Hydrothermal Modification of TS-1 Zeolites with Organic Amines and Salts to Construct Highly Selective Catalysts for Cyclopentene Epoxidation
Abstract
1. Introduction
2. Results
2.1. Synthesis and Characterization
2.2. Catalytic Tests
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Synthesis
4.2.1. Synthesis of the Parent TS-1 Zeolite
4.2.2. Hydrothermal Modification
4.3. Characterizations
4.4. Catalytic Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, Z.Q.; Bian, W.; Liu, L.S.; Lu, Z. Catalytic oxidation of cyclopentene to glutaraldehyde over WO3/Ti-HMS catalyst. Catal. Lett. 2007, 117, 79–84. [Google Scholar] [CrossRef]
- Xue, J.J.; Wang, A.L.; Yin, H.B.; Wang, J.B.; Zhang, D.Z.; Chen, W.G.; Yu, L.B.; Jiang, T.S. Oxidation of cyclopentene catalyzed by phosphotungstic quaternary ammonium salt catalysts. J. Ind. Eng. Chem. 2010, 16, 288–292. [Google Scholar] [CrossRef]
- Zhang, W.; Du, B. The OH-initiated atmospheric oxidation of cyclopentene: A coupled-cluster study of the potential energy surface. Chem. Phys. Lett. 2013, 579, 35–39. [Google Scholar] [CrossRef]
- Kluson, P.; Luskova, H.; Cerveny, L.; Klisakova, J.; Cajthaml, T. Partial photocatalytic oxidation of cyclopentene over titanium(IV) oxide. J. Mol. Catal. A-Chem. 2005, 242, 62–67. [Google Scholar] [CrossRef]
- Tong, W.; Yin, J.; Ding, L.; Xu, H.; Wu, P. Modified Ti-MWW Zeolite as a Highly Efficient Catalyst for the Cyclopentene Epoxidation Reaction. Front. Chem. 2020, 8, 585347. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Liu, C.; Yue, H.; Tang, S.; Zhu, Y.; Liang, B. Selective oxidation of cyclopentene with H2O2 by using H3PW12O40 and TBAB as a phase transfer catalyst. Chin. J. Chem. Eng. 2019, 27, 1851–1856. [Google Scholar] [CrossRef]
- Mel’nik, L.V.; Meshechkina, A.E.; Rybina, G.V.; Srednev, S.S.; Moskvichev, Y.A.; Kozlova, O.S. Synthesis of 1,2-epoxycyclopentane and/or 1,2-cyclopentanediol by oxidation of cyclopentene with aqueous solution of hydrogen peroxide. Pet. Chem. 2012, 52, 313–317. [Google Scholar] [CrossRef]
- Xue, J.J.; Yin, H.B.; Li, H.X.; Zhang, D.Z.; Jiang, T.S.; Yu, L.B.; Shen, Y.T. Oxidation of cyclopentene catalyzed by tungsten-substituted molybdophosphoric acids. Korean J. Chem. Eng. 2009, 26, 654–659. [Google Scholar] [CrossRef]
- Chung, W.C.; Darensbourg, D.J. Copolymerization of cyclopentene oxide with CO2 utilizing bifunctional cobalt(III)- and chromium(III)-salen catalysts. Abstr. Am. Chem. Soc. 2014, 247, 771-INOR. [Google Scholar]
- Darensbourg, D.J.; Chung, W.C.; Wilson, S.J. Catalytic Coupling of Cyclopentene Oxide and CO2 Utilizing Bifunctional (salen)Co(III) and (salen)Cr(III) Catalysts: Comparative Processes Involving Binary (salen)Cr(III) Analogs. ACS Catal. 2013, 3, 3050–3057. [Google Scholar] [CrossRef]
- Pramanik, A.; Abbina, S.; Das, G. Molecular, supramolecular structure and catalytic activity of transition metal complexes of phenoxy acetic acid derivatives. Polyhedron 2007, 26, 5225–5234. [Google Scholar] [CrossRef]
- Pałasz, A. Three-component one-pot synthesis of fused uracils – pyrano[2,3-d]-pyrimidine-2,4-diones. Mon. Chem. 2008, 139, 1397. [Google Scholar] [CrossRef]
