tea Waste through Dual-Stage Pyrolysis and Catalytic Cracking
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of SGTW
2.2. Thermal Degradation Behavior
2.3. Process Performances
2.3.1. Distribution of Products
2.3.2. Biochar Characterization
2.3.3. Composition of Non-Condensable Gas
2.4. Catalyst (Dolomite) Characterization
2.5. Reliability of Catalytic Cracking Pyrolysis Process of Biomass
3. Material and Methods
3.1. Biomass Waste Characterization
3.2. Catalysts
3.3. Thermogravimetric Analysis
3.4. Two-Stage Process
3.5. Characterization of Process Products and Catalyst (Dolomite)
3.6. Data Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Consumer Goods & FMCG. Non-Alcoholic Beverages. 2002. Available online: https://www.statista.com/statistics/940102/global-tea-consumption/ (accessed on 9 May 2022).
- Tian, L.; Shen, B.; Xu, H.; Li, F.; Wang, Y.; Singh, S. Thermal Behavior of Waste Tea Pyrolysis by TG-FTIR Analysis. Energy 2016, 103, 533–542. [Google Scholar] [CrossRef]
- Sakhiya, A.K.; Anand, A.; Aier, I.; Vijay, V.K.; Kaushal, P. Suitability of Rice Straw for Biochar Production through Slow Pyrolysis: Product Characterization and Thermodynamic Analysis. Bioresour. Technol. Rep. 2021, 15, 100818. [Google Scholar] [CrossRef]
- The Business Council for Sustainable Energy. Powering Ambition at COP 23; The Business Council for Sustainable Energy: Washington, DC, USA, 2018; pp. 23–25. [Google Scholar]
- Khayum, N.; Anbarasu, S.; Murugan, S. Biogas Potential from Spent Tea Waste: A Laboratory Scale Investigation of Co-Digestion with Cow Manure. Energy 2018, 165, 760–768. [Google Scholar] [CrossRef]
- Cai, H.; Liu, J.; Xie, W.; Kuo, J.; Buyukada, M.; Evrendilek, F. Pyrolytic Kinetics, Reaction Mechanisms and Products of Waste Tea via TG-FTIR and Py-GC/MS. Energy Convers. Manag. 2019, 184, 436–447. [Google Scholar] [CrossRef]
- Amarasinghe, H.A.H.I.; Gunathilake, S.K.; Karunarathna, A.K. Ascertaining of Optimum Pyrolysis Conditions in Producing Refuse Tea Biochar as a Soil Amendment. Procedia Food Sci. 2016, 6, 97–102. [Google Scholar] [CrossRef]
- Soysa, R.; Choi, Y.S.; Kim, S.J.; Choi, S.K. Fast Pyrolysis Characteristics and Kinetic Study of Ceylon Tea Waste. Int. J. Hydrog. Energy 2016, 41, 16436–16443. [Google Scholar] [CrossRef]
- Sahoo, K.; Kumar, A.; Chakraborty, J.P. A Comparative Study on Valuable Products: Bio-Oil, Biochar, Non-Condensable Gases from Pyrolysis of Agricultural Residues. J. Mater. Cycles Waste Manag. 2021, 23, 186–204. [Google Scholar] [CrossRef]
- Demirbaş, A. Gaseous Products from Biomass by Pyrolysis and Gasification: Effects of Catalyst on Hydrogen Yield. Energy Convers. Manag. 2002, 43, 897–909. [Google Scholar] [CrossRef]
- Tomishige, K.; Asadullah, M.; Kunimori, K. Syngas Production by Biomass Gasification Using Rh/CeO2/SiO2 Catalysts and Fluidized Bed Reactor. Catal. Today 2004, 89, 389–403. [Google Scholar] [CrossRef]
