Tetrabutyl Ammonium Salts of Keggin-Type Vanadium-Substituted Phosphomolybdates and Phosphotungstates for Selective Aerobic Catalytic Oxidation of Benzyl Alcohol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Materials Characterization
2.2. Characterization
2.3. Catalytic Benzyl Alcohol Oxidation
2.4. Catalyst Reuse
2.5. Leaching Study
3. Materials and Methods
3.1. Synthesis of Heteropolycompounds [N(Butyl)4]3[PMo12O40]-TBA3PMo and [N(Butyl)4]3[PW12O40]-TBA3PW
3.2. Synthesis of [N(Butyl)4](3+x)[PVxMo12−xO40] with x = 1 (TBA)4PMoV and x = 2 (TBA)5PMoV2
3.3. Synthesis of [N(Butyl)4](3+x)[PVxW12−xO40] with x = 1 (TBA)4PWV and x = 2 (TBA)5PWV2)
3.4. Characterization
3.5. Catalytic Benzyl Alcohol Oxidation
3.6. Catalyst Reuse
3.7. Leaching Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Catalyst | M a (wt%) Exp. b | V (wt%) Exp. | M a (wt%) Calc. c | V (wt%) Calc. | M a mmol Exp. | V mmol Exp. | M a/V Ratio Exp. | M a/V Ratio Calc. |
---|---|---|---|---|---|---|---|---|
(TBA)3PMo | 43.7 | - | 45.1 | - | 4.6 | - | - | - |
(TBA)4PMoV | 39.1 | 1.9 | 38.4 | 1.8 | 4.1 | 0.4 | 10.9 | 11.0 |
(TBA)5PMoV2 | 35.1 | 3.9 | 32.6 | 3.5 | 3.7 | 0.8 | 4.8 | 5.0 |
(TBA)3PW | 60.8 | - | 61.2 | - | 3.4 | - | - | - |
(TBA)4PWV | 56.7 | 1.5 | 54.5 | 1.4 | 3.1 | 0.3 | 10.5 | 11.0 |
(TBA)5PWV2 | 50.1 | 2.8 | 48.1 | 2.7 | 2.7 | 0.5 | 5.0 | 5.0 |
Catalyst | C (wt%) | H (wt%) | N (wt%) | Cation (mmol × 103) a | Anion (mmol × 103) b | Cation/Anion Exp. c | Cation/Anion Theory d |
---|---|---|---|---|---|---|---|
(TBA)3PMo | 23.1 | 4.4 | 1.6 | 3.0 | 1.0 | 3.1 | 3 |
(TBA)4PMoV | 25.2 | 4.7 | 1.8 | 2.0 | 0.5 | 3.9 | 4 |
(TBA)5PMoV2 | 29.1 | 5.3 | 2.0 | 2.0 | 0.4 | 4.9 | 5 |
(TBA)3PW | 16.1 | 2.9 | 1.0 | 2.1 | 0.7 | 3.0 | 3 |
(TBA)4PWV | 17.7 | 4.5 | 1.3 | 2.5 | 0.6 | 4.4 | 4 |
(TBA)5PWV2 | 20.6 | 3.9 | 1.5 | 1.6 | 0.3 | 4.8 | 5 |
Catalyst | ν P-Oa (cm−1) | ν Mo-Od (cm−1) | ν Mo-Ob-Mo (cm−1) | ν Mo-Oc-Mo (cm−1) |
---|---|---|---|---|
(TBA)3PMo | 1064 | 960 | 880 | 809 |
(TBA)4PMoV | 1061 | 959 | 879 | 806 |
(TBA)5PMoV2 | 1060 | 954 | 877 | 805 |
(TBA)3PW | 1081 | 981 | 892 | 816 |
(TBA)4PWV | 1068 | 968 | 889 | 813 |
(TBA)5PWV2 | 1067 | 967 | 889 | 812 |
References
- Ilyas, M.; Siddique, M.; Saeed, M. Liquid-phase aerobic oxidation of benzyl alcohol catalyzed by mechanochemically synthesized manganese oxide. Chin. Sci. Bull. 2013, 58, 2354–2359. [Google Scholar] [CrossRef] [Green Version]
- Adnan, R.H.; Andersson, G.G.; Polson, M.I.J.; Metha, G.F.; Golovko, V.B. Factors influencing the catalytic oxidation of benzyl alcohol using supported phosphine-capped gold nanoparticles. Catal. Sci. Technol. 2015, 5, 1323–1333. [Google Scholar] [CrossRef] [Green Version]
- Djaouida, A.; Sadia, M.; Smaïn, H. Direct benzyl alcohol and benzaldehyde synthesis from toluene over Keggin-type polyoxometalates catalysts: Kinetic and mechanistic studies. J. Chem. 2019, 2019, 9521529. [Google Scholar] [CrossRef] [Green Version]