- Maiti, S.K.; Dinda, S.; Bhattacharyya, R. Unmatched efficiency and selectivity in the epoxidation of olefins with oxo-diperoxomolybdenum(VI) complexes as catalysts and hydrogen peroxide as terminal oxidant. Tetrahedron Lett. 2008, 49, 6205–6208. [Google Scholar] [CrossRef]
- Qi, J.-Y.; Li, Y.-M.; Zhou, Z.-Y.; Che, C.-M.; Yeung, C.-H.; Chan, A.S.C. Novel Manganese Complex as an Efficient Catalyst for the Isobutyraldehyde-Mediated Epoxidation of Cyclic Alkenes with Dioxygen. Adv. Synth. Catal. 2005, 347, 45–49. [Google Scholar] [CrossRef]
- Mekrattanachai, P.; Liu, J.; Li, Z.H.; Cao, C.Y.; Song, W.G. Extremely low loading of Ru species on hydroxyapatite as an effective heterogeneous catalyst for olefin epoxidation. Chem. Commun. 2018, 54, 1433–1436. [Google Scholar] [CrossRef]
- Li, S.; Shi, L.; Zhang, L.; Huang, H.; Xiao, Y.; Mao, L.; Tan, R.; Fu, Z.; Yu, N.; Yin, D. Ionic liquid-mediated catalytic oxidation of β-caryophyllene by ultrathin 2D metal-organic framework nanosheets under 1 atm O2. Mol. Catal. 2020, 496, 111196. [Google Scholar] [CrossRef]
- Ren, J.; Wang, L.; Li, P.; Xing, X.; Wang, H.; Lv, B. Ag supported on alumina for the epoxidation of 1-hexene with molecular oxygen: The effect of Ag+/Ag0. New J. Chem. 2022, 46, 4792–4799. [Google Scholar] [CrossRef]
- Wang, F.; Meng, X.-G.; Wu, Y.-Y.; Huang, H.; Lv, J.; Yu, W.-W. A Highly Efficient Heterogeneous Catalyst of Bimetal-Organic Frameworks for the Epoxidation of Olefin with H2O2. Molecules 2020, 25, 2389. [Google Scholar] [CrossRef]
- Jin, M.M.; Guo, Z.M.; Lv, Z.G. Immobilization of tungsten chelate complexes on functionalized mesoporous silica SBA-15 as heterogeneous catalysts for oxidation of cyclopentene. J. Mater. Sci. 2019, 54, 6853–6866. [Google Scholar] [CrossRef]
- Hulea, V.; Dumitriu, E.; Patcas, F.; Ropot, R.; Graffin, P.; Moreau, P. Cyclopentene oxidation with H2O2 over Ti-containing zeolites. Appl. Catal. A-Gen. 1998, 170, 169–175. [Google Scholar] [CrossRef]
- Wu, P.; Nuntasri, D.; Liu, Y.M.; Wu, H.H.; Jiang, Y.W.; Fan, W.B.; He, M.Y.; Tatsumi, T. Selective liquid-phase oxidation of cyclopentene over MWW type titanosilicate. Catal. Today 2006, 117, 199–205. [Google Scholar] [CrossRef]
- Hincapie, B.; Llano, S.M.; Garces, H.F.; Espinal, D.; Suib, S.L.; Garces, L.J. Epoxidation of cyclopentene by a low cost and environmentally friendly bicarbonate/peroxide/manganese system. Adsorpt. Sci. Technol. 2018, 36, 9–22. [Google Scholar] [CrossRef]
- Sujandi; Han, S.-C.; Han, D.-S.; Jin, M.-J.; Park, S.-E. Catalytic oxidation of cycloolefins over Co(cyclam)-functionalized SBA-15 material with H2O2. J. Catal. 2006, 243, 410–419. [Google Scholar] [CrossRef]
- Niu, Q.T.; Liu, G.D.; Lv, Z.G.; Si, C.D.; Jin, M.M. Assembly of SBA-15 Derived Hybrid Heterogeneous Catalysts for Liquid Phase Cyclopentene Epoxidation. ChemistrySelect 2021, 6, 2111–2118. [Google Scholar] [CrossRef]
- Tong, J.H.; Liu, F.F.; Wang, W.H.; Bo, L.L.; Mahboob, A.; Fan, H.Y. Highly Efficient Epoxidation of Cyclopentene Catalyzed by Magnetically Recoverable Mg-doped Cobalt Ferrites with Greatly Improved Performances. ChemistrySelect 2016, 1, 6356–6361. [Google Scholar] [CrossRef]