- Elbaba, I.F.; Wu, C.; Williams, P.T. Hydrogen Production from the Pyrolysis-Gasification of Waste Tyres with a Nickel/Cerium Catalyst. Int. J. Hydrog. Energy 2011, 36, 6628–6637. [Google Scholar] [CrossRef]
- Williams, P.T.; Brindle, A.J. Catalytic Pyrolysis of Tyres: Influence of Catalyst Temperature. Fuel 2002, 81, 2425–2434. [Google Scholar] [CrossRef]
- Chen, G.; Andries, J.; Spliethoff, H. Catalytic Pyrolysis of Biomass for Hydrogen Rich Fuel Gas Production. Energy Convers. Manag. 2003, 44, 2289–2296. [Google Scholar] [CrossRef]
- Qu, B.; Zhang, Y.; Wang, T.; Li, A.; Wu, Z.; Ji, G. Dynamic Pyrolysis Characteristics, Kinetics and Products Analysis of Waste Tire Catalytic Pyrolysis with Ni/Fe-ZSM-5 Catalysts Using TG-IR-GC/MS. Catalysts 2021, 11, 1–19. [Google Scholar] [CrossRef]
- Huang, Y.F.; Kuan, W.H.; Chang, C.Y. Effects of Particle Size, Pretreatment, and Catalysis on Microwave Pyrolysis of Corn Stover. Energy 2018, 143, 696–703. [Google Scholar] [CrossRef]
- Han, J.; Kim, H. The Reduction and Control Technology of Tar during Biomass Gasification/Pyrolysis: An Overview. Renew. Sustain. Energy Rev. 2008, 12, 397–416. [Google Scholar] [CrossRef]
- Sanahuja-Parejo, O.; Veses, A.; López, J.M.; Murillo, R.; Callén, M.S.; García, T. Ca-Based Catalysts for the Production of High-Quality Bio-Oils from the Catalytic Co-Pyrolysis of Grape Seeds and Waste Tyres. Catalysts 2019, 9, 1–17. [Google Scholar] [CrossRef]
- Sanahuja-Parejo, O.; Veses, A.; Navarro, M.V.; López, J.M.; Murillo, R.; Callén, M.S.; García, T. Catalytic Co-Pyrolysis of Grape Seeds and Waste Tyres for the Production of Drop-in Biofuels. Energy Convers. Manag. 2018, 171, 1202–1212. [Google Scholar] [CrossRef]
- Kar, Y. Catalytic Cracking of Pyrolytic Oil by Using Bentonite Clay for Green Liquid Hydrocarbon Fuels Production. Biomass Bioenergy 2018, 119, 473–479. [Google Scholar] [CrossRef]
- Veses, A.; Aznar, M.; López, J.M.; Callén, M.S.; Murillo, R.; García, T. Production of Upgraded Bio-Oils by Biomass Catalytic Pyrolysis in an Auger Reactor Using Low Cost Materials. Fuel 2015, 141, 17–22. [Google Scholar] [CrossRef]
- Lee, X.J.; Lee, L.Y.; Gan, S.; Thangalazhy-Gopakumar, S.; Ng, H.K. Biochar Potential Evaluation of Palm Oil Wastes through Slow Pyrolysis: Thermochemical Characterization and Pyrolytic Kinetic Studies. Bioresour. Technol. 2017, 236, 155–163. [Google Scholar] [CrossRef]
- Jewulski, J.; Skrzypkiewicz, M.; Struzik, M.; Lubarska-Radziejewska, I. Lignite as a Fuel for Direct Carbon Fuel Cell System. Int. J. Hydrog. Energy 2014, 39, 21778–21785. [Google Scholar] [CrossRef]
- Sutcu, H. Pyrolysis of Peat: Product Yield and Characterization. Korean J. Chem. Eng. 2007, 24, 736–741. [Google Scholar] [CrossRef]
- Omar, R.; Idris, A.; Yunus, R.; Khalid, K.; Aida Isma, M.I. Characterization of Empty Fruit Bunch for Microwave-Assisted Pyrolysis. Fuel 2011, 90, 1536–1544. [Google Scholar] [CrossRef]