- Jing, L.; Shi, J.; Zhang, F.; Zhong, Y.; Zhu, W. Polyoxometalate-based amphiphilic catalysts for selective oxidation of benzyl alcohol with hydrogen peroxide under organic solvent-free conditions. Ind. Eng. Chem. Res. 2013, 52, 10095–10104. [Google Scholar] [CrossRef]
- Yajima, K.; Yamaguchi, K.; Mizuno, N. Facile access to 3,5-symmetrically disubstituted 1,2,4-thiadiazoles through phosphovanadomolybdic acid catalyzed aerobic oxidative dimerization of primary thioamides. Chem. Commun. 2014, 50, 6748–6750. [Google Scholar] [CrossRef]
- Wang, S.; Li, S.; Shi, R.; Zou, X.; Zhang, Z.; Fu, G.; Li, L.; Luo, F. A nanohybrid self-assembled from exfoliated layered vanadium oxide nanosheets and Keggin Al13 for selective catalytic oxidation of alcohols. Dalton Trans. 2020, 49, 2559–2569. [Google Scholar] [CrossRef]
- Narkhede, N.; Patel, A.; Singh, S. Mono lacunary phosphomolybdate supported on MCM-41: Synthesis, characterization and solvent free aerobic oxidation of alkenes and alcohols. Dalton Trans. 2014, 43, 2512–2520. [Google Scholar] [CrossRef]
- Huang, J.B.; Wu, S.b.; Cheng, H.; Lei, M.; Liang, J.J.; Tong, H. Theoretical study of bond dissociation energies for lignin model compounds. Ranliao Huaxue Xuebao/J. Fuel Chem. Technol. 2015, 43, 429–436. [Google Scholar] [CrossRef]
- Grigoriev, V.A.; Hill, C.L.; Weinstock, I.A. Polyoxometalate Oxidation of Phenolic Lignin Models. ACS Symp. Ser. 2009, 785, 297–312. [Google Scholar] [CrossRef]
- Abednatanzi, S.; Abbasi, A.; Masteri-Farahani, M. Immobilization of catalytically active polyoxotungstate into ionic liquid-modified MIL-100(Fe): A recyclable catalyst for selective oxidation of benzyl alcohol. Catal. Commun. 2017, 96, 6–10. [Google Scholar] [CrossRef]
- Rao, P.S.N.; Parameswaram, G.; Rao, A.V.P.; Lingaiah, N. Influence of cesium and vanadium contents on the oxidation functionalities of heteropoly molybdate catalysts. J. Mol. Catal. A Chem. 2015, 399, 62–70. [Google Scholar] [CrossRef]
- Frenzel, R.A.; Palermo, V.; Sathicq, A.G.; Elsharif, A.M.; Luque, R.; Pizzio, L.R.; Romanelli, G.P. A green and reusable catalytic system based on silicopolyoxotungstovanadates incorporated in a polymeric material for the selective oxidation of sulfides to sulfones. Microporous Mesoporous Mater. 2021, 310, 110584. [Google Scholar] [CrossRef]
- Villabrille, P.; Romanelli, G.; Gassa, L.; Vázquez, P.; Cáceres, C. Synthesis and characterization of Fe- and Cu-doped molybdovanadophosphoric acids and their application in catalytic oxidation. Appl. Catal. A Gen. 2007, 324, 69–76. [Google Scholar] [CrossRef]
- Lee, J.K.; Melsheimer, J.; Berndt, S.; Mestl, G.; Schlögl, R.; Köhler, K. Transient responses of the local electronic and geometric structures of vanado-molybdo-phoshate catalysts H3+nPVnMo12−nO40 in selective oxidation. Appl. Catal. A Gen. 2001, 214, 125–148. [Google Scholar] [CrossRef]
