Activated Carbon-Loaded Titanium Dioxide Nanoparticles and Their Photocatalytic and Antibacterial Investigations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Manilkara Zapota Leaf Extract Preparation
2.3. Synthesis of TiO2 Nanoparticles
2.4. Preparation of AC/TiO2 Nanoparticles
2.5. Characterization of AC/TiO2 Nanoparticles
2.6. Bacterial Suspension
2.7. Photocatalytic Degradation Experiment
3. Results and Discussion
3.1. XRD Analysis
3.2. FTIR Analysis
3.3. UV-DRS Analysis
3.4. SEM with EDX and TEM Analysis
3.5. XPS Analysis
3.6. Antibacterial Activity
3.7. Photocatalytic Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Filho, W.L.; Totin, E.; Franke, J.A.; Andrew, S.M.; Abubakar, I.R.; Azadi, H.; Nunn, P.D.; Ouweneel, B.; Williams, P.A.; Simpson, N.P. Understanding responses to climate-related water scarcity in Africa. Sci. Total Environ. 2021, 806, 150420. [Google Scholar] [CrossRef] [PubMed]
- Rafiei-Sardooi, E.; Azareh, A.; Shooshtari, S.J.; Parteli, E.J. Long-term assessment of land-use and climate change on water scarcity in an arid basin in Iran. Ecol. Model. 2022, 467, 109934. [Google Scholar] [CrossRef]
- Aguilar, F.X.; Hendrawan, D.; Cai, Z.; Roshetko, J.M.; Stallmann, J. Smallholder farmer resilience to water scarcity. Environ. Dev. Sustain. 2021, 24, 2543–2576. [Google Scholar] [CrossRef]
- Luukkonen, T.; Pehkonen, S.O. Peracids in water treatment: A critical review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Zobeidi, T.; Yaghoubi, J.; Yazdanpanah, M. Developing a paradigm model for the analysis of farmers’ adaptation to water scarcity. Environ. Dev. Sustain. 2021, 24, 5400–5425. [Google Scholar] [CrossRef]
- Zulu, N.N. Water Scarcity and Household Food Security: A Case of Ulundi Local Municipality in KwaZulu-Natal, South Africa. In Handbook of Research on Resource Management and the Struggle for Water Sustainability in Africa; IGI Global: Hershey, PA, USA, 2022; pp. 127–148. [Google Scholar]
- Mir, R.; Azizyan, G.; Massah, A.; Gohari, A. Fossil water: Last resort to resolve long-standing water scarcity? Agric. Water Manag. 2021, 261, 107358. [Google Scholar] [CrossRef]
- Zaheer, S.; Ahsan, S.; Ahmed, M.; Ahmed, A. An Empirical Analysis to Assess Climate Change and Its Effects on Water Scarcity Through Participatory Rural Apprasial (PRA) Approach in Chirirbandar Upazila, Dinajpur. In Climate Change and Water Security; Springer: Singapore, 2021; pp. 13–26. [Google Scholar]
- Abd-Elaty, I.; Kuriqi, A.; El Shahawy, A. Environmental rethinking of wastewater drains to manage environmental pollution and alleviate water scarcity. Nat. Hazards 2021, 110, 2353–2380. [Google Scholar] [CrossRef]
- Ahmed, Z.; Alam, R.; Ahmed, M.N.Q.; Ambinakudige, S.; Almazroui, M.; Islam, M.N.; Chowdhury, P.; Kabir, M.N.; Mahmud, S. Does anthropogenic upstream water withdrawal impact on downstream land use and livelihood changes of Teesta transboundary river basin in Bangladesh? Environ. Monit. Assess. 2022, 194, 59. [Google Scholar] [CrossRef]
- Ji, B. Towards environment-sustainable wastewater treatment and reclamation by the non-aerated microalgal-bacterial granular sludge process: Recent advances and future directions. Sci. Total Environ. 2021, 806, 150707. [Google Scholar] [CrossRef]
