Bismuth Sillenite Crystals as Recent Photocatalysts for Water Treatment and Energy Generation: A Critical Review
Abstract
:1. Introduction
2. Bismuth Sillenite Crystals
- (i)
- Their d10 configuration in the oxide lattices makes photo-generated electron–hole pairs easier to separate [36].
- (ii)
- Their 6s2 orbital lone pair does not have any bonding or sharing with other atoms, which can potentially produce a structural disruption by inducing repulsive effects on neighbors’ bonding. It can also create an internal polar electric field in crystallites, increasing the probability of charge separation due to the opposing movements of electron–hole pairs in the electric field [33,37].
- (iii)
3. Sillenites as Recent Photocatalysts
4. Sillenites Catalysts for Hydrogen Generation
5. Comparative Study of Some Sillenite Catalysts
6. Combining of Sillenite with Other Processes
7. Summary and Outlooks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baaloudj, O.; Assadi, I.; Nasrallah, N.; El, A.; Khezami, L. Simultaneous removal of antibiotics and inactivation of antibiotic-resistant bacteria by photocatalysis: A review. J. Water Process Eng. 2021, 42, 102089. [Google Scholar] [CrossRef]
- Elgohary, E.A.; Mohamed, Y.M.A.; El Nazer, H.A.; Baaloudj, O.; Alyami, M.S.S.; El Jery, A.; Assadi, A.A.; Amrane, A. A Review of the Use of Semiconductors as Catalysts in the Photocatalytic Inactivation of Microorganisms. Catalysts 2021, 11, 1498. [Google Scholar] [CrossRef]
- Gökkuş, Ö.; Yıldız, Y.Ş. Application of electro-Fenton process for medical waste sterilization plant wastewater. Desalin. Water Treat. 2016, 57, 24934–24945. [Google Scholar] [CrossRef]
- Kaczala, F.; Blum, S.E. The Occurrence of Veterinary Pharmaceuticals in the Environment: A Review. Curr. Anal. Chem. 2015, 12, 169–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.T.; Malik, A. Engineered nanomaterials for water decontamination and purification: From lab to products. J. Hazard. Mater. 2019, 363, 295–308. [Google Scholar] [CrossRef]
- Benrighi, Y.; Nasrallah, N.; Chaabane, T.; Sivasankar, V.; Darchen, A.; Baaloudj, O. Photocatalytic performances of ZnCr2O4 nanoparticles for cephalosporins removal: Structural, optical and electrochemical properties. Opt. Mater. 2021, 115, 111035. [Google Scholar] [CrossRef]
- Baaloudj, O.; Nasrallah, N.; Kebir, M.; Guedioura, B.; Amrane, A.; Nguyen-Tri, P.; Nanda, S.; Assadi, A.A. Artificial neural network modeling of cefixime photodegradation by synthesized CoBi2O4 nanoparticles. Environ. Sci. Pollut. Res. 2020, 28, 15436–15452. [Google Scholar] [CrossRef]
- Boyd, C.E. Water Quality Protection. In Water Quality: An Introduction; Springer International Publishing: Cham, Switzerland, 2020; pp. 379–409. ISBN 978-3-030-23335-8. [Google Scholar]
- Lou, W.; Kane, A.; Wolbert, D.; Rtimi, S.; Assadi, A.A. Study of a photocatalytic process for removal of antibiotics from wastewater in a falling film photoreactor: Scavenger study and process intensification feasibility. Chem. Eng. Process. Process Intensif. 2017, 122, 213–221. [Google Scholar] [CrossRef]
