Mechanistic and Experimental Study of the CuxO@C Nanocomposite Derived from Cu3(BTC)2 for SO2 Removal
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Chemical Properties of Nano−CuOs
2.1.1. Morphology and Phase Analysis of Nano−CuOs
2.1.2. Porous Structures of Nano−CuOs
2.1.3. Chemical Compositions of Nano−CuOs
2.2. Microscopic Mechanism of SO2 Removal on Simulated Nano−CuOs
2.2.1. Model of the CuO (111) Surface
2.2.2. Adsorption Configuration of SO2 Molecules over Perfect CuO (111)
2.2.3. Adsorption Configuration of SO2 Molecules on the Oxygen-Vacancy CuO (111)
2.3. SO2 Removal Performance of Nano−CuOs
3. Materials and Methods
3.1. Experimental Section
3.1.1. Materials
3.1.2. Synthesis of Nano−CuOs
3.1.3. Characterization
3.1.4. FDG Activity Test
3.2. Models and Computational Details
3.2.1. Computational Method
3.2.2. Adsorption Energy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adil, K.; Bhatt, P.M.; Belmabkhout, Y.; Abtab, S.M.T.; Jiang, H.; Assen, A.H.; Mallick, A.; Cadiau, A.; Aqil, J.; Eddaoudi, M. Valuing metal-organic frameworks for postcombustion carbon capture: A benchmark study for evaluating physical adsorbents. Adv. Mater. 2017, 29, 1702953. [Google Scholar] [CrossRef]
- Thriel, C.V.; Schaper, M.; Kleinbeck, S.; Kiesswetter, E.; Blaszkewicz, M.; Golka, K.; Nies, E.; Raulf-Heimsoth, M.; Brüning, T. Sensory and pulmonary effects of acute exposure to sulfur dioxide (SO2). Toxicol. Lett. 2010, 196, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Cordoba, P. Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs. Fuel 2015, 144, 274–286. [Google Scholar] [CrossRef]
- Bueno-Lopez, A.; Garcia-Martinez, J.; Garcia-Garcia, A.; Linares-Solano, A. Regenerable CaO sorbents for SO2 retention: Carbonaceous versus inorganic dispersants. Fuel 2002, 81, 2435–2438. [Google Scholar] [CrossRef]
- Tchalala, M.R.; Bhatt, P.M.; Chappanda, K.N.; Tavares, S.R.; Adil, K.; Belmabkhout, Y.; Shkurenko, A.; Cadiau, A.; Heymans, N.; De Weireld, G.; et al. Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air. Nat. Commun. 2019, 10, 1328. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, R.K.; Jozewicz, W. Flue gas desulfurization: The state of the art. J. Air Waste Manag. Assoc. 2001, 51, 1676–1688. [Google Scholar] [CrossRef]
- Ma, J.; Liu, Z.; Liu, Q.; Guo, S.; Huang, Z.; Xiao, Y. SO2 and NO removal from flue gas over V2O5/AC at lower temperatures—Role of V2O5 on SO2 removal. Fuel Processing Technol. 2008, 89, 242–248. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, Q.Y.; Liu, Z.Y.; Huang, Z.G.; Guo, Y.X.; Yang, J.L. Roles of lattice oxygen in V2O5 and activated coke in SO2 removal over coke-supported V2O5 catalysts. Appl. Catal. B Environ. 2008, 82, 114–119. [Google Scholar] [CrossRef]
- Yi, H.; Yang, K.; Tang, X.; Liu, X.; Zhao, S.; Gao, F.; Huang, Y.; Yang, Z.; Wang, J.; Shi, Y. Effects of preparation conditions on the performance of simultaneous desulfurization and denitrification over SiO2-MnOx composites. J. Clean. Prod. 2018, 189, 627–634. [Google Scholar] [CrossRef]
- Ye, D.; Ren, X.; Qu, R.; Liu, S.; Zheng, C.; Gao, X. Designing SO2-resistant cerium-based catalyst by modifying with Fe2O3 for the selective catalytic reduction of NO with NH3. Mol. Catal. 2019, 462, 10–18. [Google Scholar] [CrossRef]
- Xie, G.Y.; Liu, Z.Y.; Zhu, Z.P.; Liu, Q.Y.; Ge, J.; Huang, Z.G. Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent I. Deactivation of SCR activity by SO2 at low temperatures. J. Catal. 2004, 224, 36–41. [Google Scholar] [CrossRef]