- Cui, X.Z.; Shi, J.L. Sn-based catalysts for Baeyer-Villiger oxidations by using hydrogen peroxide as oxidant. Sci. China-Mater. 2016, 59, 675–700. [Google Scholar] [CrossRef]
- Ahmad, W.; Rahman, A.U.; Ahmad, I.; Yaseen, M.; Jan, B.M.; Stylianakis, M.M.; Kenanakis, G.; Ikram, R. Oxidative Desulfurization of Petroleum Distillate Fractions Using Manganese Dioxide Supported on Magnetic Reduced Graphene Oxide as Catalyst. Nanomaterials 2021, 11, 203. [Google Scholar] [CrossRef]
- Song, X.J.; Yang, X.T.; Zhang, T.J.; Zhang, H.; Zhang, Q.; Hu, D.W.; Chang, X.Y.; Li, Y.Y.; Chen, Z.Y.; Jia, M.J.; et al. Controlling the Morphology and Titanium Coordination States of TS-1 Zeolites by Crystal Growth Modifier. Inorg. Chem. 2020, 59, 13201–13210. [Google Scholar] [CrossRef]
- Wang, H.; Du, G.; Chen, S.; Su, Z.; Sun, P.; Chen, T. Steam-assisted strategy to fabricate Anatase-free hierarchical titanium Silicalite-1 Single-Crystal for oxidative desulfurization. J. Colloid Interface Sci. 2022, 617, 32–43. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, L.L.; Yu, Y.K.; Liu, D.X.; Fang, N.; Lin, Y.X.; Xu, D.Y.; Li, F.; Liu, Y.M.; He, M.Y. TS-1 zeolite with homogeneous distribution of Ti atoms in the framework: Synthesis, crystallization mechanism and its catalytic performance. J. Catal. 2021, 404, 990–998. [Google Scholar] [CrossRef]
- Smeets, V.; Gaigneaux, E.M.; Debecker, D.P. Titanosilicate Epoxidation Catalysts: A Review of Challenges and Opportunities. ChemCatChem 2022, 14, 1–25. [Google Scholar] [CrossRef]
- Yang, G.J.; Han, J.; Liu, Y.; Qiu, Z.Y.; Chen, X.X. The synthetic strategies of hierarchical TS-1 zeolites for the oxidative desulfurization reactions. Chin. J. Chem. Eng. 2020, 28, 2227–2234. [Google Scholar] [CrossRef]
- Zhou, W.; Meng, F.L.; Xu, Q.H.; Dong, J.L.; Chun, Y. Preparation of Amphiphilic TS-1 zeolites and their phase-boundary catalysis. Acta Chim. Sin. 2004, 62, 1425–1429. [Google Scholar]
- Kong, L.; Li, G.; Wang, X. Mild oxidation of thiophene over TS-1/H2O2. Catal. Today 2004, 93-95, 341–345. [Google Scholar] [CrossRef]
- Liu, N.; Guo, H.; Wang, X.; Chen, L.; Zoub, L. Increasing the propylene epoxidation activity of TS-1 catalysts by hydrothermal treatment of ammonia solution. React. Kinet. Catal. Lett. 2005, 87, 77–83. [Google Scholar] [CrossRef]
- Liu, H.; Lu, G.; Guo, Y.; Guo, Y.; Wang, J. Effect of pretreatment on properties of TS-1/diatomite catalyst for hydroxylation of phenol by H2O2 in fixed-bed reactor. Catal. Today 2004, 93-95, 353–357. [Google Scholar] [CrossRef]
- Yu, Y.K.; Tang, Z.M.; Liu, W.; Wang, J.; Chen, Z.; Shen, K.X.; Wang, R.; Liu, H.X.; Huang, X.; Liu, Y.M. Enhanced catalytic oxidation performance of K+-modified Ti-MWW through selective breaking of interfacial hydrogen-bonding interactions of H2O2. Appl. Catal. A-Gen. 2019, 587, 117270. [Google Scholar] [CrossRef]
- Wang, Y.R.; Lin, M.; Tuel, A. Hollow TS-1 crystals formed via a dissolution-recrystallization process. Microporous Mesoporous Mat. 2007, 102, 80–85. [Google Scholar] [CrossRef]
- Tatsumi, T.; Koyano, K.A.; Shimizu, Y. Effect of potassium on the catalytic activity of TS-1. Appl. Catal. A-Gen 2000, 200, 125–134. [Google Scholar] [CrossRef]