- Patnaik, P. Handbook of Environmental Analysis: Chemical Pollutants in Air, Water, Soil, and Solid Wastes, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Li, B.; Zhang, T. Biodegradation and adsorption of antibiotics in the activated sludge process. Environ. Sci. Technol. 2010, 44, 3468–3473. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.; Shah, S.M.; Su, X. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interface Sci. 2012, 368, 540–546. [Google Scholar] [CrossRef]
- Chen, W.R.; Huang, C.H. Adsorption and transformation of tetracycline antibiotics with aluminum oxide. Chemosphere 2010, 79, 779–785. [Google Scholar] [CrossRef]
- Achour, S.; Amokrane, S.; Chegrouche, S.; Nibou, D.; Baaloudj, O. Artificial neural network modeling of the hexavalent uranium sorption onto chemically activated bentonite. Res. Chem. Intermed. 2021, 47, 4837–4854. [Google Scholar] [CrossRef]
- Brahimi, B.; Mekatel, E.; Mellal, M.; Baaloudj, O.; Brahimi, R.; Hemmi, A.; Trari, M.; Belmedani, M. Enhanced photodegradation of acid orange 61 by the novel hetero-junction CoFe2O4/AgCl. Opt. Mater. 2021, 121, 111576. [Google Scholar] [CrossRef]
- Benrighi, Y.; Nasrallah, N.; Chaabane, T.; Sivasankar, V.; Darchen, A.; Baaloudj, O. Characterization of CoCr2O4 semiconductor: A prominent photocatalyst in the degradation of basic blue 41 from wastewater. Opt. Mater. 2021, 122, 111819. [Google Scholar] [CrossRef]
- Kenfoud, H.; Nasrallah, N.; Baaloudj, O.; Meziani, D.; Chaabane, T.; Trari, M. Photocatalytic reduction of Cr(VI) onto the spinel CaFe2O4 nanoparticles. Optik 2020, 223, 165610. [Google Scholar] [CrossRef]
- Kenfoud, H.; Nasrallah, N.; Baaloudj, O.; Derridj, F.; Trari, M. Enhanced photocatalytic reduction of Cr(VI) by the novel hetero-system BaFe2O4/SnO2. J. Phys. Chem. Solids 2022, 160, 110315. [Google Scholar] [CrossRef]
- Bourkeb, K.; Baaloudj, O. Facile electrodeposition of ZnO on graphitic substrate for photocatalytic application: Degradation of antibiotic in a continuous stirred-tank reactor. J. Solid State Electrochem. 2021, 26, 573–580. [Google Scholar] [CrossRef]
- Asadi-Ghalhari, M.; Mostafaloo, R.; Ghafouri, N.; Kishipour, A.; Usei, S.; Baaloudj, O. Removal of Cefixime from aqueous solutions via proxy electrocoagulation: Modeling and optimization by response surface methodology. React. Kinet. Mech. Catal. 2021, 134, 459–471. [Google Scholar] [CrossRef]
- Akerdi, A.G.; Bahrami, S.H. Application of heterogeneous nano-semiconductors for photocatalytic advanced oxidation of organic compounds: A review. J. Environ. Chem. Eng. 2019, 7, 103283. [Google Scholar] [CrossRef]
- Baaloudj, O.; Nasrallah, N.; Kebir, M.; Khezami, L.; Amrane, A.; Assadi, A.A. A comparative study of ceramic nanoparticles synthesized for antibiotic removal: Catalysis characterization and photocatalytic performance modeling. Environ. Sci. Pollut. Res. 2020, 28, 13900–13912. [Google Scholar] [CrossRef]
- Wu, Y.; Chang, X.; Li, M.; Hei, X.P.; Liu, C.; Zhang, X. Studying the preparation of pure Bi12SiO20 by Pechini method with high photocatalytic performance. J. Sol.-Gel Sci. Technol. 2021, 97, 311–319. [Google Scholar] [CrossRef]