- Baskar, A.V.; Bolan, N.; Hoang, S.A.; Sooriyakumar, P.; Kumar, M.; Singh, L.; Jasemizad, T.; Padhye, L.P.; Singh, G.; Vinu, A.; et al. Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review. Sci. Total Environ. 2022, 822, 153555. [Google Scholar] [CrossRef]
- Danish, M.S.S.; Estrella-Pajulas, L.L.; Alemaida, I.M.; Grilli, M.L.; Mikhaylov, A.; Senjyu, T. Green synthesis of silver oxide nanoparticles for photocatalytic environmental remediation and biomedical applications. Metals 2022, 12, 769. [Google Scholar] [CrossRef]
- Patil, S.P.; Chaudhari, R.Y.; Nemade, M.S. Azadirachta indica leaves mediated green synthesis of metal oxide nanoparticles: A review. Talanta Open 2022, 5, 100083. [Google Scholar] [CrossRef]
- Chani, M.T.S.; Khan, S.B.; Rahman, M.M.; Kamal, T.; Asiri, A.M. Sunlight assisted photocatalytic dye degradation using zinc and iron based mixed metal-oxides nanopowders. J. King Saud Univ. Sci. 2022, 34, 101841. [Google Scholar] [CrossRef]
- Singh, A.R.; Dhumal, P.S.; Bhakare, M.A.; Lokhande, K.D.; Bondarde, M.P.; Some, S. In-Situ synthesis of metal oxide and polymer decorated activated carbon-based photocatalyst for organic pollutants degradation. Sep. Purif. Technol. 2022, 286, 120380. [Google Scholar] [CrossRef]
- Xiang, D.; Lu, S.; Ma, Y.; Zhao, L. Synergistic Photocatalysis-Fenton Reaction of Flower-shaped CeO2/Fe3O4 Magnetic Catalyst for Decolorization of High Concentration Congo Red Dye. Colloids Surf. A Physicochem. Eng. Asp. 2022, 647, 129021. [Google Scholar] [CrossRef]
- Gnanasekaran, L.; Rajendran, S.; Kumar, P.S.; Priya, A.; Gracia, F.; Habila, M.A.; Saravanakumar, K. Visible light stimulated binary nanostructure and defect enriched TiO2-SnO2 for photocatalysis and antibacterial activity. Mater. Lett. 2022, 316, 131998. [Google Scholar] [CrossRef]
- Sudhagar, S.; Kumar, S.S.; Premkumar, I.J.; Vijayan, V.; Venkatesh, R.; Rajkumar, S.; Singh, M. UV-and visible-light-driven TiO2/La2O3 and TiO2/Al2O3 nanocatalysts: Synthesis and enhanced photocatalytic activity. Appl. Phys. A 2022, 128, 282. [Google Scholar] [CrossRef]
- Wannapop, S.; Khawsaad, A.; Supanpong, A.; Janorat, Y.; Chuminjak, Y.; Tuantranont, A.; Phuruangrat, A.; Thongtem, T.; Thongtem, S.; Somdee, A. Photocatalytic study of metal oxide enhanced ZnO synthesized by a one-step cyclic-microwave method: The role of the pn heterostructure. Inorg. Chem. Commun. 2022, 138, 109210. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, H.; Ye, G.; Fan, J.; Yao, F.; Wang, Y.; Jiao, Y.; Zhu, W.; Huang, H.; Ye, D. Key factors and primary modification methods of activated carbon and their application in adsorption of carbon-based gases: A review. Chemosphere 2021, 287, 131995. [Google Scholar] [CrossRef]
- Gayathiri, M.; Pulingam, T.; Lee, K.; Sudesh, K. Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. Chemosphere 2022, 294, 133764. [Google Scholar] [CrossRef]
- Shen, Z.; Xing, X.; Wang, S.; Lv, M.; Li, J.; Li, T. Effect of K-modified blue coke-based activated carbon on low temperature catalytic performance of supported Mn–Ce/activated carbon. ACS Omega 2022, 7, 8798–8807. [Google Scholar] [CrossRef]