- Kikuyama, S.; Miura, A.; Kikuchi, R.; Takeguchi, T.; Eguchi, K. SOx sorption-desorption characteristics by ZrO2-based mixed oxides. Appl. Catal. A-Gen. 2004, 259, 191–197. [Google Scholar] [CrossRef]
- Shafiq, I.; Hussain, M.; Shafique, S.; Akhter, P.; Ahmed, A.; Ashraf, R.S.; Ali Khan, M.; Jeon, B.-H.; Park, Y.-K. Systematic Assessment of Visible-Light-Driven Microspherical V2O5 Photocatalyst for the Removal of Hazardous Organosulfur Compounds from Diesel. Nanomaterials 2021, 11, 2908. [Google Scholar] [CrossRef] [PubMed]
- Gaur, V.; Sharma, A.; Verma, N. Removal of SO2 by activated carbon fibre impregnated with transition metals. Can. J. Chem. Eng. 2007, 85, 188–198. [Google Scholar] [CrossRef]
- Uysal, B.Z.; Aksahin, I.; Yucel, H. Sorption of sulfur dioxide on metal oxides in a fluidized bed. Ind. Eng. Chem. Res. 2002, 27, 434–439. [Google Scholar] [CrossRef]
- Sun, L.; Ning, P.; Zhao, X.; Song, X.; Li, K.; Wang, C.; Sun, X.; Jia, L. Competitive adsorption and reaction mechanism on simultaneous catalytic removal of SO2, NO and Hg-0 over CuO: Experimental and theoretical studies. Chem. Eng. J. 2021, 412, 128752. [Google Scholar] [CrossRef]
- Carabineiro, S.A.C.; Ramos, A.M.; Vital, J.; Loureiro, J.M.; Orfao, J.J.M.; Fonseca, I.M. Adsorption of SO2 using vanadium and vanadium-copper supported on activated carbon. Catal. Today 2003, 78, 203–210. [Google Scholar] [CrossRef]
- Yuan, J.; Jiang, X.; Zou, M.J.; Yao, L.; Zhang, C.J.; Jiang, W.J. Copper ore-modified activated coke: Highly efficient and regenerable catalysts for the removal of SO2. Ind. Eng. Chem. Res. 2018, 57, 15731–15739. [Google Scholar] [CrossRef]
- Tseng, H.H.; Wey, M.Y.; Fu, C.H. Carbon materials as catalyst supports for SO2 oxidation: Catalytic activity of CuO-AC. Carbon 2003, 41, 139–149. [Google Scholar] [CrossRef]
- Tseng, H.H.; Wey, M.Y. Effects of acid treatments of activated carbon on its physiochemical structure as a support for copper oxide in DeSO2 reaction catalysts. Chemosphere 2006, 62, 756–766. [Google Scholar] [CrossRef]
- Bai, B.C.; Lee, C.W.; Lee, Y.S.; Im, J.S. Modification of textural properties of CuO-supported activated carbon fibers for SO2 adsorption based on electrical investigation. Mater. Chem. Phys. 2017, 200, 361–367. [Google Scholar] [CrossRef]
- Mochida, I.; Korai, Y.; Shirahama, M.; Kawano, S.; Yasutake, A. Removal of SOx and NOx over activated carbon fibers. Carbon 2000, 38, 227–239. [Google Scholar] [CrossRef]
- Zhang, H.; Niu, J.; Guo, Y.; Cheng, F. Recirculating coking by-products and waste for cost-effective activated carbon (AC) production and its application for treatment of SO2 and wastewater in coke-making plant. J. Clean. Prod. 2021, 280, 124375. [Google Scholar] [CrossRef]
- Tseng, H.H.; Wey, M.Y. Study of SO2 adsorption and thermal regeneration over activated carbon-supported copper oxide catalysts. Carbon 2004, 42, 2269–2278. [Google Scholar] [CrossRef]
- Soldemo, M.; Stenlid, J.H.; Besharat, Z.; Johansson, N.; Onsten, A.; Knudsen, J.; Schnadt, J.; Gothelid, M.; Brinck, T.; Weissenrieder, J. Interaction of sulfur dioxide and near-ambient pressures of water vapor with cuprous oxide surfaces. J. Phys. Chem. C 2017, 121, 24011–24024. [Google Scholar] [CrossRef]