- Hou, D.; Hu, X.; Wen, Y.; Shan, B.; Hu, P.; Xiong, X.; Qiao, Y.; Huang, Y. Electrospun sillenite Bi12MO20 (M = Ti, Ge, Si) nanofibers: General synthesis, band structure, and photocatalytic activity. Phys. Chem. Chem. Phys. 2013, 15, 20698–20705. [Google Scholar] [CrossRef]
- Baaloudj, O.; Nasrallah, N.; Bouallouche, R.; Kenfoud, H.; Khezami, L.; Assadi, A.A. High efficient Cefixime removal from water by the sillenite Bi12TiO20: Photocatalytic mechanism and degradation pathway. J. Clean. Prod. 2022, 330, 129934. [Google Scholar] [CrossRef]
- Kanhere, P.; Chen, Z. A review on visible light active perovskite-based photocatalysts. Molecules 2014, 19, 19995–20022. [Google Scholar] [CrossRef] [Green Version]
- Abrams, B.L.; Wilcoxon, J.P. Nanosize Semiconductors for Photooxidation. Crit. Rev. Solid State Mat. Sci. 2005, 30, 153–182. [Google Scholar] [CrossRef]
- Noh, T.H.; Hwang, S.W.; Kim, J.U.; Yu, H.K.; Seo, H.; Ahn, B.; Kim, D.W.; Cho, I.S. Optical properties and visible light-induced photocatalytic activity of bismuth sillenites (Bi12XO20, X = Si, Ge, Ti). Ceram. Int. 2017, 43, 12102–12108. [Google Scholar] [CrossRef]
- He, C.; Gu, M. Photocatalytic activity of bismuth germanate Bi12GeO20 powders. Scr. Mater. 2006, 54, 1221–1225. [Google Scholar] [CrossRef]
- Muthukrishnaraj, A.; Arun, A.; Kalaivani, S.S.; Maiyalagan, T.; Manikandan, A.; Balasubramanian, N. Solvothermal synthesis and characterizations of graphene-ZnBi12O20 nanocomposites for visible-light driven photocatalytic applications. Ceram. Int. 2020, 46, 18534–18543. [Google Scholar] [CrossRef]
- Yao, W.F.; Wang, H.; Xu, X.H.; Zhang, Y.; Yang, X.N.; Shang, S.X.; Liu, Y.H.; Zhou, J.T.; Wang, M. Characterization and photocatalytic properties of Ba doped Bi12XO20. J. Mol. Catal. A Chem. 2003, 202, 305–311. [Google Scholar] [CrossRef]
- Baaloudj, O.; Nasrallah, N.; Assadi, A.A. Facile synthesis, structural and optical characterizations of Bi12ZnO20 sillenite crystals: Application for Cefuroxime removal from wastewater. Mater. Lett. 2021, 304, 130658. [Google Scholar] [CrossRef]
- Qiao, X.; Pu, Y.; Li, Y.; Huang, Y.; Cheng, H.; Seo, H.J. Structural characteristics and photocatalytic ability of vanadate-sillenite Bi25VO40 nanoparticles. Powder Technol. 2016, 287, 277–284. [Google Scholar] [CrossRef]
- Kenfoud, H.; Baaloudj, O.; Nasrallah, N.; Bagtache, R.; Assadi, A.A.; Trari, M. Structural and electrochemical characterizations of Bi12CoO20 sillenite crystals: Degradation and reduction of organic and inorganic pollutants. J. Mater. Sci. Mater. Electron. 2021, 32, 16411–16420. [Google Scholar] [CrossRef]
- Tho, N.T.M.; Khanh, D.N.N.; Thang, N.Q.; Lee, Y.I.; Phuong, N.T.K. Novel reduced graphene oxide/ZnBi2O4 hybrid photocatalyst for visible light degradation of 2,4-dichlorophenoxyacetic acid. Environ. Sci. Pollut. Res. 2020, 27, 11127–11137. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, M.; Li, J.; Zhang, G.; Yin, S. A sillenite-type Bi12MnO20 photocatalyst: UV, visible and infrared lights responsive photocatalytic properties induced by the hybridization of Mn 3d and O 2p orbitals. Appl. Catal. B Environ. 2017, 219, 132–141. [Google Scholar] [CrossRef]
