Recent Advances in Catalytic [3,3]-Sigmatropic Rearrangements
Abstract
:1. Introduction
2. Catalytic Claisen Rearrangement
2.1. Transition Metal Catalyzed Claisen Rearrangement
2.2. Organocatalyzed Claisen Rearrangement
2.3. Catalytic Aza- and Thio-Claisen Rearrangement
3. Catalytic Cope Rearrangement
3.1. Transition Metal Catalyzed Cope Rearrangement
3.2. Organocatalyzed Cope Rearrangement
4. Conclusions and Outlooks
Author Contributions
Funding
Conflicts of Interest
References
- Claisen, L. Über Umlagerung von Phenol-allyläthern in C-Allyl-phenole. Chem. Ber. 1912, 45, 3157–3166. [Google Scholar] [CrossRef] [Green Version]
- Ito, H.; Taguchi, T. Asymmetric Claisen rearrangement. Chem. Soc. Rev. 1999, 28, 43–50. [Google Scholar] [CrossRef]
- Martín Castro, A.M. Claisen Rearrangement over the Past Nine Decades. Chem. Rev. 2004, 104, 2939–3002. [Google Scholar] [CrossRef] [PubMed]
- Ilardi, E.A.; Stivala, C.E.; Zakarian, A. [3,3]-Sigmatropic rearrangements: Recent applications in the total synthesis of natural products. Chem. Soc. Rev. 2009, 38, 3133–3148. [Google Scholar] [CrossRef] [Green Version]
- Tejedor, D.; Méndez-Abt, G.; Cotos, L.; García-Tellado, F. Propargyl Claisen rearrangement: Allene synthesis and beyond. Chem. Soc. Rev. 2013, 42, 458–471. [Google Scholar] [CrossRef] [Green Version]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Chamorro, E.; Pérez, P. Aromaticity in Pericyclic Transition State Structures? A Critical Rationalisation Based on the Topological Analysis of Electron Density. ChemistrySelect 2016, 1, 6026–6039. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Silvi, B.; Pérez, P. The Mysticism of Pericyclic Reactions: A Contemporary Rationalisation of Organic Reactivity Based on Electron Density Analysis. Eur. J. Org. Chem. 2018, 2018, 1107–1120. [Google Scholar] [CrossRef]
- Cope, A.C.; Hardy, E.M. The Introduction of Substituted Vinyl Groups. V. A Rearrangement Involving the Migration of an Allyl Group in a Three-Carbon System1. J. Am. Chem. Soc. 1940, 62, 441–444. [Google Scholar] [CrossRef]
- Lutz, R.P. Catalysis of the Cope and Claisen rearrangements. Chem. Rev. 1984, 84, 205–247. [Google Scholar] [CrossRef]
- Blechert, S. The Hetero-Cope Rearrangement in Organic Synthesis. Synthesis 1989, 1989, 71–82. [Google Scholar] [CrossRef]
- Graulich, N. The Cope rearrangement—the first born of a great family. WIREs Comput. Mol. Sci. 2011, 1, 172–190. [Google Scholar] [CrossRef]
- Kotha, S.; Meshram, M. Application of Claisen Rearrangement and Olefin Metathesis in Organic Synthesis. Chem. Asian. J. 2018, 13, 1758–1766. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.-Y.; Li, L.; Kang, W.; Zheng, Y.-X.; Ye, L.-W. Claisen rearrangement triggered by transition metal-catalyzed alkyne alkoxylation. Coord. Chem. Rev. 2021, 446, 214131. [Google Scholar] [CrossRef]
- Wei, L.; Wang, C.-J. Recent advances in catalytic asymmetric aza-Cope rearrangement. Chem. Commun. 2021, 57, 10469–10483. [Google Scholar] [CrossRef] [PubMed]