- Du, S.T.; Li, F.; Sun, Q.M.; Wang, N.; Jia, M.J.; Yu, J.H. A green surfactant-assisted synthesis of hierarchical TS-1 zeolites with excellent catalytic properties for oxidative desulfurization. Chem. Commun. 2016, 52, 3368–3371. [Google Scholar] [CrossRef]
- Du, S.T.; Sun, Q.M.; Wang, N.; Chen, X.X.; Jia, M.J.; Yu, J.H. Synthesis of hierarchical TS-1 zeolites with abundant and uniform intracrystalline mesopores and their highly efficient catalytic performance for oxidation desulfurization. J. Mater. Chem. A 2017, 5, 7992–7998. [Google Scholar] [CrossRef]
- Chang, X.Y.; Yang, X.T.; Song, X.J.; Xu, L.F.; Hu, D.W.; Sun, Y.T.; Jia, M.J. Addition of polyethylene glycol for the synthesis of anatase-free TS-1 zeolites with excellent catalytic activity in 1-hexene epoxidation. J. Porous Mat. 2022, 29, 641–649. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Yang, X.T.; Song, X.J.; Chang, X.Y.; Jia, M.J. Hydrothermal synthesis of tungsten-tin bimetallic MFI type zeolites and their catalytic properties for cyclohexene epoxidation. Microporous Mesoporous Mat. 2020, 303, 110277. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Xu, L.F.; Chang, X.Y.; Miao, S.S.; Sun, Y.T.; Jia, M.J. Direct hydrothermal synthesis of Mo-containing MFI zeolites using Mo-EDTA complex and their catalytic application in cyclohexene epoxidation. Chin. J. Catal. 2021, 42, 2265–2274. [Google Scholar] [CrossRef]
- Olson, D.H.; Kokotailo, G.T.; Lawton, S.L.; Meier, W.M. Crystal structure and structure-related properties of ZSM-5. J. Phys. Chem. 1981, 85, 2238–2243. [Google Scholar] [CrossRef]
- Gao, X.; An, J.G.; Gu, J.L.; Li, L.; Li, Y.S. A green template-assisted synthesis of hierarchical TS-1 with excellent catalytic activity and recyclability for the oxidation of 2,3,6-trimethylphenol. Microporous Mesoporous Mater. 2017, 239, 381–389. [Google Scholar] [CrossRef]
- Liu, M.; Chang, Z.H.; Wei, H.J.; Li, B.J.; Wang, X.Y.; Wen, Y.Q. Low-cost synthesis of size-controlled TS-1 by using suspended seeds: From screening to scale-up. Appl. Catal. A-Gen. 2016, 525, 59–67. [Google Scholar] [CrossRef]
- Li, G.; Wang, X.; Yan, H.; Chen, Y.; Su, Q. Effect of sodium ions on propylene epoxidation catalyzed by titanium silicalite. Appl. Catal. A-Gen. 2001, 218, 31–38. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, X.; Chen, G.; Chen, M.; Bai, R.; Jia, M.; Yu, J. Synthesis of anatase-free nano-sized hierarchical TS-1 zeolites and their excellent catalytic performance in alkene epoxidation. J. Mater. Chem. A 2018, 6, 9473–9479. [Google Scholar] [CrossRef]
- Choi, M.; Srivastava, R.; Ryoo, R. Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks. Chem. Commun. 2006, 42, 4380–4382. [Google Scholar] [CrossRef]
- Xi, D.Y.; Sun, Q.M.; Chen, X.X.; Wang, N.; Yu, J.H. The recyclable synthesis of hierarchical zeolite SAPO-34 with excellent MTO catalytic performance. Chem. Commun. 2015, 51, 11987–11989. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.R.; Peng, X.X.; Zhang, W.F.; Lin, M.; Zhu, B.; Liao, W.L.; Guo, X.H.; Shu, X.T. Hierarchical TS-1 synthesized via the dissolution-recrystallization process: Influence of ammonium salts. Catal. Commun. 2017, 101, 26–30. [Google Scholar] [CrossRef]