- Yunus, Z.M.; Yashni, G.; Al-Gheethi, A.; Othman, N.; Hamdan, R.; Ruslan, N.N. Advanced methods for activated carbon from agriculture wastes; a comprehensive review. Int. J. Environ. Anal. Chem. 2020, 102, 134–158. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Karaman, C.; Karaman, O.; Karimi, F.; Vasseghian, Y.; Fu, L.; Baghayeri, M.; Rouhi, J.; Kumar, P.S.; Show, P.L.; et al. Nanochemistry approach for the fabrication of Fe and N co-decorated biomass-derived activated carbon frameworks: A promising oxygen reduction reaction electrocatalyst in neutral media. J. Nanostruct. Chem. 2022, 12, 429–439. [Google Scholar] [CrossRef]
- Kempisty, D.M.; Arevalo, E.; Spinelli, A.M.; Edeback, V.; Dickenson, E.R.V.; Husted, C.; Higgins, C.P.; Summers, R.S.; Knappe, D.R.U. Granular activated carbon adsorption of perfluoroalkyl acids from ground and surface water. AWWA Water Sci. 2022, 4, e1269. [Google Scholar] [CrossRef]
- Lunagariya, J.; Chabhadiya, K.; Pathak, P.; Mashru, D. Application of Taguchi Method in Activated Carbon Adsorption Process of Phenol Removal from Ceramic Gasifier Wastewater. Environ. Chall. 2022, 6, 100450. [Google Scholar] [CrossRef]
- Susanto, H.; Mulyanti, R.; Istirokhatun, T.; Widiasa, I.N. Treatment of saline domestic wastewater using nanofiltration membrane coupled with activated carbon adsorption. Urban Water J. 2021, 19, 62–73. [Google Scholar] [CrossRef]
- Xue, H.; Wang, X.; Xu, Q.; Dhaouadi, F.; Sellaoui, L.; Seliem, M.K.; Lamine, A.B.; Belmabrouk, H.; Bajahzar, A.; Bonilla-Petriciolet, A.; et al. Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: A comparative study by experimental and advanced modeling analysis. Chem. Eng. J. 2022, 430, 132801. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M. An overview of the modification methods of activated carbon for its water treatment applications. Chem. Eng. J. 2012, 219, 499–511. [Google Scholar] [CrossRef]
- Li, H.; Liang, L.; Niu, X.; Zhang, D.; Fan, H.; Wang, K. Construction of a Bi2 WO6/TiO2 heterojunction and its photocatalytic degradation performance. N. J. Chem. 2022, 46, 8185–8194. [Google Scholar] [CrossRef]
- Salawu, M.A.; Ayobami, A.A.; Adebisi, A.; Ezike, S.C.; Saheed, Y.O.; Alabi, A.B. Characterization of eosin red and hibiscus sabdariffa-based dye-sensitized solar cells. Opt. Mater. 2022, 127, 112177. [Google Scholar] [CrossRef]
- Wang, C.; Bai, L.; Zhao, F.; Bai, L. Activated carbon fibers derived from natural cattail fibers for supercapacitors. Carbon Lett. 2022, 32, 907–915. [Google Scholar] [CrossRef]
- Bergna, D.; Varila, T.; Romar, H.; Lassi, U. Activated carbon from hydrolysis lignin: Effect of activation method on carbon properties. Biomass Bioenergy 2022, 159, 106387. [Google Scholar] [CrossRef]
- Pan, R.; Martins, M.F.; Debenest, G. Optimization of oil production through ex-situ catalytic pyrolysis of waste polyethylene with activated carbon. Energy 2022, 248, 123514. [Google Scholar] [CrossRef]
