Review of Improving the NOx Conversion Efficiency in Various Diesel Engines fitted with SCR System Technology
Abstract
:1. Introduction
2. Diesel Engines (1000 cc–6000 cc)
2.1. Diesel Engine 1000 cc
2.2. Diesel Engine 1800 cc
2.3. Diesel Engine 2000 cc
2.4. Diesel Engine 3900 cc
2.5. Diesel Engine 5100 cc
3. Heavy-Duty Diesel Engine (6000 cc–12000 cc)
3.1. Heavy-Duty Diesel Engine 6500 cc
3.2. Heavy-Duty Diesel Engine 6600 cc
3.3. Heavy-Duty Diesel Engine 7100 cc
3.4. Heavy-Duty Diesel Engine 12,000 cc
4. Marine Engine
5. Conclusions
- a)
- The light diesel engine with a 1000 cc engine capacity was tested with different loadings (0–80%) at a constant speed of 2000 rpm. The maximum NOx reduction achieved by the SCR system was 36.8% at 60% engine load. The improvement of the desorption process of ammonia gas by the optimization of SCR catalyst temperatures in the range of 240 °C to 280 °C increases NOx conversion up to 0.5 kg/h (650 ppm).
- b)
- The other investigated light-duty diesel engine was an 1800 cc engine tested at a constant speed of 3000 rpm. The catalyst temperature, space velocity effects on SCR reaction rate, and ammonia slip were all investigated in this study. The NOx conversion efficiency in this study increased when the catalyst temperature and ammonia distribution increased.
- c)
- Similar phenomena were also demonstrated in the investigation of a 2000 cc light-duty diesel engine tested at a constant speed at 1500 rpm. Low exhaust gas temperatures of 200 and 300 °C were recorded in this investigation, representative of passenger car diesel exhausts. The temperature influenced the ammonia desorption process in this investigation. At low temperatures, the ammonia desorption rate was low.
- d)
- The optimal value for NH3/NO in the tested 3900 cc light-duty diesel engine was found to be around 1.0. Based on this study, increasing the amount of UWS would increase the risk of crystallization and ammonia slip in the SCR system. The results of this study showed that higher exhaust temperatures enhance crystallization resistance, while greater flow rates decrease the period of interaction between the NOx reduction agent and the catalyst, affecting the levels of NH3.
- e)
- Another investigation of a light-duty diesel engine with a capacity of 5100 cc revealed a high NOx conversion (up to 90%) in an exhaust gas temperature range of 350–450 °C. However, after 30 h, the sulfur accumulated on the catalyst surface became the primary reason for reduced catalyst activation. In this investigation, the Ag/Al2O3 catalyst can decrease sulfate only marginally when the exhaust gas temperature is below 410 °C and the PM emissions can be reduced when the temperature is 336 °C, but when the temperature increases to 470 °C, the catalyst will suffer.
- f)
- The investigated 6500 cc heavy-duty diesel engine showed that the downstream NH3 concentration was less than the limit; in particular, the overall mean ammonia slip of 9.7 ppm may be reasonably low, but maximum deNOx performances were achieved as the temperature increased.
- g)
- Upstream and downstream NOx emissions as well as ammonia slip were predicted using another heavy-duty diesel engine with a 6600 cc capacity. The many parts of the modeling and optimization methods have been thoroughly covered. The non-dominated sorting genetic algorithm was used to address the multi-objective optimization issue of optimizing NOx conversion efficiency while reducing ammonia slip under particular operating conditions based on the decision variable of urea injection volume.
- h)
- Another investigation of a heavy-duty diesel engine with a size of 7100 cc revealed that exhaust temperature may enhance the cold start and hot start performance. To control the urea injection temperature, the Harmonized Transit Cycle (WHTC) is used which can reduce the NOx emission-weighted value to 41.5%. The DOC successfully increased the NO2/NOx ratio and NOx conversion in the temperature range of 200–400 °C, resulting in an 8.7% reduction in the NOx emission-weighted value of the engine under WHTC.
- i)
- The other investigation of a heavy-duty diesel engine of 12,000 cc engine capacity tested at 1000 rpm showed that improving the ammonia gas formation can increase NOx conversion. However, the distribution of urea from the injector is the most challenging aspect. This study compared the injector model L and the injector model I in order to improve ammonia delivery. Model L had a good distribution of urea based on the position of the injector hole in the center of the system. However, that hole was easily hampered by solid urea deposits which affected the UWS distribution to the system. The model I injector was recommended to improve the model L injector problem. In this study, the model I urea injector generated 5% more ammonia and produced a better NOx conversion than the model L injector. This figure indicated that the model I injector outperformed the model L urea injector in the urea breakdown process, lowering the potential of solid urea deposition on the walls and decreasing the solid deposition inside the injector. Based on this study, the model I injector can be the alternative injector to increase the heavy-duty diesel engine SCR system performance; however, the position of the injector must be further developed to increase the distribution of urea throughout the system.
- j)
- The marine diesel engine in this study revealed at standard marine diesel operating speeds, engine exhaust gas NOx emissions are decreased by 80 to 90% with the SCR system. However, the desired equivalence ratio derived from measured values is required to ensure optimum urea flowrates for a 100% reduction in NOx. These findings show that the type of reducing agent has no effect on the temperature of the exhaust gas, and the results of this study contribute to the development of commonly produced maritime SCR systems.