- Yuan, C.; Gao, X.; Pan, Z.; Li, X.; Tan, Z. Molybdovanadophosphoric anion ionic liquid as a reusable catalyst for solvent-free benzene oxidation to phenol by H2O2. Catal. Commun. 2015, 58, 215–218. [Google Scholar] [CrossRef]
- Misra, A.; Kozma, K.; Streb, C.; Nyman, M. Beyond Charge Balance: Counter-Cations in Polyoxometalate Chemistry. Angew. Chem. Int. Ed. 2020, 59, 596–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dornan, L.M.; Muldoon, M.J. A highly efficient palladium(II)/polyoxometalate catalyst system for aerobic oxidation of alcohols. Catal. Sci. Technol. 2015, 5, 1428–1432. [Google Scholar] [CrossRef]
- Frenzel, R.A.; Romanelli, G.P.; Pizzio, L.R. Novel catalyst based on mono- and di-vanadium substituted Keggin polyoxometalate incorporated in poly (acrylic acid-co-acrylamide) polymer for the oxidation of sulfides. Mol. Catal. 2018, 457, 8–16. [Google Scholar] [CrossRef]
- Pinto, T.V.; Fernandes, D.M.; Guedes, A.; Cardoso, N.; Durães, N.F.; Silva, C.; Pereira, C.; Freire, C. Photochromic polypropylene fibers based on UV-responsive silica@phosphomolybdate nanoparticles through melt spinning technology. Chem. Eng. J. 2018, 350, 856–866. [Google Scholar] [CrossRef]
- Babu, B.H.; Parameswaram, G.; Kumar, A.S.H.; Prasad, P.S.; Lingaiah, N. Vanadium containing heteropoly molybdates as precursors for the preparation of MoVP oxides supported on alumina catalysts for ammoxidation of m-xylene. Appl. Catal. A Gen. 2012, 445–446, 339–345. [Google Scholar] [CrossRef]
- Palermo, V.; Sathicq, G.; Constantieux, T.; Rodríguez, J.; Vázquez, P.G.; Romanelli, G.P. First Report about the Use of Micellar Keggin Heteropolyacids as Catalysts in the Green Multicomponent Synthesis of Nifedipine Derivatives. Catal. Lett. 2016, 146, 1634–1647. [Google Scholar] [CrossRef]
- Gong, Y.; Hu, C.; Li, H.; Tang, W.; Huang, K.; Hou, W. Synthesis, crystal structure and calcination of three novel complexes based on 2-aminopyridine and polyoxometalates. J. Mol. Struct. 2005, 784, 228–238. [Google Scholar] [CrossRef]
- Rocchiccioli-Deltcheff, C.; Fournier, M. Catalysis by polyoxometalates. Part 3.—Influence of vanadium(V) on the thermal stability of 12-metallophosphoric acids from in situ infrared studies. J. Chem. Soc. Faraday Trans. 1991, 87, 3913–3920. [Google Scholar] [CrossRef]
- Fournier, M.; Thouvenot, R.; Rocchiccioli-Deltcheff, C. Catalysis by polyoxometalates part 1.—Supported polyoxoanions of the Keggin structure: Spectroscopic study (IR, Raman, UV) of solutions used for impregnation. J. Chem. Soc. Faraday Trans. 1991, 87, 349–356. [Google Scholar] [CrossRef]
- Ueda, T.; Komatsu, M.; Hojo, M. Spectroscopic and voltammetric studies on the formation of Keggin-type V(V)-substituted tungstoarsenate(V) and-phosphate(V) complexes in aqueous and aqueous-organic solutions. Inorg. Chim. Acta 2003, 344, 77–84. [Google Scholar] [CrossRef]
- Tang, S.; Wu, W.; Fu, Z.; Zou, S.; Liu, Y.; Zhao, H.; Kirk, S.R.; Yin, D. Vanadium-Substituted Tungstophosphoric Acids as Efficient Catalysts for Visible-Light-Driven Oxygenation of Cyclohexane by Dioxygen. ChemCatChem 2015, 7, 2637–2645. [Google Scholar] [CrossRef]