- Galtayries, A.; Grimblot, J.; Bonnelle, J.P. Interaction of SO2 with different polycrystalline Cu, Cu2O and CuO surfaces. Surf. Interface Anal. 1996, 24, 345–354. [Google Scholar] [CrossRef]
- Baxter, J.P.; Grunze, M.; Kong, C.W. Interaction of SO2 with copper and copper-oxide surfaces. J. Vac. Sci. Technol. A 1988, 6, 1123–1127. [Google Scholar] [CrossRef]
- Hammershoi, P.S.; Vennestrom, P.N.R.; Falsig, H.; Jensen, A.D.; Janssens, T.V.W. Importance of the Cu oxidation state for the SO2-poisoning of a Cu-SAPO-34 catalyst in the NH3-SCR reaction. Appl. Catal. B Environ. 2018, 236, 377–383. [Google Scholar] [CrossRef]
- Alqadami, A.A.; Khan, M.A.; Siddiqui, M.R.; Alothman, Z.A. Development of citric anhydride anchored mesoporous MOF through post synthesis modification to sequester potentially toxic lead (II) from water. Microporous Mesoporous Mater. 2018, 261, 198–206. [Google Scholar] [CrossRef]
- Haldoupis, E.; Nair, S.; Sholl, D.S. Finding MOFs for highly selective CO2/N2 adsorption using materials screening based on efficient assignment of atomic point Charges. J. Am. Chem. Soc. 2012, 134, 4313–4323. [Google Scholar] [CrossRef]
- Dekrafft, K.E.; Wang, C.; Lin, W. Metal-organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production. Adv. Mater. 2012, 24, 2014–2018. [Google Scholar] [CrossRef] [PubMed]
- Savage, M.; Cheng, Y.G.; Easun, T.L.; Eyley, J.E.; Argent, S.P.; Warren, M.R.; Lewis, W.; Murray, C.; Tang, C.C.; Frogley, M.D.; et al. Selective adsorption of sulfur dioxide in a robust metal-organic framework. Adv. Mater. 2016, 28, 8705–8711. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Ban, X.; Gao, J.; Chen, J.; Hensley, D.K.; Ho, H.C.; Percoco, R.J.; Ritzi, C.M.; Yue, Y. Solvent-free synthesis of CuO/HKUST-1 composite and its photocatalytic application. Inorg. Chem. 2019, 58, 8332–8338. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Feng, C.; Liu, S.; Zhang, R. Synthesis of CuO catalyst derived from HKUST-1 temple for the low-temperature NH3-SCR process. Catal. Today 2018, 314, 122–128. [Google Scholar] [CrossRef]
- Thuan Van, T.; Duyen Thi Cam, N.; Thuong Thi, N.; Le, H.T.N.; Chi Van, N.; Trinh Duy, N. Metal -organic framework HKUST-1-based Cu/Cu2O/CuO@C porous composite: Rapid synthesis and uptake application in antibiotics remediation. J. Water Process Eng. 2020, 36, 101319. [Google Scholar]
- Hu, L.; Huang, Y.; Zhang, F.; Chen, Q. CuO/Cu2O composite hollow polyhedrons fabricated from metal-organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale 2013, 5, 4186–4190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wu, H.B.; Lou, X.W. Metal-organic-frameworks-derived general formation of hollow structures with high complexity. J. Am. Chem. Soc. 2013, 135, 10664–10672. [Google Scholar] [CrossRef]
- Fu, Y.M.; Zou, K.; Liu, M.Y.; Zhang, X.H.; Du, C.C.; Chen, J.H. Highly selective and sensitive photoelectrochemical sensing platform for VEGF165 assay based on the switching of photocurrent polarity of cds qds by porous Cu2O-CuO flower. Anal. Chem. 2020, 92, 1189–1196. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y.; Zhan, W.; Xie, Z.; Kuang, Q.; Zheng, L. Synthesis of porous Cu2O/CuO cages using Cu-based metal-organic frameworks as templates and their gas-sensing properties. J. Mater. Chem. A 2015, 3, 12796–12803. [Google Scholar] [CrossRef]
- Kim, T.K.; Lee, K.J.; Cheon, J.Y.; Lee, J.H.; Joo, S.H.; Moon, H.R. Nanoporous metal oxides with tunable and nanocrystalline frameworks via conversion of metal-organic frameworks. J. Am. Chem. Soc. 2013, 135, 8940–8946. [Google Scholar] [CrossRef]