- k)
- Based on the different results from different variations of diesel engines, it can be concluded that urea injection, droplet breakup, ammonia distribution, exhaust temperature, and the catalyst are the most important factors in the improvement of NOx conversion efficiencies. These conclusions could also be employed to determine the quality of NOx conversion efficiency in light-duty diesel engines, heavy-duty diesel engines, and marine diesel engines that implement an SCR system.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCarron, G. Air Pollution and human health hazards: A compilation of air toxins acknowledged by the gas industry in Queensland’s Darling Downs. Int. J. Environ. Stud. 2018, 75, 171–185. [Google Scholar] [CrossRef] [Green Version]
- Saari, S.; Karjalainen, P.; Ntziachristos, L.; Pirjola, L.; Matilainen, P.; Keskinen, J.; Rönkkö, T. Exhaust particle and NOx emission performance of an SCR heavy duty truck operating in real-world conditions. Atmos. Environ. 2016, 126, 136–144. [Google Scholar] [CrossRef]
- Fu, M.; Ge, Y.; Wang, X.; Tan, J.; Yu, L.; Liang, B. NOx emissions from Euro IV busses with SCR systems associated with urban, suburban and freeway driving patterns. Sci. Total Environ. 2013, 452–453, 222–226. [Google Scholar] [CrossRef]
- Hua, S.; Tian, H.; Wang, K.; Zhu, C.; Gao, J.; Ma, Y.; Xue, Y.; Wang, Y.; Duan, S.; Zhou, J. Atmospheric Emission Inventory of Hazardous Air Pollutants from China’s Cement Plants: Temporal Trends, Spatial Variation Characteristics and Scenario Projections. Atmos. Environ. 2016, 128, 1–9. [Google Scholar] [CrossRef]
- Zhang, C.; He, H.; Shuai, S.; Wang, J. Catalytic performance of Ag/Al2O3-C2H5OH-Cu/Al2O3 system for the removal of NOx from diesel engine exhaust. Environ. Pollut. 2007, 147, 415–421. [Google Scholar] [CrossRef]
- Salanta, G.; Zheng, G.; Kotrba, A.; Rampazzo, R.; Bergantim, L. Optimization of a Urea SCR System for On-Highway Truck Applications; SAE International: Warrendale, PA, USA, 2010. [Google Scholar] [CrossRef]
- Burnett, R.T.; Brook, J.; Dann, T.; Delocla, C.; Philips, O.; Cakmak, S.; Vincent, R.; S. Goldberg, M.; Krewski, D. Association between particulate-and gas-phase components of urban air pollution and daily mortality in eight Canadian cities. Inhal. Toxicol. 2000, 12, 15–39. [Google Scholar] [CrossRef] [PubMed]
- Iodice, P.; Senatore, A. Air Pollution and Air Quality State in an Italian National Interest Priority Site. Part 2: The Pollutant Dispersion. Energy Procedia 2015, 81, 637–643. [Google Scholar] [CrossRef] [Green Version]
- Forsthuber, F.; Krenek, T.; Marinitsch, F.; Lauer, T.; Weiss, J.; Raup, M.; Schatzberger, T. Investigations on the Tail-Pipe Emissions of Commercial Engines with Advanced One-Dimensional Simulation Methods; SAE International: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef]
- Mehregan, M.; Moghiman, M. Experimental investigation of the distinct effects of nanoparticles addition and urea-SCR after-treatment system on NOx emissions in a blended-biodiesel fueled internal combustion engine. Fuel 2020, 262, 116609. [Google Scholar] [CrossRef]
- Gaynor, P.; Reid, B.; Hargrave, G.; Lockyer, T.; Wilson, J. An Experimental Investigation into DEF Dosing Strategies for Heavy Duty Vehicle Applications. SAE Int. J. Engines 2015, 8, 1196–1206. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.; Bonnel, P.; Kühlwein, J.; Provenza, A.; Lambrecht, U.; Alessandrini, S.; Carriero, M.; Colombo, R.; Forni, F.; Lanappe, G. Will Euro 6 reduce the NOx emissions of new diesel cars?–Insights from on-road tests with Portable Emissions Measurement Systems (PEMS). Atmos. Environ. 2012, 62, 657–665. [Google Scholar] [CrossRef]
- Delphi Technologies. Delphi-Emissions for Heavy Duty and Off-Highway Vehicles 2018–2019; Delphi Technologies: Boston, MA, USA, 2018. [Google Scholar]
- Dulles, O. Engineering Clean Air: The Continuous Improvement of Diesel Engine Emission Performance. Technol. Clean Diesel Engines Curr. Futur. 2001, 1–14. Available online: https://www.dieselforum.org (accessed on 1 March 2001).
- Koebel, M.; Elsener, M.; Kleemann, M. Urea-SCR: A promising technique to reduce NOx emissions from automotive diesel engines. Catal. Today 2000, 59, 335–345. [Google Scholar] [CrossRef]
- Koebel, M.; Strutz, E.O. Thermal and Hydrolytic Decomposition of Urea for Automotive Selective Catalytic Reduction Systems: Thermochemical and Practical Aspects. Ind. Eng. Chem. Res. 2003, 42, 2093–2100. [Google Scholar] [CrossRef]
- Conway, R.; Chatterjee, S.; Naseri, M.; Aydin, C. Demonstration of SCR on a Diesel Particulate Filter System on a Heavy Duty Application; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- Naseri, M.; Chatterjee, S.; Castagnola, M.; Chen, H.-Y.; Fedeyko, J.; Hess, H.; Li, J. Development of SCR on Diesel Particulate Filter System for Heavy Duty Applications. SAE Int. J. Engines 2011, 4, 1798–1809. [Google Scholar] [CrossRef]
- Arbess, H.; Bafleur, M.; Trémouilles, D.; Zerarka, M. Optimization of a MOS–IGBT–SCR ESD protection component in smart power SOI technology. Microelectron. Reliab. 2015, 55, 1476–1480. [Google Scholar] [CrossRef]
- Khristamto, M.; Wardana, A.; Oh, K.; Lee, Y.J.; Woo, Y.M.; Lim, O. Effects of urea injection timing on predicting NOx conversion in SCR systems. Int. J. Automot. Technol. 2020, 21, 137–145. [Google Scholar] [CrossRef]
- Sampath, M.K.; Lacin, F. CFD Study of Sensitivity Parameters in SCR NOx Reduction Modeling; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2014. [Google Scholar] [CrossRef]
- Marchitti, F.; Nova, I.; Tronconi, E. Experimental study of the interaction between soot combustion and NH3-SCR reactivity over a Cu-Zeolite SDPF catalyst. Catal. Today 2016, 267, 110–118. [Google Scholar] [CrossRef]