- Ressler, T.; Timpe, O.; Girgsdies, F.; Wienold, J.; Neisius, T. In situ investigations of the bulk structural evolution of vanadium-containing heteropolyoxomolybdate catalysts during thermal activation. J. Catal. 2005, 231, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Viswanadham, B.; Srikanth, A.; Chary, K.V.R. Characterization and reactivity of 11-molybdo-1-vanadophosphoric acid catalyst supported on zirconia for dehydration of glycerol to acrolein. J. Chem. Sci. 2014, 126, 445–454. [Google Scholar] [CrossRef]
- Barteau, K.P.; Lyons, J.E.; Song, I.K.; Barteau, M.A. UV–visible spectroscopy as a probe of heteropolyacid redox properties: Application to liquid phase oxidations. Top. Catal. 2006, 41, 55–62. [Google Scholar] [CrossRef]
- Abdelghany, A.; Abdelrazek, E.; Badr, S.; Morsi, M. Effect of gamma-irradiation on (PEO/PVP)/Au nanocomposite: Materials for electrochemical and optical applications. Mater. Des. 2016, 97, 532–543. [Google Scholar] [CrossRef]
- Tan, C.; Bu, W. Synthesis and energy band characterization of hybrid molecular materials based on organic–polyoxometalate charge-transfer salts. J. Solid State Chem. 2014, 219, 93–98. [Google Scholar] [CrossRef]
- Yamase, T. Photo- and Electrochromism of Polyoxometalates and Related Materials. Chem. Rev. 1998, 98, 307–326. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, K.; Seiyama, T.; Yamazoe, N.; Katsuki, S.; Taketa, H. Electronic Structures of XMo12040 Heteropolyanions (X = P, As, Si, and Ge) and Their Reduction Behavior. J. Catal. 1988, 111, 336–344. [Google Scholar] [CrossRef]
- Gamelas, J.; Couto, F.A.; Trovão, M.N.; Cavaleiro, A.; Cavaleiro, J.; de Jesus, J.D. Investigation of the thermal decomposition of some metal-substituted Keggin tungstophosphates. Thermochim. Acta 1999, 326, 165–173. [Google Scholar] [CrossRef]
- Song, Y.-F.; Long, D.-L.; Cronin, L. Hybrid polyoxometalate clusters with appended aromatic platforms. CrystEngComm 2009, 12, 109–115. [Google Scholar] [CrossRef]
- Jing, F.; Katryniok, B.; Dumeignil, F.; Bordes-Richard, E.; Paul, S. Catalytic selective oxidation of isobutane to methacrylic acid on supported (NH4)3HPMo11VO40 catalysts. J. Catal. 2014, 309, 121–135. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Saikia, G.; Ahmed, K.; Gogoi, S.R.; Puranik, V.G.; Islam, N.S. Vanadium-based polyoxometalate complex as a new and efficient catalyst for phenol hydroxylation under mild conditions. New J. Chem. 2018, 42, 5142–5152. [Google Scholar] [CrossRef]
- Hua, L.; Qiao, Y.; Yu, Y.; Zhu, W.; Cao, T.; Shi, Y.; Li, H.; Feng, B.; Hou, Z. A Ti-substituted polyoxometalate as a heterogeneous catalyst for olefin epoxidation with aqueous hydrogen peroxide. New J. Chem. 2011, 35, 1836–1841. [Google Scholar] [CrossRef]