- Alkorbi, A.S.; Javed, H.M.A.; Hussain, S.; Latif, S.; Mahr, M.S.; Mustafa, M.S.; Alsaiari, R.; Alhemiary, N.A. Solar light-driven photocatalytic degradation of methyl blue by carbon-doped TiO2 nanoparticles. Opt. Mater. 2022, 127, 112259. [Google Scholar] [CrossRef]
- Thinkohkaew, K.; Piroonpan, T.; Jiraborvornpongsa, N.; Potiyaraj, P. Development of multifunctional polypropylene nonwoven fabric by radiation induced grafting of TiO2 nanoparticles and trifluoroethyl methacrylate for protective textile applications. Materialia 2022, 21, 101355. [Google Scholar] [CrossRef]
- Singh, S.; Maurya, I.C.; Tiwari, A.; Srivastava, P.; Bahadur, L. Green synthesis of TiO2 nanoparticles using Citrus limon juice extract as a bio-capping agent for enhanced performance of dye-sensitized solar cells. Surfaces Interfaces 2021, 28, 101652. [Google Scholar] [CrossRef]
- Karthika, C.; Sureshkumar, R.; Sajini, D.V.; Ashraf, G.M.; Rahman, H. 5-fluorouracil and curcumin with pectin coating as a treatment regimen for titanium dioxide with dimethylhydrazine-induced colon cancer model. Environ. Sci. Pollut. Res. 2022, 1–14. [Google Scholar] [CrossRef]
- Nabgan, W.; Nabgan, B.; Abdullah, T.A.T.; Ikram, M.; Jadhav, A.H.; Jalil, A.A.; Ali, M.W. Highly Active Biphasic Anatase-Rutile Ni-Pd/TNPs Nanocatalyst for the Reforming and Cracking Reactions of Microplastic Waste Dissolved in Phenol. ACS Omega 2022, 7, 3324–3340. [Google Scholar] [CrossRef]
- Jimoh, A.; Akpeji, B.; Azeez, S.; Ayipo, Y.; Abdulsalam, Z.; Adebayo, Z.; Ajao, A.; Zakariyah, A.; Elemike, E. Biosynthesis of Ag and TiO2 nanoparticles and the evaluation of their antibacterial activities. Inorg. Chem. Commun. 2022, 141, 109503. [Google Scholar] [CrossRef]
- Arutanti, O.; Sari, A.L.; Kartikowati, C.W.; Sari, A.A.; Arif, A.F. Design and Application of Homogeneous-structured TiO2/Activated Carbon Nanocomposite for Adsorption–Photocatalytic Degradation of MO. Water Air Soil Pollut. 2022, 233, 118. [Google Scholar] [CrossRef]
- Boumeftah, A.; Belmokhtar, A.; Benyoucef, A. Novel hybrid materials based on poly (4, 4′-Diaminodiphenyl sulfone) and TiO2 nanoparticles: Synthesis, characterization, physical and electrochemical properties. Res. Chem. Intermed. 2022, 48, 1717–1731. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, S.; Wu, Y.; Yan, F.; Qin, S.; Yang, J.; Li, J.; Cui, Z. Fabrication of polymer@ TiO2 NPs hybrid membrane based on covalent bonding and coordination and its mechanism of enhancing photocatalytic performance. J. Alloys Compd. 2022, 910, 164887. [Google Scholar] [CrossRef]
- Andrade-Guel, M.; Cabello-Alvarado, C.; Avila-Orta, C.A.; Pérez-Alvarez, M.; Cadenas-Pliego, G.; Reyes-Rodríguez, P.Y.; Rios-González, L. Green Flame-Retardant Composites Based on PP/TiO2/Lignin Obtained by Melt-Mixing Extrusion. Polymers 2022, 14, 1300. [Google Scholar] [CrossRef]
- Dessai, S.; Ayyanar, M.; Amalraj, S.; Khanal, P.; Vijayakumar, S.; Gurav, N.; Rarokar, N.; Kalaskar, M.; Nadaf, S.; Gurav, S. Bioflavonoid mediated synthesis of TiO2 nanoparticles: Characterization and their biomedical applications. Mater. Lett. 2022, 311, 131639. [Google Scholar] [CrossRef]