- Thuan Van, T.; Duyen Thi Cam, N.; Hanh Thi Ngoc, L.; Huu Loc, H.; Trung Thanh, N.; Van-Dat, D.; Trinh Duy, N.; Long Giang, B. Response surface methodology-optimized removal of chloramphenicol pharmaceutical from wastewater using Cu3(BTC)2-derived porous carbon as an efficient adsorbent. C. R. Chim. 2019, 22, 794–803. [Google Scholar]
- Gupta, N.K.; Bae, J.; Kim, K.S. From MOF-199 microrods to CuO nanoparticles for room-temperature desulfurization: Regeneration and repurposing spent adsorbents as sustainable approaches. ACS Omega 2021, 6, 25631–25641. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Ling, J.L.; Wu, C.D. In Situ Generation and Stabilization of Accessible Cu/Cu2O Heterojunctions inside Organic Frameworks for Highly Efficient Catalysis. Angew. Chem. Int. Ed. 2020, 59, 1925–1931. [Google Scholar] [CrossRef] [PubMed]
- Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. J. Mater. Chem. 2001, 13, 3169–3183. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, G.; Zheng, D.; Xi, C.; Xu, X.; Shen, X. Porous CuO superstructure: Precursor-mediated fabrication, gas sensing and photocatalytic properties. J. Colloid Interface Sci. 2012, 383, 75–81. [Google Scholar] [CrossRef]
- Jiang, P.; Prendergast, D.; Borondics, F.; Porsgaard, S.; Giovanetti, L.; Pach, E.; Newberg, J.; Bluhm, H.; Besenbacher, F.; Salmeron, M. Experimental and theoretical investigation of the electronic structure of Cu2O and CuO thin films on Cu(110) using x-ray photoelectron and absorption spectroscopy. J. Chem. Phys. 2013, 138, 024704. [Google Scholar] [CrossRef] [Green Version]
- Azimi, H.; Kuhri, S.; Osvet, A.; Matt, G.; Khanzada, L.S.; Lemmer, M.; Luechinger, N.A.; Larsson, M.I.; Zeira, E.; Guldi, D.M.; et al. Effective ligand passivation of Cu2O Nanoparticles through solid-state treatment with mercaptopropionic acid. J. Am. Chem. Soc. 2014, 136, 7233–7236. [Google Scholar] [CrossRef]
- Wang, P.; Ng, Y.H.; Amal, R. Embedment of anodized p-type Cu2O thin films with CuO nanowires for improvement in photoelectrochemical stability. Nanoscale 2013, 5, 2952–2958. [Google Scholar] [CrossRef]
- Gan, Z.H.; Yu, G.Q.; Tay, B.K.; Tan, C.M.; Zhao, Z.W.; Fu, Y.Q. Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc. J. Phys. D Appl. Phys. 2004, 37, 81–85. [Google Scholar] [CrossRef]
- Xiong, Y.; Yao, X.; Tang, C.; Zhang, L.; Cao, Y.; Deng, Y.; Gao, F.; Dong, L. Effect of CO-pretreatment on the CuO-V2O5/gamma-Al2O3 catalyst for NO reduction by CO. Catal. Sci. Technol. 2014, 4, 4416–4425. [Google Scholar] [CrossRef]
- Giamello, E. Reactive intermediates formed upon electron transfer from the surface of oxide catalysts to adsorbed molecules. Catal. Today 1998, 41, 239–249. [Google Scholar] [CrossRef]
- Li, H.; Zhang, S.; Zhong, Q. Effect of nitrogen doping on oxygen vacancies of titanium dioxide supported vanadium pentoxide for ammonia-SCR reaction at low temperature. J. Colloid Interface Sci. 2013, 402, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Maimaiti, Y.; Nolan, M.; Elliott, S.D. Reduction mechanisms of the CuO(111) surface through surface oxygen vacancy formation and hydrogen adsorption. Phys. Chem. Chem. Phys. 2014, 16, 3036–3046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.; Yuan, D.; Jiao, Z.; Wang, T.; Dai, X. Monolayer Sc2CO2: A promising candidate as a SO2 gas sensor or capturer. J. Phys. Chem. C 2017, 121, 24077–24084. [Google Scholar] [CrossRef]