- Arichi, J.; Eternot, M.; Louis, B. Synthesis of V-containing Keggin polyoxometalates: Versatile catalysts for the synthesis of fine chemicals? Catal. Today 2008, 138, 117–122. [Google Scholar] [CrossRef]
- Moffat, J.; McMonagle, J.; Taylor, D. Microporous heteropoly oxometalate heterogeneous catalysis. Solid State Ion. 1988, 26, 101–108. [Google Scholar] [CrossRef]
- Sankar, M.; Nowicka, E.; Carter, E.; Murphy, D.; Knight, D.W.; Bethell, D.; Hutchings, G.J. The benzaldehyde oxidation paradox explained by the interception of peroxy radical by benzyl alcohol. Nat. Commun. 2014, 5, 3332. [Google Scholar] [CrossRef] [PubMed]
- Khenkin, A.; Neumann, R. Low-Temperature Activation of Dioxygen and Hydrocarbon Oxidation Catalyzed by a Phosphovanadomolybdate: Evidence for a Mars–van Krevelen Type Mechanism in a Homogeneous Liquid Phase. Angew. Chem. Int. Ed. 2000, 39, 4088–4090. [Google Scholar] [CrossRef]
- Wang, S.-S.; Yang, G.-Y. Recent Advances in Polyoxometalate-Catalyzed Reactions. Chem. Rev. 2015, 115, 4893–4962. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Suzuki, K.; Yamaguchi, K.; Mizuno, N. Phosphovanadomolybdic acid catalyzed direct C–H trifluoromethylation of (hetero)arenes using NaSO2CF3 as the CF3 source and O2 as the terminal oxidant. New J. Chem. 2017, 41, 1417–1420. [Google Scholar] [CrossRef]
- Nomiya, K.; Nemoto, Y.; Hasegawa, T.; Matsuoka, S. Multicenter active sites of vanadium-substituted polyoxometalate catalysts on benzene hydroxylation with hydrogen peroxide and two reaction types with and without an induction period. J. Mol. Catal. A Chem. 2000, 152, 55–68. [Google Scholar] [CrossRef]
- Ni, L.; Patscheider, J.; Baldridge, K.K.; Patzke, G.R. New Perspectives on Polyoxometalate Catalysts: Alcohol Oxidation with Zn/Sb-Polyoxotungstates. Chem. Eur. J. 2012, 18, 13293–13298. [Google Scholar] [CrossRef]
- Mizuno, N.; Kamata, K. Catalytic oxidation of hydrocarbons with hydrogen peroxide by vanadium-based polyoxometalates. Coord. Chem. Rev. 2011, 255, 2358–2370. [Google Scholar] [CrossRef]
- Kamata, K.; Kotani, M.; Yamaguchi, K.; Hikichi, S.; Mizuno, N. Olefin Epoxidation with Hydrogen Peroxide Catalyzed by Lacunary Polyoxometalate [γ-SiW10O34(H2O)2]4−. Chem. Eur. J. 2006, 13, 639–648. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, X.; Zhang, D.; Yang, S.; Feng, X.; Li, J.; Lin, Z.; Cao, J.; Pan, R.; Chi, Y.; et al. Binary Pd-Polyoxometalates and Isolation of a Ternary Pd-V-Polyoxomolybdate Active Species for Selective Aerobic Oxidation of Alcohols. Chem. Eur. J. 2014, 20, 2557–2564. [Google Scholar] [CrossRef]
- Ivanchikova, I.D.; Maksimchuk, N.V.; Maksimovskaya, R.I.; Maksimov, G.M.; Kholdeeva, O.A. Highly Selective Oxidation of Alkylphenols to p-Benzoquinones with Aqueous Hydrogen Peroxide Catalyzed by Divanadium-Substituted Polyoxotungstates. ACS Catal. 2014, 4, 2706–2713. [Google Scholar] [CrossRef]