- Tomiczek, B.M.; Grenning, A.J. Aromatic Cope rearrangements. Org. Biomol. Chem. 2021, 19, 2385–2398. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Hu, H.; Guo, J.; Xia, Y.; Lin, L.; Feng, X. Synergistic Kinetic Resolution and Asymmetric Propargyl Claisen Rearrangement for the Synthesis of Chiral Allenes. Angew. Chem. Int. Ed. 2016, 55, 4054–4058. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, H.; Lin, L.; Hao, X.; Liu, X.; Feng, X. Enantioselective construction of branched 1,3-dienyl substituted quaternary carbon stereocenters by asymmetric allenyl Claisen rearrangement. Chem. Commun. 2016, 52, 11963–11966. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Y.; Xu, C.; Xu, X.; Lin, L.; Liu, X.; Feng, X. Stereodivergent synthesis of vicinal quaternary-quaternary stereocenters and bioactive hyperolactones. Nat. Commun. 2018, 9, 1968. [Google Scholar] [CrossRef] [Green Version]
- Ireland, R.E.; Mueller, R.H. Claisen rearrangement of allyl esters. J. Am. Chem. Soc. 1972, 94, 5897–5898. [Google Scholar] [CrossRef]
- Ireland, R.E.; Mueller, R.H.; Willard, A.K. The ester enolate Claisen rearrangement. Stereochemical control through stereoselective enolate formation. J. Am. Chem. Soc. 1976, 98, 2868–2877. [Google Scholar] [CrossRef]
- Wong, K.C.; Ng, E.; Wong, W.-T.; Chiu, P. Copper Hydride Catalyzed Reductive Claisen Rearrangements. Chem. Eur. J. 2016, 22, 3709–3712. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.P.; Morken, J.P. Catalytic Diastereoselective Reductive Claisen Rearrangement. Org. Lett. 2002, 4, 2743–2745. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Wong, K.C.; Scheeff, S.; He, Z.; Chan, W.T.K.; Low, K.-H.; Chiu, P. Copper-Catalyzed Reductive Ireland–Claisen Rearrangements of Propargylic Acrylates and Allylic Allenoates. J. Org. Chem. 2022, 87, 429–452. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Liu, H.; Wei, S.; Huang, H. Catalytic Claisen Rearrangement by Intercepting Ketenimines with Propargylic Alcohols: A Strategy to Generate and Transform Ketenimines from Radicals. Org. Lett. 2020, 22, 6794–6798. [Google Scholar] [CrossRef]
- Zhou, B.; Li, L.; Zhu, X.-Q.; Yan, J.-Z.; Guo, Y.-L.; Ye, L.-W. Yttrium-Catalyzed Intramolecular Hydroalkoxylation/Claisen Rearrangement Sequence: Efficient Synthesis of Medium-Sized Lactams. Angew. Chem. Int. Ed. 2017, 56, 4015–4019. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Li, L.; Liu, X.; Tan, T.-D.; Liu, J.; Ye, L.-W. Yttrium-Catalyzed Tandem Intermolecular Hydroalkoxylation/Claisen Rearrangement. J. Org. Chem. 2017, 82, 10149–10157. [Google Scholar] [CrossRef]
- Ramadhar, T.R.; Kawakami, J.-I.; Batey, R.A. Sequential O-Arylation/Lanthanide(III)-Catalyzed [3,3]-Sigmatropic Rearrangement of Bromo-Substituted Allylic Alcohols. Synlett 2017, 28, 2865–2870. [Google Scholar] [CrossRef] [Green Version]
- Lai, Z.-W.; Liu, C.; Sun, H.; You, S.-L. Asymmetric Synthesis of 3-Allyloxindoles and 3-Allenyloxindoles by Scandium(III)-Catalyzed Claisen Rearrangement Reactions. Chin. J. Chem. 2017, 35, 1512–1516. [Google Scholar] [CrossRef]
- Zhang, C.; Zhen, L.; Yao, Z.; Jiang, L. Iron(III)-Catalyzed Domino Claisen Rearrangement/Regio- and Chemoselective Aerobic Dehydrogenative Cyclization of β-Naphthyl-Substituted-Allenylmethyl Ether. Org. Lett. 2019, 21, 955–959. [Google Scholar] [CrossRef]
- Wang, H.; Li, T.; Zheng, Z.; Zhang, L. Efficient Synthesis of α-Allylbutenolides from Allyl Ynoates via Tandem Ligand-Enabled Au(I) Catalysis and the Claisen Rearrangement. ACS Catal. 2019, 9, 10339–10342. [Google Scholar] [CrossRef]