- Yao, W.F.; Xu, X.H.; Zhou, J.T.; Yang, X.N.; Zhang, Y.; Shang, S.X.; Wang, H.; Huang, B.B. Photocatalytic property of sillenite Bi24AlO39 crystals. J. Mol. Catal. A Chem. 2004, 212, 323–328. [Google Scholar] [CrossRef]
- Valant, M.; Suvorov, D. A stoichiometric model for sillenites. Chem. Mater. 2002, 14, 3471–3476. [Google Scholar] [CrossRef]
- Oliveira, T.M.; Santos, C.; Lima, A.F.; Lalic, M.V. Antisite defect as rule for photorefractive, photochromic and photocatalytic properties of Bi12MO20 (M = Ge, Si, Ti) sillenite crystals. J. Alloys Compd. 2017, 720, 187–195. [Google Scholar] [CrossRef]
- Nogueira, A.E.; Longo, E.; Leite, E.R.; Camargo, E.R. Visible-light photocatalysis with bismuth titanate (Bi12TiO20) particles synthesized by the oxidant peroxide method (OPM). Ceram. Int. 2015, 41, 12073–12080. [Google Scholar] [CrossRef] [Green Version]
- Delice, S.; Isik, M.; Gasanly, N.M.; Darvishov, N.H.; Bagiev, V.E. Structural and temperature-tuned optical characteristics of Bi12GeO20 sillenite crystals. Chinese J. Phys. 2020, 66, 422–429. [Google Scholar] [CrossRef]
- Wu, Y.; Lu, J.; Li, M.; Yuan, J.; Wu, P.; Chang, X.; Liu, C.; Wang, X. Bismuth silicate photocatalysts with enhanced light harvesting efficiency by photonic crystal. J. Alloys Compd. 2019, 810, 151839. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Hu, J.S.; Pan, C.L.; Hou, C.M. Facile hydrothermal synthesis of novel Bi12TiO20-Bi2WO6 heterostructure photocatalyst with enhanced photocatalytic activity. Appl. Surf. Sci. 2015, 346, 33–40. [Google Scholar] [CrossRef]
- Zhang, H.; Lü, M.; Liu, S.; Xiu, Z.; Zhou, G.; Zhou, Y.; Qiu, Z.; Zhang, A.; Ma, Q. Preparation and photocatalytic properties of sillenite Bi12TiO20 films. Surf. Coatings Technol. 2008, 202, 4930–4934. [Google Scholar] [CrossRef]
- Isik, M.; Sarigul, N.; Gasanly, N.M. Thermoluminescence characteristics of Bi12SiO20 single crystals. J. Lumin. 2020, 224, 117280. [Google Scholar] [CrossRef]
- Marrakchi, A.; Johnson, R.V.; Tanguay, A.R. Polarization properties of enhanced self-diffraction in sillenite crystals. IEEE J. Quantum Electron. 1987, 23, 2142–2151. [Google Scholar] [CrossRef]
- Reyher, H.J.; Hellwig, U.; Thiemann, O. Optically detected magnetic resonance of the bismuth-on-metal-site intrinsic defect in photorefractive sillenite crystals. Phys. Rev. B 1993, 47, 5638–5645. [Google Scholar] [CrossRef]
- Ahmad, I.; Marinova, V.; Goovaerts, E. High-frequency electron paramagnetic resonance of the hole-trapped antisite bismuth center in photorefractive bismuth sillenite crystals. Phys. Rev. B—Condens. Matter Mater. Phys. 2009, 79, 2–5. [Google Scholar] [CrossRef]
- Lin, X.; Huang, F.; Wang, W.; Xia, Y.; Wang, Y.; Liu, M.; Shi, J. Photocatalytic activity of a sillenite-type material Bi25GaO39. Catal. Commun. 2008, 9, 572–576. [Google Scholar] [CrossRef]
- Deng, C.; Wei, X.; Liu, R.; Du, Y.; Pan, L.; Zhong, X.; Song, J. Synthesis of sillenite-type Bi36Fe2O57 and elemental bismuth with visible-light photocatalytic activity for water treatment. Front. Mater. Sci. 2018, 12, 415–425. [Google Scholar] [CrossRef]