- Ye, X.; Jiang, X.; Chen, L.; Jiang, W.; Wang, H.; Cen, W.; Ma, S. Effect of manganese dioxide crystal structure on adsorption of SO2 by DFT and experimental study. Appl. Surf. Sci. 2020, 521, 146477. [Google Scholar] [CrossRef]
- Rajendran, K.; Pandurangan, N.; Vinod, C.P.; Khan, T.S.; Gupta, S.; Haider, M.A.; Jagadeesan, D. CuO as a reactive and reusable reagent for the hydrogenation of nitroarenes. Appl. Catal. B Environ. 2021, 297, 120417. [Google Scholar]
- Zhang, R.; Liu, H.; Zheng, H.; Ling, L.; Li, Z.; Wang, B. Adsorption and dissociation of O2 on the Cu2O(111) surface: Thermochemistry, reaction barrier. Appl. Surf. Sci. 2011, 257, 4787–4794. [Google Scholar] [CrossRef]
- Yao, L.; Yang, L.; Jiang, W.; Jiang, X. Removal of SO2 from flue gas on a copper-modified activated coke prepared by a novel one-step carbonization activation blending method. Ind. Eng. Chem. Res. 2019, 58, 15693–15700. [Google Scholar] [CrossRef]
- Duan, R.; Feng, Y.; Gu, J.; Wang, M.H.; He, B.; Liu, L.; Zhu, B.; Wang, X. Ultralow loading of Cu2O/CuO nanoparticles on metal-organic framework-derived carbon octahedra and activated semi-coke for highly efficient SO2 removal. J. Clean. Prod. 2022, 341, 130823. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
Samples ID | Cu 2p 3/2 | O 1s | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cu+ 2p 3/2 | Cu2+ 2p 3/2 | OL | OV | OC | ||||||
Binding Energy/eV | Percentage/% | Binding Energy/eV | Percentage/% | Binding Energy/eV | Percentage/% | Binding Energy/eV | Percentage/% | Binding Energy/eV | Percentage/% | |
CuO−NC | 932.6 | 59.5 | 933.7 | 40.5 | 530.4 | 58.9 | 531.5 | 26.7 | 532.5 | 14.4 |
CuO−NP | − | − | 933.7 | 100 | 530.2 | 70.3 | 531.4 | 19.4 | 532.2 | 10.3 |
Sites | Before Adsorption/e | After Adsorption/e | Δ |
---|---|---|---|
aCus1 | 10.043 | 9.973 | −0.070 |
Cus2 | 10.043 | 9.931 | −0.112 |
bOs | 6.996 | 7.043 | 0.047 |
cSm | 3.734 | 3.759 | 0.025 |
dOm1 | 7.133 | 7.217 | 0.085 |
Om2 | 7.134 | 7.186 | 0.052 |
Sample ID | aSBET/m2 g−1 | bQads/mg g−1 | cCSO2/ppm | dη/% | eTads/°C | Ref |
---|---|---|---|---|---|---|
CaO | 31–134 | 590–900 | 3000 | − | 800 | [4] |
0.95%−CuxO@ASC−3 | 506.62 | 233.1 | 2000 | 100 | 95 | [59] |
1%−AC−cop1 | 408 | 174.8 | 3000 | 5 | 80 | [18] |
3%−Cu/AC−HCl | 3 | 25 | 400 | − | 250 | [20] |
4%−Cu/AC | 829 | 57.6 | 13.3 | − | 20 | [17] |
5%−Cu−C−II−5 | 938 | 30 | 200 | 0 | 250 | [19] |
10%−Cu/AC | 844 | 59 | 200 | 0 | 250 | [24] |
CuO−NC | 89.84 | 157.63 | 2000 | 50 | 200 | this work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, R.; Chen, W.; Chen, Z.; Gu, J.; Dong, Z.; He, B.; Liu, L.; Wang, X. Mechanistic and Experimental Study of the CuxO@C Nanocomposite Derived from Cu3(BTC)2 for SO2 Removal. Catalysts 2022, 12, 689. https://doi.org/10.3390/catal12070689
Duan R, Chen W, Chen Z, Gu J, Dong Z, He B, Liu L, Wang X. Mechanistic and Experimental Study of the CuxO@C Nanocomposite Derived from Cu3(BTC)2 for SO2 Removal. Catalysts. 2022; 12(7):689. https://doi.org/10.3390/catal12070689
Chicago/Turabian StyleDuan, Rudi, Weibin Chen, Ziwei Chen, Jialiang Gu, Zhaoqi Dong, Beini He, Lili Liu, and Xidong Wang. 2022. "Mechanistic and Experimental Study of the CuxO@C Nanocomposite Derived from Cu3(BTC)2 for SO2 Removal" Catalysts 12, no. 7: 689. https://doi.org/10.3390/catal12070689