- Li, J.; Lin, L.; Hu, B.; Zhou, P.; Huang, T.; Liu, X.; Feng, X. Gold(I)/Chiral N,N′-Dioxide–Nickel(II) Relay Catalysis for Asymmetric Tandem Intermolecular Hydroalkoxylation/Claisen Rearrangement. Angew. Chem. Int. Ed. 2017, 56, 885–888. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Dong, S.; Xu, X.; Liu, X.; Feng, X. Bimetallic Rhodium(II)/Indium(III) Relay Catalysis for Tandem Insertion/Asymmetric Claisen Rearrangement. Angew. Chem. Int. Ed. 2018, 57, 16554–16558. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, K.C.; Pal, A.K. Lewis acid catalyzed Claisen rearrangement: Regioselective synthesis of oxygen, nitrogen, and sulfur heterocycles. Can. J. Chem. 2008, 86, 72–78. [Google Scholar] [CrossRef]
- Uyeda, C.; Jacobsen, E.N. Enantioselective Claisen Rearrangements with a Hydrogen-Bond Donor Catalyst. J. Am. Chem. Soc. 2008, 130, 9228–9229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenzel, A.G.; Jacobsen, E.N. Asymmetric Catalytic Mannich Reactions Catalyzed by Urea Derivatives: Enantioselective Synthesis of β-Aryl-β-Amino Acids. J. Am. Chem. Soc. 2002, 124, 12964–12965. [Google Scholar] [CrossRef]
- Salvio, R. The Guanidinium Unit in the Catalysis of Phosphoryl Transfer Reactions: From Molecular Spacers to Nanostructured Supports. Chem. Eur. J. 2015, 21, 10960–10971. [Google Scholar] [CrossRef]
- Leow, D.; Tan, C.-H. Catalytic Reactions of Chiral Guanidines and Guanidinium Salts. Synlett 2010, 2010, 1589–1605. [Google Scholar] [CrossRef]
- Seo, H.-S.; Kim, H.-J. Guanidinium-based Organocatalyst for CO2 Utilization under Mild Conditions. Bull. Korean Chem. Soc. 2019, 40, 169–172. [Google Scholar] [CrossRef]
- Kaeobamrung, J.; Mahatthananchai, J.; Zheng, P.; Bode, J.W. An Enantioselective Claisen Rearrangement Catalyzed by N-Heterocyclic Carbenes. J. Am. Chem. Soc. 2010, 132, 8810–8812. [Google Scholar] [CrossRef] [Green Version]
- Vedachalam, S.; Murugesh, N.; Chakraborty, P.; Karvembu, R.; Liu, X.-W. NHC catalyzed enantioselective Coates-Claisen rearrangement: A rapid access to the dihydropyran core for oleuropein based secoiridoids. New J. Chem. 2018, 42, 1832–1839. [Google Scholar] [CrossRef]
- Dzieszkowski, K.; Barańska, I.; Rafiński, Z. Construction of Dihydropyrido[2,3-d]pyrimidine Scaffolds via Aza-Claisen Rearrangement Catalyzed by N-Heterocyclic Carbenes. J. Org. Chem. 2020, 85, 6645–6662. [Google Scholar] [CrossRef]
- Li, L.; Zhu, X.-Q.; Zhang, Y.-Q.; Bu, H.-Z.; Yuan, P.; Chen, J.; Su, J.; Deng, X.; Ye, L.-W. Metal-free alkene carbooxygenation following tandem intramolecular alkoxylation/Claisen rearrangement: Stereocontrolled access to bridged [4.2.1] lactones. Chem. Sci. 2019, 10, 3123–3129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.-F.; Zhou, B.; Wu, P.; Wang, B.; Ye, L.-W. Brønsted Acid Catalyzed Dearomatization by Intramolecular Hydroalkoxylation/Claisen Rearrangement: Diastereo- and Enantioselective Synthesis of Spirolactams. Angew. Chem. Int. Ed. 2021, 60, 27164–27170. [Google Scholar] [CrossRef] [PubMed]