- Qiu, T.; Li, X.; Lei, Y.; Liu, X.; Zhang, C.; Feng, X.; Xu, H. The prediction of fuel injection quality using a NOx sensor for the on-board diagnosis of heavy-duty diesel engines with SCR systems. Fuel 2015, 141, 192–199. [Google Scholar] [CrossRef]
- Ahmed, A.S.; Khan, S.; Hamdan, S.; Rahman, R.; Kalam, A.; Masjuki, H.H. Biodiesel Production from Macro Algae as a Green Fuel for Diesel Engine. J. Energy Environ. 2010, 2, 1–5. [Google Scholar]
- Khot, A.; Tripathi, N.; Maciejewski, D.; Sharma, S. Evaluation of Numerical Modeling Strategy for Prediction of Backpressure across Various Configuration of Diesel Engine Based after Treatment System; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2016. [Google Scholar] [CrossRef]
- Johnson, T.V. Vehicular emissions in review. SAE Int. J. Engines 2012, 5, 216–234. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.M. Properly apply selective catalytic reduction for NOx removal. Chem. Eng. Prog. 1994, 90, 39–45. [Google Scholar]
- Niki, Y.; Hirata, K.; Kishi, T.; Inaba, T.; Takagi, M.; Fukuda, T.; Nagai, T.; Muraoka, E. SCR system for NOx reduction of Medium Speed Marine Diesel Engine. CIMAC Congr. 2010, 22, 12. [Google Scholar]
- Fritz, A.; Pitchon, V. The current state of research on automotive lean NOx catalysis. Appl. Catal. B Environ. 1997, 13, 1–25. [Google Scholar] [CrossRef]
- Baleta, J.; Vujanović, M.; Pachler, K.; Duić, N. Numerical modeling of urea water based selective catalytic reduction for mitigation of NOxfrom transport sector. J. Clean. Prod. 2015, 88, 280–288. [Google Scholar] [CrossRef] [Green Version]
- Boroń, P.; Chmielarz, L.; Casale, S.; Calers, C.; Krafft, J.-M.; Dzwigaj, S. Effect of Co content on the catalytic activity of CoSiBEA zeolites in N2O decomposition and SCR of NO with ammonia. Catal. Today 2015, 258, 507–517. [Google Scholar] [CrossRef]
- Weeks, C.L.; Ibeling, D.R.; Han, S.; Ludwig, L.; Ayyappan, P. Analytical investigation of urea deposits in SCR system. SAE Int. J. Engines 2015, 8, 1219–1239. [Google Scholar] [CrossRef]
- Dong, H.; Shuai, S.; Wang, J. Effect of Urea Thermal Decomposition on Diesel NOx-SCR Aftertreatment Systems; SAE International: Warrendale, PA, USA, 2008. [Google Scholar] [CrossRef]
- Samuelsson, E.; Holmberg, S. A CFD Study of the Urea Supply, Droplet Breakup and Mixing in a Pipe Upstream of a SCR Catalyst. Master’s Thesis, Department of Chemical and Biochemical Engineering, Chalmers University of Technology, Göteborg, Sweden, 2013. Available online: http://publications.lib.chalmers.se/records/fulltext/179070/179070.pdf.
- Smith, H.; Lauer, T.; Schimik, V.; Gabel, K. Evaluation and Prediction of Deposit Severity in SCR Systems. SAE Int. J. Engines 2016, 9, 1735–1750. [Google Scholar] [CrossRef]
- Zheng, G.; Fila, A.; Kotrba, A.; Floyd, R. Investigation of Urea Deposits in Urea SCR Systems for Medium and Heavy Duty Trucks; SAE International: Warrendale, PA, USA, 2010. [Google Scholar] [CrossRef]
- Munnannur, A.; Chiruta, M.; Liu, Z.G. Thermal and Fluid Dynamic Considerations in Aftertreatment System Design for SCR Solid Deposit Mitigation; SAE International: Warrendale, PA, USA, 2012. [Google Scholar] [CrossRef]
- Strots, V.O.; Santhanam, S.; Adelman, B.J.; Griffin, G.A.; Derybowski, E.M. Deposit formation in urea-SCR systems. SAE Int. J. Fuels Lubr. 2010, 2, 283–289. [Google Scholar] [CrossRef]
- Wardana, M.K.A.; Lim, O. Investigation of Solid Deposit Inside L-Type Urea Injector and NOx Conversion in a Heavy-Duty Diesel Engine. Catalysts 2021, 11, 595. [Google Scholar] [CrossRef]
- Mera, Z.; Matzer, C.; Hausberger, S.; Fonseca, N. Performance of selective catalytic reduction (SCR) system in a diesel passenger car under real-world conditions. Appl. Therm. Eng. 2020, 181, 115983. [Google Scholar] [CrossRef]
- Choi, B.; Woo, S.M. Numerical analysis of the optimum heating pipe to melt frozen urea-water-solution of a diesel urea-SCR system. Appl. Therm. Eng. 2015, 89, 860–870. [Google Scholar] [CrossRef]
- Dunand, P.; Castanet, G.; Gradeck, M.; Maillet, D.; Lemoine, F. Energy balance of droplets impinging onto a wall heated above the Leidenfrost temperature. Int. J. Heat Fluid Flow 2013, 44, 170–180. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Song, G.; Wu, Y.; Yu, L.; Zhai, Z. A NOx emission model incorporating temperature for heavy-duty diesel vehicles with urea-SCR systems based on field operating modes. Atmosphere 2019, 10, 337. [Google Scholar] [CrossRef] [Green Version]
- Prabhu, S.S.; Nayak, N.S.; Kapilan, N. Numerical Study on Evaporation Characteristics of Single Urea-Water Solution (UWS) Droplet and Variation of Evaporation and Wall-Interaction Characteristics of UWS Spray with Cell Density in SCR Mixing Chamber; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2016. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Q.; Bian, L. Numerical simulation and optimization of flow field in the SCR denitrification system on a 600 MW capacity units. Energy Procedia 2012, 14, 370–375. [Google Scholar] [CrossRef] [Green Version]
- Maunula, T.; Kinnunen, T.; Kanniainen, K.; Viitanen, A.; Savimaki, A. Thermally Durable Vanadium-SCR Catalysts for Diesel Applications; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2013. [Google Scholar] [CrossRef]
- Birkhold, F.; Meingast, U.; Wassermann, P.; Deutschmann, O. Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction. SAE Trans. 2006, 115, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Deng, J.; Li, L.; Cao, L.; Wu, Z. A Study on the Factors Affecting Heated Wall Impinging Characteristics of SCR Spray; SAE International: Warrendale, PA, USA, 2011. [Google Scholar] [CrossRef]
- Liao, Y.; Nocivelli, L.; Eggenschwiler, P.D.; Spiteri, A. Experimental investigation of urea-water sprays in selective catalytic reduction (SCR) systems. In 15. Internationales Stuttgarter Symposium; Springer: Berlin/Heidelberg, Germany, 2015; pp. 953–966. [Google Scholar] [CrossRef]