- Karcz, R.; Niemiec, P.; Pamin, K.; Połtowicz, J.; Kryściak-Czerwenka, J.; Napruszewska, B.D.; Michalik-Zym, A.; Witko, M.; Tokarz-Sobieraj, R.; Serwicka, E.M. Effect of cobalt location in Keggin-type heteropoly catalysts on aerobic oxidation of cyclooctane: Experimental and theoretical study. Appl. Catal. A Gen. 2017, 542, 317–326. [Google Scholar] [CrossRef]
- Guérin, B.; Fernandes, D.M.; Daran, J.-C.; Agustin, D.; Poli, R. Investigation of induction times, activity, selectivity, interface and mass transport in solvent-free epoxidation by H2O2 and TBHP: A study with organic salts of the [PMo12O40]3− anion. New J. Chem. 2013, 37, 3466–3475. [Google Scholar] [CrossRef]
- Neumann, R. Activation of Molecular Oxygen, Polyoxometalates, and Liquid-Phase Catalytic Oxidation. Inorg. Chem. 2010, 49, 3594–3601. [Google Scholar] [CrossRef]
- Albert, J.; Lüders, D.; Bösmann, A.; Guldi, D.M.; Wasserscheid, P. Spectroscopic and electrochemical characterization of heteropoly acids for their optimized application in selective biomass oxidation to formic acid. Green Chem. 2013, 16, 226–237. [Google Scholar] [CrossRef]
- Bertleff, B.; Claußnitzer, J.; Korth, W.; Wasserscheid, P.; Jess, A.; Albert, J. Extraction Coupled Oxidative Desulfurization of Fuels to Sulfate and Water-Soluble Sulfur Compounds Using Polyoxometalate Catalysts and Molecular Oxygen. ACS Sustain. Chem. Eng. 2017, 5, 4110–4118. [Google Scholar] [CrossRef]
- Santonastaso, M.; Freakley, S.J.; Miedziak, P.J.; Brett, G.L.; Edwards, J.K.; Hutchings, G.J. Oxidation of Benzyl Alcohol using in Situ Generated Hydrogen Peroxide. Org. Process Res. Dev. 2014, 18, 1455–1460. [Google Scholar] [CrossRef]
- Saffari, N.S.; Aghabarari, B.; Javaheri, M.; Khanlarkhani, A.; Martinez-Huerta, M.V. Transforming Waste Clamshell into Highly Selective Nanostructured Catalysts for Solvent Free Liquid Phase Oxidation of Benzyl Alcohol. Catalysts 2022, 12, 155. [Google Scholar] [CrossRef]
- Xuan, Y.; Haojie, L.; Tianhao, Y.; Zhexin, X.; Qiqi, W.; Zhengping, Z. Preparation and Application of Metal Oxides/SBA-15 Mesoporous Composites as Catalysts for Selective Oxidation of benzyl alcohol. Int. J. Electrochem. Sci. 2022. [Google Scholar] [CrossRef]
- Chen, G.; Zhou, Y.; Long, Z.; Wang, X.; Li, J.; Wang, J. Mesoporous Polyoxometalate-Based Ionic Hybrid as a Triphasic Catalyst for Oxidation of Benzyl Alcohol with H2O2 on Water. ACS Appl. Mater. Interfaces 2014, 6, 4438–4446. [Google Scholar] [CrossRef]
- Tamizhdurai, P.; Narayanan, S.; Kumaran, R.; Mangesh, V.; Kavitha, C.; Lakshmi, N.V.; Ragupathi, C.; Alothman, Z.A.; Ouladsmane, M.; Mani, G. Catalytic activity of ratio-dependent SBA-15 supported cerium/Pt catalysts for highly selective oxidation reaction of benzyl alcohol to benzaldehyde. Adv. Powder Technol. 2021, 32, 4286–4294. [Google Scholar] [CrossRef]
- Rezaei, A.; Mohammadi, Y.; Ramazani, A.; Zheng, H. Ultrasound-assisted pseudohomogeneous tungstate catalyst for selective oxidation of alcohols to aldehydes. Sci. Rep. 2022, 12, 3367. [Google Scholar] [CrossRef] [PubMed]