- Min, Y.; Song, G.; Zhou, L.; Wang, X.; Liu, P.; Li, J. Silver@ mesoporous Anatase TiO2 Core-Shell Nanoparticles and Their Application in Photocatalysis and SERS Sensing. Coatings 2022, 12, 64. [Google Scholar] [CrossRef]
- Keshari, A.K.; Choudhary, P.; Shukla, V.K. Precursor induced evolution in single anatase phase synthesis of TiO2 nanoparticles for water treatment and dye-sensitized solar cell. Phys. B Condens. Matter 2022, 631, 413716. [Google Scholar] [CrossRef]
- Wei, M.; Li, Z.; Chen, P.; Sun, L.; Kang, S.; Dou, T.; Qu, Y.; Jing, L. N-Rich Doped Anatase TiO2 with Smart Defect Engineering as Efficient Photocatalysts for Acetaldehyde Degradation. Nanomaterials 2022, 12, 1564. [Google Scholar] [CrossRef]
- Lekesi, L.; Motaung, T.; Motloung, S.; Koao, L.; Malevu, T. Investigation on structural, morphological, and optical studies of multiphase titanium dioxide nanoparticles. J. Mol. Struct. 2021, 1251, 132014. [Google Scholar] [CrossRef]
- Bringley, E.J.; Manuputty, M.Y.; Lindberg, C.S.; Leon, G.; Akroyd, J.; Kraft, M. Simulations of TiO2 nanoparticles synthesised off-centreline in jet-wall stagnation flames. J. Aerosol Sci. 2022, 162, 105928. [Google Scholar] [CrossRef]
- Fischer, D.K.; de Fraga, K.R.; Scheeren, C.W. Ionic liquid/TiO2 nanoparticles doped with non-expensive metals: New active catalyst for phenol photodegradation. RSC Adv. 2022, 12, 2473–2484. [Google Scholar] [CrossRef]
- Nelsonjoseph, L.; Vishnupriya, B.; Amsaveni, R.; Bharathi, D.; Thangabalu, S.; Rehna, P. Synthesis and characterization of silver nanoparticles using Acremonium borodinense and their anti-bacterial and hemolytic activity. Biocatal. Agric. Biotechnol. 2021, 39, 102222. [Google Scholar] [CrossRef]
- Mohammad, N.H.; El-Sherbiny, G.M.; Hammad, A.A.; Askar, A.A.; El-Nour, S.A.A. Gamma-ray and sunlight-induced synthesis of silver nanoparticles using bacterial cellulose and cell-free filtrate produced by Komagataeibacter rhaeticus N1 MW322708 strain. Cellulose 2022, 29, 1791–1805. [Google Scholar] [CrossRef]
- Shah, I.H.; Ashraf, M.; Sabir, I.A.; Manzoor, M.A.; Malik, M.S.; Gulzar, S.; Ashraf, F.; Iqbal, J.; Niu, Q.; Zhang, Y. Green synthesis and Characterization of Copper oxide nanoparticles using Calotropis procera leaf extract and their different biological potentials. J. Mol. Struct. 2022, 1259, 132696. [Google Scholar] [CrossRef]
- Balachandar, R.; Navaneethan, R.; Biruntha, M.; Kumar, K.K.A.; Govarthanan, M.; Karmegam, N. Antibacterial activity of silver nanoparticles phytosynthesized from Glochidion candolleanum leaves. Mater. Lett. 2021, 311, 131572. [Google Scholar] [CrossRef]
- Zheng, B.-D.; Ye, J.; Yang, Y.-C.; Huang, Y.-Y.; Xiao, M.-T. Self-healing polysaccharide-based injectable hydrogels with antibacterial activity for wound healing. Carbohydr. Polym. 2021, 275, 118770. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Li, L.; Wu, Y.; Yu, Q. An experimental and theoretical study on the photocatalytic antibacterial activity of boron-doped TiO2 nanoparticles. Ceram. Int. 2021, 48, 604–614. [Google Scholar] [CrossRef]
- Karthikeyan, K.; Chandraprabha, M.N.; Krishna, R.H.; Samrat, K.; Sakunthala, A.; Sasikumar, M. Optical and antibacterial activity of biogenic core-shell ZnO@ TiO2 nanoparticles. J. Indian Chem. Soc. 2022, 99, 100361. [Google Scholar] [CrossRef]