- Smith, H.; Zöchbauer, M.; Lauer, T. Advanced Spray Impingement Modelling for an Improved Prediction Accuracy of the Ammonia Homogenisation in SCR Systems; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- Ström, H.; Lundström, A.; Andersson, B. Choice of urea-spray models in CFD simulations of urea-SCR systems. Chem. Eng. J. 2009, 150, 69–82. [Google Scholar] [CrossRef]
- Colombo, M.; Nova, I.; Tronconi, E.; Schmei??er, V.; Weibel, M. Mathematical modelling of cold start effects over zeolite SCR catalysts for exhaust gas aftertreatment. Catal. Today 2014, 231, 99–104. [Google Scholar] [CrossRef]
- Lee, S.I.; Park, S.Y. Numerical analysis of internal flow characteristics of urea injectors for SCR dosing system. Fuel 2014, 129, 54–60. [Google Scholar] [CrossRef]
- Ayodhya, A.S.; Lamani, V.T.; Thirumoorthy, M.; Kumar, G.N. NOx reduction studies on a diesel engine operating on waste plastic oil blend using selective catalytic reduction technique. J. Energy Inst. 2019, 92, 341–350. [Google Scholar] [CrossRef]
- Wijayanti, K.; Andonova, S.; Kumar, A.; Li, J.; Kamasamudram, K.; Currier, N.W.; Yezerets, A.; Olsson, L. Impact of sulfur oxide on NH3-SCR over Cu-SAPO-34. Appl. Catal. B Environ. 2015, 166–167, 568–579. [Google Scholar] [CrossRef]
- Colombo, M.; Nova, I.; Tronconi, E. Detailed kinetic modeling of the NH3–NO/NO2 SCR reactions over a commercial Cu-zeolite catalyst for Diesel exhausts after treatment. Catal. Today 2012, 197, 243–255. [Google Scholar] [CrossRef]
- Nishiyama, H.; Tanaka, Y.; Adachi, T. A Study on the Improvement of NOx Reduction Efficiency for a Urea SCR System; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2016; Volume 46, pp. 589–595. [Google Scholar] [CrossRef]
- Prikhodko, V.Y.; Parks, J.E.; Pihl, J.A.; Toops, T.J. Passive SCR for lean gasoline NOX control: Engine-based strategies to minimize fuel penalty associated with catalytic NH3 generation. Catal. Today 2016, 267, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; Hong, C.-H.; Oh, S.; Moon, S. Numerical Prediction on the Influence of Mixer on the Performance of Urea-SCR System. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 2014, 8, 998–1004. [Google Scholar]
- Chae, H.J.; Choo, S.T.; Choi, H.; Nam, I. Direct Use of Kinetic Parameters for Modeling and Simulation of a Selective Catalytic Reduction process. Ind. Eng. Chem. Res. 2000, 39, 1159–1170. [Google Scholar] [CrossRef]
- Andreoli, S.; Deorsola, F.A.; Pirone, R. MnO-CeO2 catalysts synthesized by solution combustion synthesis for the low-temperature NH3-SCR. Catal. Today 2015, 253, 199–206. [Google Scholar] [CrossRef]
- Qiu, L.; Wang, Y.; Pang, D.; Ouyang, F.; Zhang, C. SO42−–Mn–Co–Ce supported on TiO2/SiO2 with high sulfur durability for low-temperature SCR of NO with NH3. Catal. Commun. 2016, 78, 22–25. [Google Scholar] [CrossRef]
- Tang, W.; Cai, Y.; Wang, J. Experimental studies on the diesel engine urea-SCR system using a double NOx sensor system. Environ. Eng. Res. 2015, 20, 397–402. [Google Scholar] [CrossRef]
- Casanova, M.; Llorca, J.; Sagar, A.; Schermanz, K.; Trovarelli, A. Mixed iron–erbium vanadate NH3-SCR catalysts. Catal. Today 2015, 241, 159–168. [Google Scholar] [CrossRef]
- Langeslay, R.R.; Kaphan, D.M.; Marshall, C.L.; Stair, P.C.; Sattelberger, A.P.; Delferro, M. Catalytic Applications of Vanadium: A Mechanistic Perspective. Chem. Rev. 2019, 119, 2128–2191. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Mnichowicz, B.; Harinath, A.V.; Li, H.; Bahrami, B. Chemical deactivation of commercial vanadium SCR catalysts in diesel emission control application. Chem. Eng. J. 2016, 287, 680–690. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W.; Henrichsen, M.; Harinath, A. Analysis of Packaging Impact on Emission Catalyst Design; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2014; Volume 1. [Google Scholar] [CrossRef]
- Girard, J.W.; Montreuil, C.; Kim, J.; Cavataio, G.; Lambert, C. Technical Advantages of Vanadium SCR Systems for Diesel NOx Control in Emerging Markets. SAE Int. J. Fuels Lubr. 2008, 1, 488–494. [Google Scholar] [CrossRef]
- Bertrand, F.; Devals, C.; Vidal, D.; De Préval, C.S.; Hayes, R.E. Towards the simulation of the catalytic monolith converter using discrete channel-scale models. Catal. Today 2012, 188, 80–86. [Google Scholar] [CrossRef]
- Opitz, B.; Bendrich, M.; Drochner, A.; Vogel, H.; Hayes, R.E.; Forbes, J.F.; Votsmeier, M. Simulation study of SCR catalysts with individually adjusted ammonia dosing strategies. Chem. Eng. J. 2015, 264, 936–944. [Google Scholar] [CrossRef]
- Wang, T.J.; Baek, S.W.; Lee, S.Y.; Kang, D.H.; Yeo, G.K. Experimental investigation on evaporation of urea-water-solution droplet for SCR applications. AIChE J. 2009, 55, 3267–3276. [Google Scholar] [CrossRef]
- Drennan, S.; Kumar, G.; Quan, S.; Wang, M. Application of Automatic Meshing to Urea-Water Injection Simulation for Engine Aftertreatment; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- Mutyal, J.; Shrivastava, S.; Faltsi, R.; Braun, M. Development and Validation of a Simulation Model for Urea-Water-Solution Decomposition for Automotive SCR Systems; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Y.; Cai, Y.; Zhao, C.; Zhu, L.; Zhao, C.; Fu, H. Influence of Urea-SCR system parameters on NOx conversion rate and liquid film. Energy Sources Part A Recover. Util. Environ. Eff. 2021, 43, 2027–2040. [Google Scholar] [CrossRef]
- Stritzke, F.; van der Kley, S.; Feiling, A.; Dreizler, A.; Wagner, S. Ammonia concentration distribution measurements in the exhaust of a heavy duty diesel engine based on limited data absorption tomography. Opt. Express 2017, 25, 8180. [Google Scholar] [CrossRef] [PubMed]
- Lockyer, T.; Reid, B.; Hargrave, G.; Gaynor, P.; Wilson, J. Optical Investigation on the Ability of a Cordierite Substrate Mixing Device to Combat Deposits in SCR Dosing Systems; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef] [Green Version]