- Burkov, V.I.; Egorysheva, A.V.; Kargin, Y.F. Optical and chiro-optical properties of crystals with sillenite structure. Crystallogr. Reports 2001, 46, 312–335. [Google Scholar] [CrossRef]
- Kim, B.H.; Lim, T.H.; Roh, J.W.; Lee, S.G.; Ju, C.S.; Park, S.S.; Hong, S.S.; Lee, G.D. Effect of Cr doping on the properties and photocatalytic activity of Bi12TiO20. React. Kinet. Mech. Catal. 2010, 99, 217–224. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, G.; Li, N. Bi24Ga2O39 for visible light photocatalytic reduction of Cr(VI): Controlled synthesis, facet-dependent activity and DFT study. Chem. Eng. J. 2017, 314, 249–256. [Google Scholar] [CrossRef]
- Valant, M.; Suvorov, D. Processing and Dielectric Properties of Sillenite Compounds Bi12MO20-δ (M: Si, Ge, Ti, Pb, Mn, B1/2P1/2). ChemInform 2010, 33, 2900–2904. [Google Scholar] [CrossRef]
- Zhoua, P.; Xiaoa, F.; Jia, L. Bi12NiO19 micro-sheets grown on graphene oxide: Temperature-dependent facile synthesis and excellent electrochemical behavior for supercapacitor electrode. J. Electroanal. Chem. 2021, 884, 115075. [Google Scholar] [CrossRef]
- Pei, L.Z.; Wei, T.; Lin, N.; Zhang, H. Synthesis of bismuth nickelate nanorods and electrochemical detection of tartaric acid using nanorods modified electrode. J. Alloys Compd. 2016, 663, 677–685. [Google Scholar] [CrossRef]
- Rajamoorthy, M.; Geetha, D.; Sathiya Priya, A. Synthesis of Cobalt-Doped Bi12NiO19: Structural, Morphological, Dielectric and Magnetic Properties. Arab. J. Sci. Eng. 2021, 46, 737–744. [Google Scholar] [CrossRef]
- Brahimi, B.; Kenfoud, H.; Benrighi, Y.; Baaloudj, O. Structural and Optical Properties of Bi12NiO19 Sillenite Crystals: Application for the Removal of Basic Blue 41 from Wastewater. Photochem 2021, 1, 319–329. [Google Scholar] [CrossRef]
- Deng, H.; Hao, W.; Xu, H. First-principles calculations of novel sillenite compounds Bi24M2O40 (M = Se or Te). Rare Met. 2011, 30, 135–139. [Google Scholar] [CrossRef]
- Vavilapalli, D.S.; Melvin, A.A.; Bellarmine, F.; Mannam, R.; Velaga, S.; Poswal, H.K.; Dixit, A.; Ramachandra Rao, M.S.; Singh, S. Growth of sillenite Bi12FeO20 single crystals: Structural, thermal, optical, photocatalytic features and first principle calculations. Sci. Rep. 2020, 10, 22052. [Google Scholar] [CrossRef]
- Lima, A.F.; Lalic, M. V First-principles study of the BiMO4 antisite defect in the Bi12MO20 (M = Si, Ge, Ti) sillenite compounds. J. Phys. Condens. Matter 2013, 25, 495505. [Google Scholar] [CrossRef]
- Kumar, K.V.; Shilpa, C.H.; Rama, C.K.; Rajesham, K.A. Synthesis & Structural Characteristics of ZnBi2O4 Nanoparticles Prepared by Citrate-Gel Auto Combustion Method. Int. J. Nanoparticle Res. 2018, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Thi Mai Tho, N.; The Huy, B.; Nha Khanh, D.N.; Quoc Thang, N.; Thi Phuong Dieu, N.; Dai Duong, B.; Thi Kim Phuong, N. Mechanism of Visible-Light Photocatalytic Mineralization of Indigo Carmine Using ZnBi2O4-Bi2S3 Composites. ChemistrySelect 2018, 3, 9986–9994. [Google Scholar] [CrossRef]