- Alghamdi, Y.G.; Krishnakumar, B.; Malik, M.A.; Alhayyani, S. Design and Preparation of Biomass-Derived Activated Carbon Loaded TiO2 Photocatalyst for Photocatalytic Degradation of Reactive Red 120 and Ofloxacin. Polymers 2022, 14, 880. [Google Scholar] [CrossRef]
- Rostami, M.; Badiei, A.; Ganjali, M.R.; Rahimi-Nasrabadi, M.; Naddafi, M.; Karimi-Maleh, H. Nano-architectural design of TiO2 for high performance photocatalytic degradation of organic pollutant: A review. Environ. Res. 2022, 212, 113347. [Google Scholar] [CrossRef]
- Shoneye, A.; Chang, J.S.; Chong, M.N.; Tang, J. Recent progress in photocatalytic degradation of chlorinated phenols and reduction of heavy metal ions in water by TiO2-based catalysts. Int. Mater. Rev. 2021, 67, 47–64. [Google Scholar] [CrossRef]
- Govindaraju, S.; Arumugasamy, S.K.; Chellasamy, G.; Yun, K. Zn-MOF decorated bio activated carbon for photocatalytic degradation, oxygen evolution and reduction catalysis. J. Hazard. Mater. 2022, 421, 126720. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Jin, Y.; Ren, Y.; Li, J.; Wei, Z.; Ban, C.; Cai, H.; Chen, M. Synergy mechanism for TiO2/activated carbon composite material: Photocatalytic degradation of methylene blue solution. Can. J. Chem. Eng. 2022, 100, 276–290. [Google Scholar] [CrossRef]
- Erim, B.; Ciğeroğlu, Z.; Şahin, S.; Vasseghian, Y. Photocatalytic degradation of cefixime in aqueous solutions using functionalized SWCNT/ZnO/Fe3O4 under UV-A irradiation. Chemosphere 2022, 291, 132929. [Google Scholar] [CrossRef] [PubMed]
- Long, X.; Feng, C.; Yang, S.; Ding, D.; Feng, J.; Liu, M.; Chen, Y.; Tan, J.; Peng, X.; Shi, J.; et al. Oxygen doped graphitic carbon nitride with regulatable local electron density and band structure for improved photocatalytic degradation of bisphenol A. Chem. Eng. J. 2022, 435, 134835. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parvathiraja, C.; Katheria, S.; Siddiqui, M.R.; Wabaidur, S.M.; Islam, M.A.; Lai, W.-C. Activated Carbon-Loaded Titanium Dioxide Nanoparticles and Their Photocatalytic and Antibacterial Investigations. Catalysts 2022, 12, 834. https://doi.org/10.3390/catal12080834
Parvathiraja C, Katheria S, Siddiqui MR, Wabaidur SM, Islam MA, Lai W-C. Activated Carbon-Loaded Titanium Dioxide Nanoparticles and Their Photocatalytic and Antibacterial Investigations. Catalysts. 2022; 12(8):834. https://doi.org/10.3390/catal12080834
Chicago/Turabian StyleParvathiraja, Chelliah, Snehlata Katheria, Masoom Raza Siddiqui, Saikh Mohammad Wabaidur, Md Ataul Islam, and Wen-Cheng Lai. 2022. "Activated Carbon-Loaded Titanium Dioxide Nanoparticles and Their Photocatalytic and Antibacterial Investigations" Catalysts 12, no. 8: 834. https://doi.org/10.3390/catal12080834
APA StyleParvathiraja, C., Katheria, S., Siddiqui, M. R., Wabaidur, S. M., Islam, M. A., & Lai, W.-C. (2022). Activated Carbon-Loaded Titanium Dioxide Nanoparticles and Their Photocatalytic and Antibacterial Investigations. Catalysts, 12(8), 834. https://doi.org/10.3390/catal12080834