- Liu, C.; Huang, J.L.; Sun, D.H.; Zhou, Y.; Jing, X.L.; Du, M.M.; Wang, H.T.; Li, Q.B. Anatase type extra-framework titanium in TS-1: A vital factor influencing the catalytic activity toward styrene epoxidation. Appl. Catal. A-Gen. 2013, 459, 1–7. [Google Scholar] [CrossRef]
- Tsunoji, N.; Nishida, H.; Ide, Y.; Komaguchi, K.; Hayakawa, S.; Yagenji, Y.; Sadakane, M.; Sano, T. Photocatalytic Activation of C-H Bonds by Spatially Controlled Chlorine and Titanium on the Silicate Layer. ACS Catal. 2019, 9, 5742–5751. [Google Scholar] [CrossRef]
- Sasaki, M.; Sato, Y.; Tsuboi, Y.; Inagaki, S.; Kubota, Y. Ti-YNU-2: A Microporous Titanosilicate with Enhanced Catalytic Performance for Phenol Oxidation. ACS Catal. 2014, 4, 2653–2657. [Google Scholar] [CrossRef]
- Li, C.; Xiong, G.; Xin, Q.; Liu, J.K.; Ying, P.L.; Feng, Z.C.; Li, J.; Yang, W.B.; Wang, Y.Z.; Wang, G.R.; et al. UV resonance Raman spectroscopic identification of titanium atoms in the framework of TS-1 zeolite. Angew. Chem.-Int. Edit. 1999, 38, 2220–2222. [Google Scholar] [CrossRef]
- Li, C.; Xiong, G.; Liu, J.K.; Ying, P.L.; Xin, Q.; Feng, Z.C. Identifying framework titanium in TS-1 zeolite by UV resonance Raman spectroscopy. J. Phys. Chem. B 2001, 105, 2993–2997. [Google Scholar] [CrossRef]
- Guo, Q.; Feng, Z.C.; Li, G.N.; Fan, F.T.; Li, C. Finding the "Missing Components" during the Synthesis of TS-1 Zeolite by UV Resonance Raman Spectroscopy. J. Phys. Chem. C 2013, 117, 2844–2848. [Google Scholar] [CrossRef]
- Fan, F.T.; Xu, Q.; Xia, H.A.; Sun, K.J.; Feng, Z.C.; Li, C. UV Raman Spectroscopic Characterization of Catalytic Materials. Chin. J. Catal. 2009, 30, 717–739. [Google Scholar]
- Wu, L.; Zhao, S.; Lin, L.; Fang, X.; Liu, Y.; He, M. In-depth understanding of acid catalysis of solvolysis of propene oxide over titanosilicates and titanosilicate/H2O2 systems. J. Catal. 2016, 337, 248–259. [Google Scholar] [CrossRef]
- Morrow, B.A.; McFarlan, A.J. Surface vibrational modes of silanol groups on silica. J. Phys. Chem. 1992, 96, 1395–1400. [Google Scholar] [CrossRef]
- Zecchina, A.; Bordiga, S.; Spoto, G.; Marchese, L.; Petrini, G.; Leofanti, G.; Padovan, M. Silicalite characterization. 2. IR spectroscopy of the interaction of carbon monoxide with internal and external hydroxyl groups. J. Phys. Chem. 1992, 96, 4991–4997. [Google Scholar] [CrossRef]
- Halasz, I.; Agarwal, M.; Senderov, E.; Marcus, B. Continuous monitoring the oxyfunctionalization of hexane by aqueous H2O2 over TS-1 related catalysts. Appl. Catal. A-Gen 2003, 241, 167–184. [Google Scholar] [CrossRef]
- Astorino, E.; Peri, J.B.; Willey, R.J.; Busca, G. Spectroscopic Characterization of Silicalite-1 and Titanium Silicalite-1. J. Catal. 1995, 157, 482–500. [Google Scholar] [CrossRef]
- De Man, A.J.M.; Sauer, J. Coordination, Structure, and Vibrational Spectra of Titanium in Silicates and Zeolites in Comparison with Related Molecules. An ab Initio Study. J. Phys. Chem. 1996, 100, 5025–5034. [Google Scholar] [CrossRef]