- Cha, W.; Ehrman, S.H.; Jurng, J. CeO2 added V2O5 /TiO2 catalyst prepared by chemical vapor condensation (CVC) and impregnation method for enhanced NH3-SCR of NOx at low temperature. J. Environ. Chem. Eng. 2016, 4, 556–563. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, X.; Feng, Y.; Si, Z.; Weng, D. Effects of WO3 doping on stability and N2O escape of MnO–CeO2 mixed oxides as a low-temperature SCR catalyst. Catal. Commun. 2015, 69, 188–192. [Google Scholar] [CrossRef]
- Pappas, D.K.; Boningari, T.; Boolchand, P.; Smirniotis, P.G. Novel manganese oxide confined interweaved titania nanotubes for the low-temperature Selective Catalytic Reduction (SCR) of NOx by NH3. J. Catal. 2016, 334, 1–13. [Google Scholar] [CrossRef]
- Scott Sluder, C.; Storey, J.M.E.; Lewis, S.A.; Lewis, L.A. Low temperature urea decomposition and SCR performance. SAE Trans. 2005, 114, 669–677. [Google Scholar] [CrossRef]
- Colombo, M.; Koltsakis, G.; Nova, I.; Tronconi, E. Modelling the ammonia adsorption-desorption process over an Fe-zeolite catalyst for SCR automotive applications. Catal. Today 2012, 188, 42–52. [Google Scholar] [CrossRef]
- Benjamin, S.F.; Gall, M.; Roberts, C.A. Modelling of NOx Conversion in a 1D Diesel Engine Exhaust SCR Catalyst System under Transient Conditions Using Ammonia Gas as the Reductant; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2012; Volume 9. [Google Scholar] [CrossRef]
- Theis, J.R.; Dearth, M.; McCabe, R. LNT+SCR Catalyst Systems Optimized for NOx Conversion on Diesel Applications; SAE International: Warrendale, PA, USA, 2011. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, X.; Feng, Y.; Si, Z.; Weng, D.; Shi, L. Low-temperature SCR activity and SO2 deactivation mechanism of Ce-modified V2O5–WO3/TiO2 catalyst. Prog. Nat. Sci. Mater. Int. 2015, 25, 342–352. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Zhong, Q. Surface characterization studies on the interaction of V2O5-WO3/TiO2 catalyst for low temperature SCR of NO with NH3. J. Solid State Chem. 2015, 221, 49–56. [Google Scholar] [CrossRef]
- Japke, E.; Casapu, M.; Trouillet, V.; Deutschmann, O.; Grunwaldt, J.D. Soot and hydrocarbon oxidation over vanadia-based SCR catalysts. Catal. Today 2015, 258, 461–469. [Google Scholar] [CrossRef]
- Andonova, S.; Tamm, S.; Montreuil, C.; Lambert, C.; Olsson, L. The effect of iron loading and hydrothermal aging on one-pot synthesized Fe/SAPO-34 for ammonia SCR. Appl. Catal. B Environ. 2016, 180, 775–787. [Google Scholar] [CrossRef]
- Auvray, X.; Partridge, W.; Choi, J.-S.; Pihl, J.; Coehlo, F.; Yezerets, A.; Kamasamudram, K.; Currier, N.; Olsson, L. Kinetic modeling of NH3-SCR over a supported Cu zeolite catalyst using axial species distribution measurements. Appl. Catal. B Environ. 2015, 163, 393–403. [Google Scholar] [CrossRef] [Green Version]
- Boroń, P.; Chmielarz, L.; Dzwigaj, S. Influence of Cu on the catalytic activity of FeBEA zeolites in SCR of NO with NH 3. Appl. Catal. B Environ. 2015, 168–169, 377–384. [Google Scholar] [CrossRef]
- Ma, L.; Cheng, Y.; Cavataio, G.; McCabe, R.W.; Fu, L.; Li, J. In situ DRIFTS and temperature-programmed technology study on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts. Appl. Catal. B Environ. 2014, 156–157, 428–437. [Google Scholar] [CrossRef]
- Jeong, S.J.; Lee, S.J.; Kim, W.S.; Lee, C.B. Simulation on the Optimum Shape and Location of Urea Injector for Urea-SCR System of Heavy-Duty Diesel Engine to Prevent NH3 Slip; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2005. [Google Scholar] [CrossRef]
- Liu, B.; Yan, F.; Hu, J.; Turkson, R.F.; Lin, F. Modeling and multi-objective optimization of NOx conversion efficiency and NH3 slip for a diesel engine. Sustainability 2016, 8, 478. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Naber, J.; Johnson, J.H. Nonuniformity and NO2/NOx Ratio Effects on the SCR Performance under Transient Engine Conditions; SAE International: Warrendale, PA, USA, 2014. [Google Scholar]
- Xu, L.; Watkins, W.; Snow, R.; Graham, G.; McCabe, R.; Lambert, C.; Carter, R.O. Laboratory and Engine Study of Urea-Related Deposits in Diesel Urea-SCR After-Treatment Systems; SAE International: Warrendale, PA, USA, 2007. [Google Scholar] [CrossRef]
- Theis, J.R.; Ura, J.; McCabe, R. The Effects of Sulfur Poisoning and Desulfation Temperature on the NOx Conversion of LNT+SCR Systems for Diesel Applications. SAE Int. J. Fuels Lubr. 2010, 3, 1–15. [Google Scholar] [CrossRef]
- Dahlin, S.; Nilsson, M.; Bäckström, D.; Bergman, S.L.; Bengtsson, E.; Bernasek, S.L.; Pettersson, L.J. Multivariate analysis of the effect of biodiesel-derived contaminants on V2O5-WO3/TiO2 SCR catalysts. Appl. Catal. B Environ. 2016, 183, 377–385. [Google Scholar] [CrossRef]
- de Oliveira, M.L.; Silva, C.M.; Moreno-Tost, R.; Farias, T.L.; Jimenez-Lopez, A.; Rodriguez-Castellon, E. Simulation of SCR equipped vehicles using iron-zeolite catalysts. Appl. Catal. A Gen. 2009, 366, 13–21. [Google Scholar] [CrossRef]
- Gao, F.; Tang, X.; Yi, H.; Zhao, S.; Li, C.; Li, J.; Shi, Y.; Meng, X. A review on selective catalytic reduction of NOx by NH3 over Mn–based catalysts at low temperatures: Catalysts, mechanisms, kinetics and DFT calculations. Catalysts 2017, 7, 199. [Google Scholar] [CrossRef]
- Kaario, O.; Sarjovaara, T.; Ranta, O.; Hulkkonen, T.; Keskinen, K.; Larmi, M.; Halonen, S.; Amberla, A. Comparing Breakup Models in a Novel High Injection Pressure SCR System using Polyhedral Meshing; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2014. [Google Scholar] [CrossRef]
- Fischer, S. Simulation of the Urea-Water-Solution Preparation and Ammonia-Homogenization with a Validated CFD-Model for the Optimization of Automotive SCR-Systems. Ph.D. Thesis, Technische Universität Wien, Vienna, Austria, 2012. Available online: https://www.ub.tuwien.ac.at/diss/AC07814267.pdf.