- Dang, K.; Thang, N.Q.; Thi, N. Visible-light driven Bi2S3/ZnBi2O4 hybrid catalysts for efficient photocatalytic degradation of Rhodamine B. VIETNAM J. CHEM 2019, 4, 358–365. [Google Scholar]
- Habibi-yangjeh, A.; Pirhashemi, M.; Ghosh, S. ZnO/ZnBi2O4 nanocomposites with p-n heterojunction as durable visible-light-activated photocatalysts for efficient removal of organic pollutants. J. Alloys Compd. 2020, 826, 154229. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Mousavi, M.; Ghasemi, J.B.; van Le, Q.; Delbari, S.A.; Namini, A.S.; Asl, M.S.; Shokouhimehr, M.; Mohammadi, M. Novel p−n heterojunction nanocomposite: TiO2 Qds/ZnBi2O4 photocatalyst with considerably enhanced photocatalytic activity under visible-light irradiation. J. Phys. Chem. C 2020, 124, 27519–27528. [Google Scholar] [CrossRef]
- Nithya, R.; Ayyappan, S. Novel exfoliated graphitic-C3N4 hybridised ZnBi2O4 (g-C3N4/ZnBi2O4) nanorods for catalytic reduction of 4-Nitrophenol and its antibacterial activity. J. Photochem. Photobiol. A Chem. 2020, 398, 112591. [Google Scholar] [CrossRef]
- Baaloudj, O.; Assadi, A.A.; Azizi, M.; Kenfoud, H.; Trari, M.; Amrane, A.; Assadi, A.A.; Nasrallah, N. Synthesis and Characterization of ZnBi2O4 Nanoparticles: Photocatalytic Performance for Antibiotic Removal under Different Light Sources. Appl. Sci. 2021, 11, 3975. [Google Scholar] [CrossRef]
- Bahadoran, A.; Masudy-Panah, S.; De Lile, J.R.; Li, J.; Gu, J.J.; Sadeghi, B.; Ramakrishna, S.; Liu, Q. Novel 0D/1D ZnBi2O4/ZnO S-scheme photocatalyst for hydrogen production and BPA removal. Int. J. Hydrogen Energy 2021, 46, 24094–24106. [Google Scholar] [CrossRef]
- Baaloudj, O.; Nasrallah, N.; Kenfoud, H.; Algethami, F.; Modwi, A.; Guesmi, A.; Assadi, A.A.; Khezami, L. Application of Bi12ZnO20 Sillenite as an Efficient Photocatalyst for Wastewater Treatment: Removal of Both Organic and Inorganic Compounds. Materials 2021, 14, 5409. [Google Scholar] [CrossRef]
- Bahadoran, A.; Farhadian, M.; Hoseinzadeh, G.; Liu, Q. Novel flake-like Z-Scheme Bi2WO6-ZnBi2O4 heterostructure prepared by sonochemical assisted hydrothermal procedures with enhanced visible-light photocatalytic activity. J. Alloys Compd. 2021, 883, 160895. [Google Scholar] [CrossRef]
- Jagadeesh, C.; Sailaja, B.B. V Photocatalytic Degradation of Rohdamine B Dye using CoBi2O4 Nanocatalyst and Effect of Various Operational Parameters. Cikitusi J. 2019, 6, 97–107. [Google Scholar]
- Elkhouni, T.; Amami, M.; Ben Salah, A. Structural, spectroscopic studies and magnetic properties of doped sillenites-type oxide Bi12[M]O20 M=Fe, Co. J. Supercond. Nov. Magn. 2013, 26, 2997–3004. [Google Scholar] [CrossRef]
- Nogueira, A.E.; Lima, A.R.F.; Longo, E.; Leite, E.R.; Camargo, E.R. Structure and photocatalytic properties of Nb-doped Bi12TiO20 prepared by the oxidant peroxide method (OPM). J. Nanoparticle Res. 2014, 16, 2653. [Google Scholar] [CrossRef]
- Hou, J.; Qu, Y.; Krsmanovic, D.; Ducati, C.; Eder, D.; Kumar, R.V. Solution-phase synthesis of single-crystalline Bi12TiO20 nanowires with photocatalytic properties. Chem. Commun. 2009, 26, 3937–3939. [Google Scholar] [CrossRef]