- Rodenas, Y.; Fierro, J.L.G.; Mariscal, R.; Retuerto, M.; López Granados, M. Post-synthesis Treatment of TS-1 with TPAOH: Effect of Hydrophobicity on the Liquid-Phase Oxidation of Furfural to Maleic Acid. Top. Catal. 2019, 62, 560–569. [Google Scholar] [CrossRef]
- Guo, Q.; Sun, K.; Feng, Z.; Li, G.; Guo, M.; Fan, F.; Li, C. A Thorough Investigation of the Active Titanium Species in TS-1 Zeolite by In Situ UV Resonance Raman Spectroscopy. Chem.-Eur. J. 2012, 18, 13854–13860. [Google Scholar] [CrossRef] [PubMed]
- Langhendries, G.; De Vos, D.E.; Baron, G.V.; Jacobs, P.A. Quantitative sorption experiments on Ti-zeolites and relation with alpha-olefin oxidation by H2O2. J. Catal. 1999, 187, 453–463. [Google Scholar] [CrossRef]
- Su, J.; Xiong, G.; Zhou, J.; Liu, W.; Zhou, D.; Wang, G.; Wang, X.; Guo, H. Amorphous Ti species in titanium silicalite-1: Structural features, chemical properties, and inactivation with sulfosalt. J. Catal. 2012, 288, 1–7. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Nishizawa, K.; Nakajima, T.; Kamegawa, T.; Mori, K.; Yamashita, H. Enhanced Catalytic Activity on Titanosilicate Molecular Sieves Controlled by Cation−π Interactions. J. Am. Chem. Soc. 2011, 133, 12462–12465. [Google Scholar] [CrossRef]
Sample | RC a (%) | Si/Ti b | Si/K b | SBET c (m2/g) | Smicro c (m2/g) | Sext d (m2/g) | Vmicro d (cm3/g) | Vmeso e (cm3/g) |
---|---|---|---|---|---|---|---|---|
TS-1 | 100 | 56.1 | / | 399 | 285 | 114 | 0.12 | 0.02 |
TS-1_P | 49 | 53.6 | / | 320 | 110 | 210 | 0.07 | 0.20 |
TS-1_0.05K | 74 | 54.0 | 177 | 313 | 105 | 208 | 0.07 | 0.19 |
TS-1_P-0.01K | 58 | 46.7 | 312 | 309 | 92 | 217 | 0.06 | 0.19 |
TS-1_P-0.05K | 46 | 54.8 | 124 | 415 | 172 | 243 | 0.10 | 0.26 |
TS-1_P-0.10K | 49 | 48.1 | 135 | 402 | 145 | 257 | 0.09 | 0.23 |
Catalyst | Conv. (%) | Sel. (%) | TOF b (h−1) |
---|---|---|---|
TS-1 | 9.6 | 82.3 | 27 |
TS-1_P | 13.0 | 39.8 | 17 |
TS-1_0.05K | 28.8 | 98.8 | 94 |
TS-1_P-0.01K | 16.4 | 90.0 | 42 |
TS-1_P-0.05K | 52.0 | 98.2 | 175 |
TS-1_P-0.10K | 26.7 | 98.9 | 78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, X.-Y.; Sun, Y.-T.; Song, X.-J.; Yang, X.-T.; Wu, Y.-Q.; Jia, M.-J. Hydrothermal Modification of TS-1 Zeolites with Organic Amines and Salts to Construct Highly Selective Catalysts for Cyclopentene Epoxidation. Catalysts 2022, 12, 1241. https://doi.org/10.3390/catal12101241
Chang X-Y, Sun Y-T, Song X-J, Yang X-T, Wu Y-Q, Jia M-J. Hydrothermal Modification of TS-1 Zeolites with Organic Amines and Salts to Construct Highly Selective Catalysts for Cyclopentene Epoxidation. Catalysts. 2022; 12(10):1241. https://doi.org/10.3390/catal12101241
Chicago/Turabian StyleChang, Xin-Yu, Yu-Ting Sun, Xiao-Jing Song, Xiao-Tong Yang, Yu-Qing Wu, and Ming-Jun Jia. 2022. "Hydrothermal Modification of TS-1 Zeolites with Organic Amines and Salts to Construct Highly Selective Catalysts for Cyclopentene Epoxidation" Catalysts 12, no. 10: 1241. https://doi.org/10.3390/catal12101241
APA StyleChang, X.-Y., Sun, Y.-T., Song, X.-J., Yang, X.-T., Wu, Y.-Q., & Jia, M.-J. (2022). Hydrothermal Modification of TS-1 Zeolites with Organic Amines and Salts to Construct Highly Selective Catalysts for Cyclopentene Epoxidation. Catalysts, 12(10), 1241. https://doi.org/10.3390/catal12101241