- Navarro, M.V.; López, J.M.; Veses, A.; Callén, M.S.; García, T. Kinetic Study for the Co-Pyrolysis of Lignocellulosic Biomass and Plastics Using the Distributed Activation Energy Model. Energy 2018, 165, 731–742. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, F.; Yang, S.; Liu, H.; Wang, H.; Hu, J. Investigation of Pyrolysis Kinetics, Thermodynamics, Product Characteristics and Reaction Mechanism of Rubber Seed Oil. Energy Convers. Manag. 2021, 244, 114535. [Google Scholar] [CrossRef]
- Ben Abdallah, A.; Ben Hassen Trabelsi, A.; Navarro, M.V.; Veses, A.; García, T.; Mihoubi, D. Pyrolysis of Tea and Coffee Wastes: Effect of Physicochemical Properties on Kinetic and Thermodynamic Characteristics. J. Therm. Anal. Calorim. 2023, 148, 2501–2515. [Google Scholar] [CrossRef] [PubMed]
- Díez, D.; Urueña, A.; Piñero, R.; Barrio, A.; Tamminen, T. Determination of Hemicellulose, Cellulose, and Lignin Content in Different Types of Biomasses by Thermogravimetric Analysis and Pseudocomponent Kinetic Model. Processes 2020, 8, 1–21. [Google Scholar] [CrossRef]
- Veses, A.; Sanahuja-Parejo, O.; Callén, M.S.; Murillo, R.; García, T. A Combined Two-Stage Process of Pyrolysis and Catalytic Cracking of Municipal Solid Waste for the Production of Syngas and Solid Refuse-Derived Fuels. Waste Manag. 2020, 101, 171–179. [Google Scholar] [CrossRef]
- Chen, D.; Yin, L.; Wang, H.; He, P. Pyrolysis Technologies for Municipal Solid Waste: A Review. Waste Manag. 2014, 34, 2466–2486. [Google Scholar] [CrossRef]
- Dong, J.; Chi, Y.; Tang, Y.; Ni, M.; Nzihou, A.; Weiss-hortala, E. Effect of Operating Parameters and Moisture Content on Municipal Solid Waste Pyrolysis and Gasification. Energy Fuels 2016, 30, 3994–4001. [Google Scholar] [CrossRef]
- Mullen, C.A.; Boateng, A.A.; Goldberg, N.M.; Lima, I.M.; Laird, D.A.; Hicks, K.B. Bio-Oil and Bio-Char Production from Corn Cobs and Stover by Fast Pyrolysis. Biomass Bioenergy 2010, 34, 67–74. [Google Scholar] [CrossRef]
- Wang, T.; Li, Y.; Zhi, D.; Lin, Y.; He, K.; Liu, B.; Mao, H. Assessment of Combustion and Emission Behavior of Corn Straw Biochar Briquette Fuels under Different Temperatures. J. Environ. Manag. 2019, 250, 109399. [Google Scholar] [CrossRef] [PubMed]
- Emami Taba, L.; Irfan, M.F.; Wan Daud, W.A.M.; Chakrabarti, M.H. The Effect of Temperature on Various Parameters in Coal, Biomass and CO-Gasification: A Review. Renew. Sustain. Energy Rev. 2012, 16, 5584–5596. [Google Scholar] [CrossRef]
- Suttikul, T.; Nuchdang, S.; Rattanaphra, D.; Phalakornkule, C. Influence of Operating Parameters, Al2O3 and Ni/Al2O3 Catalysts on Plasma-Assisted CO2 Reforming of CH4 in a Parallel Plate Dielectric Barrier Discharge for High H2/CO Ratio Syngas Production. Plasma Chem. Plasma Process. 2020, 40, 1445–1463. [Google Scholar] [CrossRef]
- Xu, T.; Xu, J.; Wu, Y. Hydrogen-Rich Gas Production from Two-Stage Catalytic Pyrolysis of Pine Sawdust with Calcined Dolomite. Catalysts 2022, 12, 131. [Google Scholar] [CrossRef]