- Yao, W.F.; Wang, H.; Xu, X.H.; Zhou, J.T.; Yang, X.N.; Zhang, Y.; Shang, S.X.; Wang, M. Sillenites materials as novel photocatalysts for methyl orange decomposition. Chem. Phys. Lett. 2003, 377, 501–506. [Google Scholar] [CrossRef]
- Kumar, A.; Krishnan, V. Vacancy Engineering in Semiconductor Photocatalysts: Implications in Hydrogen Evolution and Nitrogen Fixation Applications. Adv. Funct. Mater. 2021, 31, 2009807. [Google Scholar] [CrossRef]
- Cao, S.; Piao, L.; Chen, X. Emerging Photocatalysts for Hydrogen Evolution. Trends Chem. 2020, 2, 57–70. [Google Scholar] [CrossRef]
- Kenfoud, H.; Nasrallah, N.; Baaloudj, O.; Belabed, C.; Chaabane, T.; Trari, M. Opto-electrochemical characteristics of synthesized BaFe2O4 nanocomposites: Photocatalytic degradation and hydrogen generation investigation. Int. J. Hydrogen Energy 2022, 47, 12039–12051. [Google Scholar] [CrossRef]
- Basith, M.A.; Ahsan, R.; Zarin, I.; Jalil, M.A. Enhanced photocatalytic dye degradation and hydrogen production ability of Bi25FeO40-rGO nanocomposite and mechanism insight. Sci. Rep. 2018, 8, 33–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Guo, H.; Zhang, Y.; Tang, W.; Cheng, X.; Li, W. Heterogeneous activation of peroxymonosulfate by sillenite Bi25FeO40: Singlet oxygen generation and degradation for aquatic levofloxacin. Chem. Eng. J. 2018, 343, 128–137. [Google Scholar] [CrossRef]
- Naghmash, M.A.; Saif, M.; Mahmoud, H.R. Transition metal ions doped Bi12SiO20 as novel catalysts for the decomposition of hydrogen peroxide (H2O2). J. Taiwan Inst. Chem. Eng. 2021, 121, 268–275. [Google Scholar] [CrossRef]
- Chmyrev, V.I.; Skorikov, V.M.; Larina, E.V. Doping effect on the optical, electro-optic, and photoconductive properties of Bi12MO20 (M = Ge, Si, Ti). Inorg. Mater. 2006, 42, 381–392. [Google Scholar] [CrossRef]
Sillenite | Synthesis Route | Target Pollutants | Operating Conditions | Removal Efficiency | Ref. |
---|---|---|---|---|---|
Bi12TiO20 | Sol-gel | Cefixime | Dose of catalyst: 1.5 g/L pH: 6 Time of irradiation: 4 h Pollutant concentration: 10 mg/L | 94.93% | [25] |
Bi12ZnO20 | Sol-gel | Cefixime | Dose of catalyst: 1 g/L pH: 6 Time of irradiation: 4 h Pollutant concentration: 10 mg/L | 94.34% | [70] |
Bi12ZnO20 | Sol-gel | Hexavalent chromium | Dose of catalyst: 1 g/L pH: 6 Time of irradiation: 3 h Pollutant concentration: 30 mg/L | 77.19% | [70] |
Bi12ZnO20 | Co-precipitation | Cefuroxime | Dose of catalyst: 1 g/L pH: 6 Time of irradiation: 4 h Pollutant concentration: 15 mg/L | 80% | [32] |
Bi12CoO20 | Sol-gel | Basic Red 46 | Dose of catalyst: 1 g/L pH: 6 Time of irradiation: 3 h Pollutant concentration: 15 mg/L | 86% | [34] |
Bi12CoO20 | Sol-gel | Hexavalent chromium | Dose of catalyst: 1 g/L pH: 6 Time of irradiation: 3 h Pollutant concentration: 15 mg/L | 67% | [34] |
Bi12NiO19 | Sol-gel | Basic blue 41 | Dose of catalyst: 1 g/L pH: 9 Time of irradiation: 180 min Pollutant concentration: 15 mg/L | 98% | [58] |