- Nomiya, K.; Yagishita, K.; Nemoto, Y.; Kamataki, T.-A. Functional action of Keggin-type mono-vanadiumc V-substituted heteropolymolybdate as a single species on catalytic hydroxylation of benzene in the presence of hydrogen peroxide. J. Mol. Catal. A Chem. 1997, 126, 43–53. [Google Scholar] [CrossRef]
- Ge, H.; Leng, Y.; Zhou, C.; Wang, J. Direct hydroxylation of benzene to phenol with molecular oxygen over phase transfer catalysts: Cyclodextrins complexes with vanadium-substituted heteropoly acids. Catal. Lett. 2008, 124, 324–329. [Google Scholar] [CrossRef]
Catalyst | Absorption Edge (nm) |
---|---|
(TBA)3PMo | 495 |
(TBA)4PMoV | 544 |
(TBA)5PMoV2 | 569 |
(TBA)3PW | 356 |
(TBA)4PWV | 493 |
(TBA)5PWV2 | 597 |
Catalyst | SBET (m²/g) |
---|---|
(TBA)3PMo | 3 |
(TBA)4PMoV | 9 |
(TBA)5PMoV2 | 14 |
(TBA)3PW | 5 |
(TBA)4PWV | 8 |
(TBA)5PWV2 | 14 |
Catalyst | Solvent | Oxidant | Time (h) | Temperature (°C) | Conversion (%) | Selectivity a (%) | Ref. |
---|---|---|---|---|---|---|---|
Au-Pd | MeOH | H2O2 | 0.5 | 50 | 11.3 | >85 | [57] |
Pd/CaSUP | - | H2O2 (30%) | 8 | 80 | 88.0 | 89 | [58] |
NiOx-CuOx/SBA-15 | Organic | - | 5 | 90 | 88.9 | 76 | [59] |
[TMGHA]H0.6PW2.4 | H2O | H2O2 (30%) | 6 | 90 | 97.9 | 93 | [60] |
Ce-Pt/SBA-15 | AcN | TBHP | 7 | 90 | 98.8 | 99 | [61] |
A-CDQs/W | H2O | H2O2 | 0.05 | 25 | 98.0 | 93 | [62] |
(TBA)5PMoV2 | MeOH:H2O | O2 | 4 | 170 | 93 | >99 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, J.; Pizzio, L.R.; Pecchi, G.; Campos, C.H.; Azócar, L.; Briones, R.; Romero, R.; Henríquez, A.; Gaigneaux, E.M.; Contreras, D. Tetrabutyl Ammonium Salts of Keggin-Type Vanadium-Substituted Phosphomolybdates and Phosphotungstates for Selective Aerobic Catalytic Oxidation of Benzyl Alcohol. Catalysts 2022, 12, 507. https://doi.org/10.3390/catal12050507
Díaz J, Pizzio LR, Pecchi G, Campos CH, Azócar L, Briones R, Romero R, Henríquez A, Gaigneaux EM, Contreras D. Tetrabutyl Ammonium Salts of Keggin-Type Vanadium-Substituted Phosphomolybdates and Phosphotungstates for Selective Aerobic Catalytic Oxidation of Benzyl Alcohol. Catalysts. 2022; 12(5):507. https://doi.org/10.3390/catal12050507
Chicago/Turabian StyleDíaz, Juan, Luis R. Pizzio, Gina Pecchi, Cristian H. Campos, Laura Azócar, Rodrigo Briones, Romina Romero, Adolfo Henríquez, Eric M. Gaigneaux, and David Contreras. 2022. "Tetrabutyl Ammonium Salts of Keggin-Type Vanadium-Substituted Phosphomolybdates and Phosphotungstates for Selective Aerobic Catalytic Oxidation of Benzyl Alcohol" Catalysts 12, no. 5: 507. https://doi.org/10.3390/catal12050507
APA StyleDíaz, J., Pizzio, L. R., Pecchi, G., Campos, C. H., Azócar, L., Briones, R., Romero, R., Henríquez, A., Gaigneaux, E. M., & Contreras, D. (2022). Tetrabutyl Ammonium Salts of Keggin-Type Vanadium-Substituted Phosphomolybdates and Phosphotungstates for Selective Aerobic Catalytic Oxidation of Benzyl Alcohol. Catalysts, 12(5), 507. https://doi.org/10.3390/catal12050507