- Veses, A.; Sanahuja-Parejo, O.; Navarro, M.V.; López, J.M.; Murillo, R.; Callén, M.S.; García, T. From Laboratory Scale to Pilot Plant: Evaluation of the Catalytic Co-Pyrolysis of Grape Seeds and Polystyrene Wastes with CaO. Catal. Today 2021, 379, 87–95. [Google Scholar] [CrossRef]
- Veses, A.; Aznar, M.; Callén, M.S.; Murillo, R.; García, T. An Integrated Process for the Production of Lignocellulosic Biomass Pyrolysis Oils Using Calcined Limestone as a Heat Carrier with Catalytic Properties. Fuel 2016, 181, 430–437. [Google Scholar] [CrossRef]
- Veses, A.; Aznar, M.; Martínez, I.; Martínez, J.D.; López, J.M.; Navarro, M.V.; Callén, M.S.; Murillo, R.; García, T. Catalytic Pyrolysis of Wood Biomass in an Auger Reactor Using Calcium-Based Catalysts. Bioresour. Technol. 2014, 162, 250–258. [Google Scholar] [CrossRef]
- Cao, Y.; Gao, Z.; Jin, J.; Zhou, H.; Cohron, M.; Zhao, H.; Liu, H.; Pan, W. Synthesis Gas Production with an Adjustable H2/CO Ratio through the Coal Gasification Process: Effects of Coal Ranks and Methane Addition. Energy Fuels 2008, 22, 1720–1730. [Google Scholar] [CrossRef]
- Balat, M.; Balat, M.; Kirtay, E.; Balat, H. Main Routes for the Thermo-Conversion of Biomass into Fuels and Chemicals. Part 1: Pyrolysis Systems. Energy Convers. Manag. 2009, 50, 3147–3157. [Google Scholar] [CrossRef]
- Channiwala, S.A.; Parikh, P.P. A Unified Correlation for Estimating HHV of Solid, Liquid and Gaseous Fuels. Fuel 2002, 81, 1051–1063. [Google Scholar] [CrossRef]
- Veses, A.; Sanahuja-Parejo, O.; Martínez, I.; Callén, M.S.; López, J.M.; García, T.; Murillo, R. A Pyrolysis Process Coupled to a Catalytic Cracking Stage: A Potential Waste-to-Energy Solution for Mattress Foam Waste. Waste Manag. 2021, 120, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Cao, H.; Yuan, Q.; Wang, D. Two-Step Gasification of Cattle Manure for Hydrogen-Rich Gas Production: Effect of Biochar Preparation Temperature and Gasification Temperature. Waste Manag. 2017, 68, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Chen, D.; Arena, U.; He, P. Hot Char-Catalytic Reforming of Volatiles from MSW Pyrolysis. Appl. Energy 2017, 191, 111–124. [Google Scholar] [CrossRef]
- Mei, Y.; Liu, R.; Wu, W.; Zhang, L. Effect of Hot Vapor Filter Temperature on Mass Yield, Energy Balance, and Properties of Products of the Fast Pyrolysis of Pine Sawdust. Energy Fuels 2016, 30, 10458–10469. [Google Scholar] [CrossRef]
- Khan, A.; Toufiq, A.M.; Tariq, F.; Khan, Y.; Hussain, R.; Akhtar, N.; ur Rahman, S. Influence of Fe Doping on the Structural, Optical and Thermal Properties of α-MnO2 Nanowires. Mater. Res. Express 2019, 6, 065043. [Google Scholar] [CrossRef]
Proximate Analysis | Values (wt.%) | Compositional Analysis | Values (wt.%) |
Moisture | 7.24 | Extractives | 11.7 |
Ash | 3.75 | Hemicellulose | 34.0 |