Bi12SiO20 | Pechini sol-gel | Rhodamine B | Reaction time: 150 min Pollutant concentration: 10 mg/L | 80% | [23] |
Bi12TiO20 | Oxidant peroxide | Rhodamine B | Dose of catalyst: 60 mg pH: 6 Time of irradiation: 210 min Pollutant concentration: 10 mg/L | 81% | [74] |
Bi12TiO20 | Simple solution phase | Methyl orange | Dose of catalyst: 1.6 g/L Time of irradiation: 150 min Pollutant concentration: 150 mg/L | 75% | [75] |
Bi12GeO20 | Chemical solution decomposition | Methyl orange | Dose of catalyst: 6 g/L Time of irradiation: 50 min Pollutant concentration: 25 mg/L | 100% | [29] |
Bi12MnO20 | Sol-gel | Hexavalent chromium | Dose of catalyst: 2 g/L pH: 6, Time of irradiation: 4 h Pollutant concentration: 10 mg/L | 80% | [36] |
Bi12FeO20 | Hydrothermal | Methylene blue and Congo red | Time of irradiation: 3.5 h Pollutant concentration: 3.5 mg/L and 10 mg/L | 91.8% and 32.10% | [60] |
Bi25VO40 | Facile pechini | Methylene blue | Dose of catalyst: 0.16 g/L Time of irradiation: 240 min Pollutant concentration: 10 mg/L | 90% | [33] |
Bi24AlO39 | Chemical solution decomposition | Methyl Orange | Dose of catalyst: 6 g/L pH: 2, Time of irradiation: 2 h Pollutant concentration: 20 mg/L | 100% | [37] |
Bi25GaO39 | Solid state reaction | Methylen blue | Dose of catalyst: 2 g/L, Time of irradiation: 60 min Pollutant concentration: 10 mg/L | 89% | [49] |
Bi12SiO20 Bi12GeO20 Bi12TiO20 | Solid state reaction | Rhodamine B | Dose of catalyst: 3 g/L, pH: 6, Time of irradiation: 6 h Pollutant concentration: 20 mg/L | 80%, 30% and 90% | [28] |
Bi12GeO20 Bi12SiO20 Bi12TiO20 | Facile electrospining | Rhodamine B | Dose of catalyst: 80 mg pH: 6, Time of irradiation: 120 min Pollutant concentration: 10 mg/L | 100%, 80% and 100% | [24] |
Bi12PbO19 Bi12NiO19 Bi24AlO39 Bi12TiO20 Bi36Fe2O57 | Chemical solution decomposition | Methyl Orange | Dose of catalyst: 0.25 g pH: 6, Aqueous methyl orange solution: 50 mL | 100% With different t1/2 | [76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baaloudj, O.; Kenfoud, H.; Badawi, A.K.; Assadi, A.A.; El Jery, A.; Assadi, A.A.; Amrane, A. Bismuth Sillenite Crystals as Recent Photocatalysts for Water Treatment and Energy Generation: A Critical Review. Catalysts 2022, 12, 500. https://doi.org/10.3390/catal12050500
Baaloudj O, Kenfoud H, Badawi AK, Assadi AA, El Jery A, Assadi AA, Amrane A. Bismuth Sillenite Crystals as Recent Photocatalysts for Water Treatment and Energy Generation: A Critical Review. Catalysts. 2022; 12(5):500. https://doi.org/10.3390/catal12050500
Chicago/Turabian StyleBaaloudj, Oussama, Hamza Kenfoud, Ahmad K. Badawi, Achraf Amir Assadi, Atef El Jery, Aymen Amine Assadi, and Abdeltif Amrane. 2022. "Bismuth Sillenite Crystals as Recent Photocatalysts for Water Treatment and Energy Generation: A Critical Review" Catalysts 12, no. 5: 500. https://doi.org/10.3390/catal12050500
APA StyleBaaloudj, O., Kenfoud, H., Badawi, A. K., Assadi, A. A., El Jery, A., Assadi, A. A., & Amrane, A. (2022). Bismuth Sillenite Crystals as Recent Photocatalysts for Water Treatment and Energy Generation: A Critical Review. Catalysts, 12(5), 500. https://doi.org/10.3390/catal12050500