- Miró, J.; Gensch, T.; Ellwart, M.; Han, S.-J.; Lin, H.-H.; Sigman, M.S.; Toste, F.D. Enantioselective Allenoate-Claisen Rearrangement Using Chiral Phosphate Catalysts. J. Am. Chem. Soc. 2020, 142, 6390–6399. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.H.; Donets, P.A.; Miaskiewicz, S.; Cramer, N. A 1,3,2-Diazaphospholene-Catalyzed Reductive Claisen Rearrangement. Angew. Chem. Int. Ed. 2019, 58, 8893–8897. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Li, Z.; Liao, W.-W. An organocatalytic hydroalkoxylation/Claisen rearrangement/Michael addition tandem sequence: Divergent synthesis of multi-substituted 2,3-dihydrofurans and 2,3-dihydropyrroles from cyanohydrins. Green Chem. 2019, 21, 1614–1618. [Google Scholar] [CrossRef]
- Kleinmans, R.; Will, L.E.; Schwarz, J.L.; Glorius, F. Photoredox-enabled 1,2-dialkylation of α-substituted acrylates via Ireland—Claisen rearrangement. Chem. Sci. 2021, 12, 2816–2822. [Google Scholar] [CrossRef]
- Sakai, N.; Enomoto, K.; Takayanagi, M.; Konakahara, T.; Ogiwara, Y. Copper-catalyzed [3+2] annulation of propargylic acetates with anilines in the presence of trimethylsilyl chloride leading to 2,3-disubstituted indoles via an aza-Claisen rearrangement. Tetrahedron Lett. 2016, 57, 2175–2178. [Google Scholar] [CrossRef]
- Wang, C.-G.; Wu, R.; Li, T.-P.; Jia, T.; Li, Y.; Fang, D.; Chen, X.; Gao, Y.; Ni, H.-L.; Hu, P.; et al. Copper(I)-Catalyzed Ketenimine Formation/Aza-Claisen Rearrangement Cascade for Stereoselective Synthesis of α-Allylic Amidines. Org. Lett. 2020, 22, 3234–3238. [Google Scholar] [CrossRef]
- Bae, I.; Han, H.; Chang, S. Highly Efficient One-Pot Synthesis of N-Sulfonylamidines by Cu-Catalyzed Three-Component Coupling of Sulfonyl Azide, Alkyne, and Amine. J. Am. Chem. Soc. 2005, 127, 2038–2039. [Google Scholar] [CrossRef]
- Yoo, E.J.; Ahlquist, M.; Bae, I.; Sharpless, K.B.; Fokin, V.V.; Chang, S. Mechanistic Studies on the Cu-Catalyzed Three-Component Reactions of Sulfonyl Azides, 1-Alkynes and Amines, Alcohols, or Water: Dichotomy via a Common Pathway. J. Org. Chem. 2008, 73, 5520–5528. [Google Scholar] [CrossRef] [PubMed]
- Kljajic, M.; Puschnig, J.G.; Weber, H.; Breinbauer, R. Additive-Free Pd-Catalyzed α-Allylation of Imine-Containing Heterocycles. Org. Lett. 2017, 19, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.R.; Cook, M.J. Formation of Ketenimines via the Palladium-Catalyzed Decarboxylative π-Allylic Rearrangement of N-Alloc Ynamides. Org. Lett. 2017, 19, 5822–5825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, J.R.; Shchepetkina, V.I.; Stankevich, K.S.; Benedict, R.J.; Bernhard, S.P.; Dreiling, R.J.; Cook, M.J. Pd-Catalyzed Rearrangement of N-Alloc-N-allyl Ynamides via Auto-Tandem Catalysis: Evidence for Reversible C–N Activation and Pd(0)-Accelerated Ketenimine Aza-Claisen Rearrangement. Org. Lett. 2021, 23, 559–564. [Google Scholar] [CrossRef]
- Verlee, A.; Heugebaert, T.; van der Meer, T.; Kerchev, P.; Van Breusegem, F.; Stevens, C.V. Domino reaction of a gold catalyzed 5-endo-dig cyclization and a [3,3]-sigmatropic rearrangement towards polysubstituted pyrazoles. Org. Biomol. Chem. 2018, 16, 9359–9363. [Google Scholar] [CrossRef]
- Yang, W.; Lin, X.; Zhang, Y.; Cao, W.; Liu, X.; Feng, X. Nickel(ii)-catalyzed asymmetric thio-Claisen rearrangement of α-diazo pyrazoleamides with thioindoles. Chem. Commun. 2020, 56, 10002–10005. [Google Scholar] [CrossRef]