VM | 70.25 | Cellulose | 21.5 |
FC * | 18.76 | Lignin | 32.7 |
VM/FC | 3.75 | ||
Ultimate analysis | Values (wt.%) | Inorganic compound | Values (wt.%) |
C | 46.12 | Al | 4.0 |
H | 6.47 | Ca | 21.1 |
N | 2.79 | Fe | 0.9 |
S | 0.12 | K | 7.1 |
O * | 44.5 | Mg | 8.6 |
H/C | 1.7 | Mn | 2.6 |
O/C | 0.7 | Na | 5.1 |
HHV (MJ/kg) | 19.00 | P | 3.8 |
Si | 4.1 |
SGTW (Biochar) | Peat (Coal) | Peat (Biochar) | |
---|---|---|---|
Proximate analysis (wt.%) | |||
Moisture | 6.20 | - | - |
Ash | 8.80 | 6.51 | 13.54 |
VM | 5.70 | 69.15 | 19.16 |
FC * | 79.30 | 24.34 | 67.30 |
Ultimate analysis (wt.%) | |||
C | 73.50 | 56.38 | 84.50 |
H | 2.76 | 5.98 | 2.87 |
N | 3.81 | 1.43 | 1.18 |
S | 0.15 | 0.52 | 0.37 |
O * | 10.98 | 35.69 | 11.08 |
H/C | 0.45 | 1.27 | 0.41 |
O/C | 0.11 | 0.47 | 0.10 |
HHV (MJ/kg) | 26.84 | 22.39 | 31.43 |
TCracking—Catalyst | H2/CO Molar Ratio | CCE (%) | HHV (MJ/Nm3) | ERR (%) |
---|---|---|---|---|
400 °C | 0.57 | 35.30 | 15.2 | 17.72 |
700 °C | 0.77 | 61.94 | 21.4 | 47.40 |
800 °C | 1.5 | 48.47 | 16.8 | 52.99 |
700 °C—Olivine | 0.75 | 56.59 | 19.8 | 40.43 |
700 °C—Dolomite | 1.3 | 63.91 | 19.9 | 59.15 |
800 °C—Dolomite | 1.5 | 46.97 | 15.9 | 59.68 |
800 °C—Dolomite-Cycle | 1.8 | 33.00 | 13.8 | 49.65 |
Catalyst | Fresh Dolomite | Used Dolomite (after Cracking Pyrolysis (800 °C)) | Regenerated Dolomite (Cycle 1) | |
---|---|---|---|---|
Crystallinity Index | ||||
CI (%) | 68.5 | 63.6 | 58.8 |
TCracking—Catalyst | Gas Yield (wt. %) | H2/CO | CCE (%) | HHV (MJ/Nm3) | ERR (%) | |
---|---|---|---|---|---|---|
PSCG | 400 °C | 26.9 | 0.7 | 31.8 | 20.7 | 20.2 |
800 °C | 50.5 | 1.6 | 50.7 | 19.7 | 48.6 | |
800 °C—Dolomite | 60.9 | 1.5 | 47.6 | 18.3 | 63.0 | |
800 °C—Dolomite-Cycle | 67.0 | 1.6 | 39.5 | 14.4 | 63.8 | |
BSCG | 400 °C | 25.9 | 0.5 | 28.5 | 19.6 | 17.6 |
800 °C | 53.8 | 1.6 | 47.4 | 17.8 | 43.7 | |
800 °C—Dolomite | 57.8 | 1.6 | 41.2 | 17.9 | 58.6 | |
800 °C—Dolomite-Cycle | 61.9 | 1.7 | 32.3 | 13.7 | 57.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Abdallah, A.; Ben Hassen Trabelsi, A.; Veses, A.; García, T.; López, J.M.; Navarro, M.V.; Mihoubi, D. Enhancing the Production of Syngas from Spent Green Tea Waste through Dual-Stage Pyrolysis and Catalytic Cracking. Catalysts 2023, 13, 1334. https://doi.org/10.3390/catal13101334
Ben Abdallah A, Ben Hassen Trabelsi A, Veses A, García T, López JM, Navarro MV, Mihoubi D. Enhancing the Production of Syngas from Spent Green Tea Waste through Dual-Stage Pyrolysis and Catalytic Cracking. Catalysts. 2023; 13(10):1334. https://doi.org/10.3390/catal13101334
Chicago/Turabian StyleBen Abdallah, Asma, Aïda Ben Hassen Trabelsi, Alberto Veses, Tomás García, José Manuel López, María Victoria Navarro, and Daoued Mihoubi. 2023. "Enhancing the Production of Syngas from Spent Green Tea Waste through Dual-Stage Pyrolysis and Catalytic Cracking" Catalysts 13, no. 10: 1334. https://doi.org/10.3390/catal13101334