- Schmieg, S.J.; Oh, S.H.; Kim, C.H.; Brown, D.B.; Lee, J.H.; Peden, C.H.F.; Heui, D. Thermal durability of Cu-CHA NH3-SCR catalysts for diesel NOx reduction. Catal. Today 2012, 184, 252–261. [Google Scholar] [CrossRef]
- Khristamto, M.; Wardana, A.; Shahariar, G.M.H.; Oh, K.; Lim, O. Ammonia uniformity to predict nox reduction efficiency in an SCR system. Int. J. Automot. Technol. 2019, 20, 313–325. [Google Scholar] [CrossRef]
- Dong, H.; Shuai, S.; Li, R.; Wang, J.; Shi, X.; He, H. Study of NOx selective catalytic reduction by ethanol over Ag/Al2O3 catalyst on a HD diesel engine. Chem. Eng. J. 2008, 135, 195–201. [Google Scholar] [CrossRef]
- Kass, M.D.; Thomas, J.F.; Lewis, S.A.; Storey, J.M.; Domingo, N.; Graves, R.L.; Panov, A.; Park, P. Selective catalytic reduction of NOx emissions from a 5.9 liter diesel engine using ethanol as a reductant. SAE Trans. 2003, 112, 2584–2593. [Google Scholar] [CrossRef]
- Shin, Y.; Jung, Y.; Cho, C.P.; Pyo, Y.D.; Jang, J.; Kim, G.; Kim, T.M. NOx abatement and N2O formation over urea-SCR systems with zeolite supported Fe and Cu catalysts in a nonroad diesel engine. Chem. Eng. J. 2020, 381, 122751. [Google Scholar] [CrossRef]
- Gualtieri, C.; Angeloudis, A.; Bombardelli, F.; Jha, S.; Stoesser, T. On the Values for the Turbulent Schmidt Number in Environmental Flows. Fluids 2017, 2, 17. [Google Scholar] [CrossRef] [Green Version]
- Fang, D.; He, F.; Mei, D.; Zhang, Z.; Xie, J.; Hu, H. Thermodynamic calculation for the activity and mechanism of Mn/TiO2 catalyst doped transition metals for SCR at low temperature. Catal. Commun. 2014, 52, 45–48. [Google Scholar] [CrossRef]
- Fang, D.; Xie, J.; Hu, H.; Yang, H.; He, F.; Fu, Z. Identification of MnOx species and Mn valence states in MnOx/TiO2 catalysts for low temperature SCR. Chem. Eng. J. 2015, 271, 23–30. [Google Scholar] [CrossRef]
- Brookshear, D.W.; Nam, J.G.; Nguyen, K.; Toops, T.J.; Binder, A. Impact of sulfation and desulfation on NOx reduction using Cu-chabazite SCR catalysts. Catal. Today 2015, 258, 359–366. [Google Scholar] [CrossRef]
- Ellmers, I.; Pérez Vélez, R.; Bentrup, U.; Schwieger, W.; Brückner, A.; Grünert, W. SCR and NO oxidation over Fe-ZSM-5—The influence of the Fe content. Catal. Today 2015, 258, 337–346. [Google Scholar] [CrossRef]
- Olsson, L.; Wijayanti, K.; Leistner, K.; Kumar, A.; Joshi, S.Y.; Kamasamudram, K.; Currier, N.W.; Yezerets, A. A kinetic model for sulfur poisoning and regeneration of Cu/SSZ-13 used for NH3-SCR. Appl. Catal. B Environ. 2016, 183, 394–406. [Google Scholar] [CrossRef]
- Wei, L.; Yan, F.; Hu, J.; Xi, G.; Liu, B.; Zeng, J. Nox conversion efficiency optimization based on NSGA-II and state-feedback nonlinear model predictive control of selective catalytic reduction system in diesel engine. Appl. Energy 2017, 206, 959–971. [Google Scholar] [CrossRef]
- Tan, Y.; Henderick, P.; Yoon, S.; Herner, J.; Montes, T.; Boriboonsomsin, K.; Johnson, K.; Scora, G.; Sandez, D.; Durbin, T.D. On-Board Sensor-Based NOx Emissions from Heavy-Duty Diesel Vehicles. Environ. Sci. Technol. 2019, 53, 5504–5511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, S.; Han, J.; Liu, M.; Qin, S.; Wang, G.; Li, G. xiang Experimental investigation of exhaust thermal management on NOx emissions of heavy-duty diesel engine under the world Harmonized transient cycle (WHTC). Appl. Therm. Eng. 2018, 142, 421–432. [Google Scholar] [CrossRef]
- Huthwohl, G.; Dolenec, S. A New Approach in AdBlue Dosing to Improve Performance and Durability of SCR Systems for the Use in Passenger Cars Up to Heavy Duty Vehicles; SAE International: Kyoto, Japan, 2011. [Google Scholar] [CrossRef]
- Zheng, Y.; Luss, D.; Harold, M.P. Optimization of LNT-SCR Dual-Layer Catalysts for Diesel NO x Emission Control. SAE Int. J. Engines 2014, 7, 1280–1289. [Google Scholar] [CrossRef]
- Hsieh, M.-F.; Wang, J. Development and experimental studies of a control-oriented SCR model for a two-catalyst urea-SCR system. Control Eng. Pract. 2011, 19, 409–422. [Google Scholar] [CrossRef]
- Song, Y.; Hashemi, H.; Christensen, J.M.; Zou, C.; Marshall, P.; Glarborg, P. Ammonia oxidation at high pressure and intermediate temperatures. Fuel 2016, 181, 358–365. [Google Scholar] [CrossRef] [Green Version]