- Liu, W.-B.; Okamoto, N.; Alexy, E.J.; Hong, A.Y.; Tran, K.; Stoltz, B.M. Enantioselective γ-Alkylation of α,β-Unsaturated Malonates and Ketoesters by a Sequential Ir-Catalyzed Asymmetric Allylic Alkylation/Cope Rearrangement. J. Am. Chem. Soc. 2016, 138, 5234–5237. [Google Scholar] [CrossRef] [Green Version]
- Shen, C.; Wang, R.-Q.; Wei, L.; Wang, Z.-F.; Tao, H.-Y.; Wang, C.-J. Catalytic Asymmetric Umpolung Allylation/2-Aza-Cope Rearrangement for the Construction of α-Tetrasubstituted α-Trifluoromethyl Homoallylic Amines. Org. Lett. 2019, 21, 6940–6945. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, L.-F.; Zhang, X.; Niu, D. Catalytic Asymmetric Synthesis of α-Tetrasubstituted α-Trifluoromethyl Homoallylic Amines by Ir-Catalyzed Umpolung Allylation of Imines. Org. Lett. 2019, 21, 6951–6956. [Google Scholar] [CrossRef]
- Wei, L.; Zhu, Q.; Xiao, L.; Tao, H.-Y.; Wang, C.-J. Synergistic catalysis for cascade allylation and 2-aza-cope rearrangement of azomethine ylides. Nat. Commun. 2019, 10, 1594. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Xiao, L.; Wang, Z.-F.; Tao, H.-Y.; Wang, C.-J. Ir/Phase-Transfer-Catalysis Cooperatively Catalyzed Asymmetric Cascade Allylation/2-aza-Cope Rearrangement: An Efficient Route to Homoallylic Amines from Aldimine Esters. Chin. J. Chem. 2020, 38, 82–86. [Google Scholar] [CrossRef]
- Wang, R.-Q.; Shen, C.; Cheng, X.; Wang, Z.-F.; Tao, H.-Y.; Dong, X.-Q.; Wang, C.-J. Sequential Ir-Catalyzed Allylation/2-aza-Cope Rearrangement Strategy for the Construction of Chiral Homoallylic Amines. Chin. J. Chem. 2020, 38, 807–811. [Google Scholar] [CrossRef]
- Sun, X.-S.; Ou-Yang, Q.; Xu, S.-M.; Wang, X.-H.; Tao, H.-Y.; Chung, L.W.; Wang, C.-J. Asymmetric synthesis of quaternary α-trifluoromethyl α-amino acids by Ir-catalyzed allylation followed by kinetic resolution. Chem. Commun. 2020, 56, 3333–3336. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-S.; Wang, X.-H.; Tao, H.-Y.; Wei, L.; Wang, C.-J. Catalytic asymmetric synthesis of quaternary trifluoromethyl α- to ε-amino acid derivatives via umpolung allylation/2-aza-Cope rearrangement. Chem. Sci. 2020, 11, 10984–10990. [Google Scholar] [CrossRef]
- Bai, X.-D.; Zhang, Q.-F.; He, Y. Enantioselective iridium catalyzed α-alkylation of azlactones by a tandem asymmetric allylic alkylation/aza-Cope rearrangement. Chem. Commun. 2019, 55, 5547–5550. [Google Scholar] [CrossRef]
- Rieckhoff, S.; Meisner, J.; Kästner, J.; Frey, W.; Peters, R. Double Regioselective Asymmetric C-Allylation of Isoxazolinones: Iridium-Catalyzed N-Allylation Followed by an Aza-Cope Rearrangement. Angew. Chem. Int. Ed. 2018, 57, 1404–1408. [Google Scholar] [CrossRef]
- Sommer, H.; Weissbrod, T.; Marek, I. A Tandem Iridium-Catalyzed “Chain-Walking”/Cope Rearrangement Sequence. ACS Catal. 2019, 9, 2400–2406. [Google Scholar] [CrossRef]
- Suresh, R.; Massad, I.; Marek, I. Stereoselective tandem iridium-catalyzed alkene isomerization-cope rearrangement of ω-diene epoxides: Efficient access to acyclic 1,6-dicarbonyl compounds. Chem. Sci. 2021, 12, 9328–9332. [Google Scholar] [CrossRef]
- Gadde, K.; Daelemans, J.; Maes, B.U.W.; Abbaspour Tehrani, K. Lewis acidic FeCl3 promoted 2-aza-Cope rearrangement to afford α-substituted homoallylamines in dimethyl carbonate. RSC Adv. 2019, 9, 18013–18017. [Google Scholar] [CrossRef] [Green Version]