- Vallinayagam, R.; Vedharaj, S.; Yang, W.M.; Saravanan, C.G.; Lee, P.S.; Chua, K.J.E.; Chou, S.K. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter. Atmos. Environ. 2013, 80, 190–197. [Google Scholar] [CrossRef]
- Abidin, Z.; Das, K.; Roberts, C. 3D-Semi 1D Coupling for a Complete Simulation of an SCR System; SAE Technical Papers; SAE International: Warrendale, PA, USA, 2013; Volume 2. [Google Scholar] [CrossRef]
- Ura, J.A.; Girard, J.; Cavataio, G.; Montreuil, C.; Lambert, C. Cold Start Performance and Enhanced Thermal Durability of Vanadium SCR Catalysts; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2009. [Google Scholar] [CrossRef]
- Wardana, M.K.A.; Oh, K.; Lim, O. Investigation of urea uniformity with different types of urea injectors in an SCR system. Catalysts 2020, 10, 1269. [Google Scholar] [CrossRef]
- Fischer, S.; Bitto, R.; Lauer, T.; Krenn, C.; Tauer, J.; Pessl, G. Impact of the Turbulence Model and Numerical Approach on the Prediction of the Ammonia Homogenization in an Automotive SCR System. SAE Int. J. Engines 2012, 5, 1443–1458. [Google Scholar] [CrossRef]
- Zhang, X.; Romzek, M.; Morgan, C. 3-D Numerical Study of Mixing Characteristics of NH3 in Front of SCR; SAE International: Warrendale, PA, USA, 2006. [Google Scholar]
- Zheng, G.; Palmer, G.; Salanta, G.; Kotrba, A. Mixer Development for Urea SCR Applications; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2009; Volume 4970, p. 2879. [Google Scholar] [CrossRef]
- Castagnola, M.; Caserta, J.; Chatterjee, S.; Chen, H.-Y.; Convey, R.; Fedeyko, J.M.; Klink, W.; Markatou, P.; Shah, S.; Walker, A. Engine Performance of Cu- and Fe-Based SCR Emission Control Systems for Heavy Duty Diesel Applications; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2011; No. 2011-01-1329. [Google Scholar] [CrossRef]
- Rymaniak, L.; Pielecha, J.; Brzeziński, L. Determining the NOx emission from an auxiliary marine engine based on its operating conditions. E3S Web Conf. 2018, 44, 00155. [Google Scholar] [CrossRef] [Green Version]
- Krastev, V.K.; Amati, G.; Jannelli, E.; Falcucci, G. Direct Numerical Simulation of SCR Reactors through Kinetic Approach; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2016. [Google Scholar] [CrossRef]
- Adamowska-Teyssier, M.; Krztoń, A.; Da Costa, P.; Djéga-Mariadassou, G. SCR NO x mechanistic study with a mixture of hydrocarbons representative of the exhaust gas from coal combustion over Rh/Ce0.62Zr0.38O2 catalyst. Fuel 2015, 150, 21–28. [Google Scholar] [CrossRef]
- Varna, A.; Boulouchos, K.; Spiteri, A.C.; Dimopoulos Eggenschwiler, P.; Wright, Y.M. Numerical Modelling and Experimental Characterization of a Pressure-Assisted Multi-Stream Injector for SCR Exhaust Gas After-Treatment. SAE Int. J. Engines 2014, 7, 2012–2021. [Google Scholar] [CrossRef]
- Senecal, P.K.; Richards, K.J.; Pomraning, E.; Yang, T.; Dai, M.Z.; McDavid, R.M.; Patterson, M.A.; Hou, S.; Shethaji, T. A New Parallel Cut-Cell Cartesian CFD Code for Rapid Grid Generation Applied to In-Cylinder Diesel Engine Simulations; SAE International: Warrendale, PA, USA, 2007. [Google Scholar] [CrossRef]
- Smith, H.; Lauer, T.; Mayer, M.; Pierson, S. Optical and Numerical Investigations on the Mechanisms of Deposit Formation in SCR Systems. SAE Int. J. Fuels Lubr. 2014, 7, 525–542. [Google Scholar] [CrossRef]
- Can, F.; Courtois, X.; Royer, S.; Blanchard, G.; Rousseau, S.; Duprez, D. An overview of the production and use of ammonia in NSR+SCR coupled system for NOx reduction from lean exhaust gas. Catal. Today 2012, 197, 144–154. [Google Scholar] [CrossRef]
- Nishioka, A.; Sukegawa, Y.; Katogi, K.; Mamada, H.; Kowatari, T.; Mukai, T.; Yokota, H. A Study of a New Aftertreatment System (2): Control of Urea Solution Spray for Urea-SCR; SAE International: Warrendale, PA, USA, 2006. [Google Scholar] [CrossRef]
- Liao, Y.; Dimopoulos Eggenschwiler, P.; Spiteri, A.; Nocivelli, L.; Montenegro, G.; Boulouchos, K. Fluid Dynamic Comparison of AdBlue Injectors for SCR Applications. SAE Int. J. Engines 2015, 8, 2303–2311. [Google Scholar] [CrossRef]
- Of, D.; Sciences, T.; Madia, G.S. Measures to Enhance the NOx Conversion in Urea-SCR Systems for Automotive Applications. Ph.D. Thesis, University of Calabria, Arcavacata, Italy, 2002. Available online: https://www.psi.ch/sites/default/files/import/ceg/PublicationsEN/Madia%2C_PhD_thesis%2C_ETH_Zurich%2C_2002.pdf.
0.5 DOC (20 s) | 1.0 DOC (20 s) | 0.5 DOC (10 s) | 1.0 DOC (20 s) | |
---|---|---|---|---|
MF kg/h | 109 | 110 | 109 | 110.5 |
T deg C | 214.8 | 213 | 214 | 213 |
% O2 | 11.1 | 11.3 | 11.1 | 11.4 |
NH3 ppm | 282 | 282 | 282 | 283 |
NO ppm | 430 | 266 | 427 | 267 |
NO2 ppm | 164 | 275 | 155 | 275 |
Initial NO2: NOx % | 27.6 | 50.8 | 26.6 | 50.7 |
Ammonia and NOx Feed Ratio | Velocity Homogenization (%) | Ammonia Homogenization (%) | Ammonia Fraction (10−6) |
---|---|---|---|
0.6 | 93.81 | 98.33 | 444 |
0.8 | 93.80 | 97.98 | 635 |
1.0 | 93.82 | 97.99 | 713 |
1.2 | 93.80 | 97.61 | 765 |
1.4 | 93.81 | 98.03 | 824 |
Exhaust Gas Temperature (°C) | Velocity Homogenization (%) | Ammonia Homogenization (%) | Ammonia Fraction (×10−6) |
---|---|---|---|
300 | 93.77 | 97.69 | 583 |
350 | 93.81 | 98.33 | 772 |
400 | 93.83 | 98.49 | 797 |
450 | 93.85 | 98.77 | 757 |
500 | 93.86 | 98.80 | 754 |
Engine Model | YC4112ZLQ |
---|---|
Type of engine | Inline, 4-stroke |
Type | Turbocharged Intercooled |
Number of cylinders | 4 |
Fuel pump | BH4P120R1402 |
Displacement (L) | 5.12 L |
Engine operation condition (rpm) | 660 Nm/1300–1500 rpm |
Compression ratio | 17.5 |
Engine Model | YUCHAI YC6J180-42 |
---|---|
Type of engine | Inline, 4-stroke |
Type | Turbocharged and intercooled |
Number of cylinders | 6 |
Idle speed | 650–50 rpm |
Displacement (L) | 6.5 L |
Engine operation condition (rpm) | 650 Nm/1200–1700 rpm |
Engine Model | YUCHAI YC6-42 |
---|---|
Type of engine | Inline, 4-stroke |
Type | Turbocharged and intercooled |
Number of cylinders | 6 |
Idle speed | 650–50 rpm |
Displacement (L) | 6.6 L |
Engine operation condition (rpm) | 960 Nm/1200–1700 rpm |
Mode | Speed (rpm) | Fuel Supply (mg/cyc) | Load (%) | NOx (ppm) | Catalyst Temp.(°C) | Torque (N.m) |
---|---|---|---|---|---|---|
1 | 1000 | 171 | 30 | 862 | 215 | 215 |
2 | 1000 | 309 | 60 | 1401 | 326 | 391 |
3 | 1000 | 503 | 90 | 849 | 492 | 585 |
4 | 1500 | 168 | 30 | 684 | 250 | 204 |
5 | 1500 | 300 | 60 | 1131 | 344 | 408 |
6 | 1500 | 436 | 90 | 1306 | 415 | 612 |
7 | 2000 | 178 | 30 | 498 | 249 | 201 |
8 | 2000 | 299 | 60 | 767 | 318 | 395 |
9 | 2000 | 429 | 90 | 1026 | 394 | 596 |
10 | 2500 | 165 | 30 | 290 | 227 | 153 |
11 | 2500 | 265 | 60 | 489 | 296 | 312 |
12 | 2500 | 364 | 90 | 674 | 378 | 471 |
Model | Upstream NOx Emissions | Downstream NOx Emissions | Ammonia Slip | ||||||
---|---|---|---|---|---|---|---|---|---|
Training | Test | All | Training | Test | All | Training | Test | All | |
MAPE (%) | 1.71 | 4.77 | 3.24 | 2.17 | 6.89 | 4.53 | - | - | - |
R2 | 0.99 | 0.98 | 0.99 | 0.99 | 0.98 | 0.99 | 0.99 | 0.97 | 0.98 |
RMSE (ppm) | 24.62 | 57.16 | 44.1 | 19.56 | 25.87 | 21.87 | 1.34 | 2.84 | 2.22 |
Fits | Y1 = 0.9849 × X1 + 8.0395 | Y2 = 0.9644 × X2 + 6.8769 | Y3 = 0.9786 × X3 + 0.9270 |
Type of Engine | Inline, 4-stroke |
---|---|
Type | Turbocharged and intercooled (VGT) |
Number of cylinders | 6 |
Emission standard | Euro V |
EGR type | Electronic EGR |
Displacement (L) | 7.14 L |
Torque (N.m) | 1100 |
Compression ratio | 18 |
Bore × stroke (mm) | 108 × 130 |
Idle speed (rpm) | 650 |
Rate speed (rpm) | 2100 |
Rate power (kW) | 200 |
Equipment Test | Measurement Value |
---|---|
Dynamometer | Speed (± 1 rpm) Torque (± 0.1% FS) |
Opacimeter | 5 µg |
Exhaust gas analyzer | 1 ppm vol 0.01%vol |
Ammonia analyzer | ± 0.1% |
Emission | NOx g/(kW h) | PM g/(kW h) | CO g/(kW h) | NMHC g/(kW h) |
---|---|---|---|---|
IV | 3.7 | 0.03 | 4.0 | 0.55 |
V | 2.8 | 0.03 | 4.0 | 0.55 |
Parameters | Engine Operation = 1000 rpm | |
---|---|---|
Conditions | Unit | |
Engine operating t | 1000/200 | rpm/Nm |
Exhaust mass | 513 | kg/h |
NOx | 1285 | ppm |
Injector inlet/SCR inlet temperature | 371 | °C |
AdBlue | 1319 | mL/h, NSR = 1.0 |
CO2, | 9.3 | % |
O2 | 8 | % |
NOx | 1083 | g/h |
H2O | 9.3 | % |
Engine | Laboratory Engine |
---|---|
Engine type | 4-stroke |
Bore × stroke (mm) | 190 × 260 |
Fuel | Heavy oil (A) |
Engine speed (rpm) | 1000 |
Number of cylinders | 6 |
Rate power (kW) | 750 |
Load (%) | 25 | 50 | 75 | 100 |
Temperature (°C) | 350 | 400 | 390 | 400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wardana, M.K.A.; Lim, O. Review of Improving the NOx Conversion Efficiency in Various Diesel Engines fitted with SCR System Technology. Catalysts 2023, 13, 67. https://doi.org/10.3390/catal13010067
Wardana MKA, Lim O. Review of Improving the NOx Conversion Efficiency in Various Diesel Engines fitted with SCR System Technology. Catalysts. 2023; 13(1):67. https://doi.org/10.3390/catal13010067
Chicago/Turabian StyleWardana, Muhammad Khristamto Aditya, and Ocktaeck Lim. 2023. "Review of Improving the NOx Conversion Efficiency in Various Diesel Engines fitted with SCR System Technology" Catalysts 13, no. 1: 67. https://doi.org/10.3390/catal13010067
APA StyleWardana, M. K. A., & Lim, O. (2023). Review of Improving the NOx Conversion Efficiency in Various Diesel Engines fitted with SCR System Technology. Catalysts, 13(1), 67. https://doi.org/10.3390/catal13010067