- Jin, M.; Yin, S.-f.; Yang, S.-D. Bismuth(III)-Catalyzed Sequential Enamine–Imine Tautomerism/2-Aza-Cope Rearrangement of Stable β-Enaminophosphonates: One-Pot Synthesis of β-Aminophosphonates. Org. Lett. 2020, 22, 2811–2815. [Google Scholar] [CrossRef]
- Mailyan, A.K.; Eickhoff, J.A.; Minakova, A.S.; Gu, Z.; Lu, P.; Zakarian, A. Cutting-Edge and Time-Honored Strategies for Stereoselective Construction of C–N Bonds in Total Synthesis. Chem. Rev. 2016, 116, 4441–4557. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, C.; Le Gouadec, G.; Skaltsounis, A.L.; Florent, J.C. Synthesis of chiral 4-alkyl 4-hydroxy cyclopentenones via a diastereoselective tandem aza-Cope/Mannich cyclization reaction from aldehydosugar. Tetrahedron Lett. 1995, 36, 3137–3140. [Google Scholar] [CrossRef]
- Sakai, T.; Okumura, C.; Futamura, M.; Noda, N.; Nagae, A.; Kitamoto, C.; Kamiya, M.; Mori, Y. Gold(I)-Catalyzed Cyclization–3-Aza-Cope–Mannich Cascade and Its Application to the Synthesis of Cephalotaxine. Org. Lett. 2021, 23, 4391–4395. [Google Scholar] [CrossRef] [PubMed]
- Capel, N.J.; Lindley, M.R.; Pritchard, G.J.; Kimber, M.C. Indium-Mediated 2-Oxonia Cope Rearrangement of 1,4-Dienols to 1,3-Dienols. ACS Omega 2019, 4, 785–792. [Google Scholar] [CrossRef]
- Kaldre, D.; Gleason, J.L. An Organocatalytic Cope Rearrangement. Angew. Chem. Int. Ed. 2016, 55, 11557–11561. [Google Scholar] [CrossRef]
- Gebauer, K.; Schneider, C. The First Organocatalytic Cope Rearrangement. Angew. Chem. Int. Ed. 2016, 55, 14208–14209. [Google Scholar] [CrossRef]
- Sanders, J.N.; Jun, H.; Yu, R.A.; Gleason, J.L.; Houk, K.N. Mechanism of an Organocatalytic Cope Rearrangement Involving Iminium Intermediates: Elucidating the Role of Catalyst Ring Size. J. Am. Chem. Soc. 2020, 142, 16877–16886. [Google Scholar] [CrossRef]
- Kennedy, C.R.; Choi, B.Y.; Reeves, M.-G.R.; Jacobsen, E.N. Enantioselective Catalysis of an Anionic Oxy-Cope Rearrangement Enabled by Synergistic Ion Binding. Isr. J. Chem. 2020, 60, 461–474. [Google Scholar] [CrossRef]
- Padarti, A.; Kim, D.; Han, H. Highly Stereoselective 2-Oxonia-Cope Rearrangement: A Platform Enabling At-Will Control of Regio-, Enantio-, and Diastereoselectivity in the Vinylogous Aldol Reactions of Aldehydes. Org. Lett. 2018, 20, 756–759. [Google Scholar] [CrossRef]
- Woody, D.; Padarti, A.; Han, H. Asymmetric Bisvinylogous Aldolation of Aldehydes via 2-Oxonia-Cope Rearrangement Enabling Total Stereochemical Control. Org. Lett. 2018, 20, 2472–2476. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Kim, K.T.; Kim, M.; Kim, C. Recent Advances in Catalytic [3,3]-Sigmatropic Rearrangements. Catalysts 2022, 12, 227. https://doi.org/10.3390/catal12020227
Lee H, Kim KT, Kim M, Kim C. Recent Advances in Catalytic [3,3]-Sigmatropic Rearrangements. Catalysts. 2022; 12(2):227. https://doi.org/10.3390/catal12020227
Chicago/Turabian StyleLee, Huijin, Ki Tae Kim, Min Kim, and Cheoljae Kim. 2022. "Recent Advances in Catalytic [3,3]-Sigmatropic Rearrangements" Catalysts 12, no. 2: 227. https://doi.org/10.3390/catal12020227
APA StyleLee, H., Kim, K. T., Kim, M., & Kim, C. (2022). Recent Advances in Catalytic [3,3]-Sigmatropic Rearrangements. Catalysts, 12(2), 227. https://doi.org/10.3390/catal12020227