Controlled Synthesis of Chromium-Oxide-Based Protective Layers on Pt: Influence of Layer Thickness on Selectivity
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Pinaud, B.A.; Benck, J.D.; Seitz, L.C.; Forman, A.J.; Chen, Z.; Deutsch, T.G.; James, B.D.; Baum, K.N.; Baum, G.N.; Ardo, S.; et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 2013, 6, 1983. [Google Scholar] [CrossRef]
- Zini, G.; Tartarini, P. Solar-Hydrogen Energy Systems; Elsevier: Amsterdam, The Netherlands, 1979; pp. 25–33. [Google Scholar]
- Rajeshwar, K. Fundamentals of Semiconductor Electrochemistry and Photoelectrochemistry; American Cancer Society: Atlanta, GA, USA, 2007. [Google Scholar]
- Bard, A.J.; Stratmann, M. (Eds.) Encyclopedia of Electrochemistry: Online, 1st ed.; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Kudo, A. Photocatalysis and solar hydrogen production. Pure Appl. Chem. 2007, 79, 1917–1927. [Google Scholar] [CrossRef]
- Mei, B.; Mul, G.; Seger, B. Beyond water splitting: Efficiencies of photo-electrochemical devices producing hydrogen and valuable oxidation products. Adv. Sustain. Syst. 2017, 1, 1600035. [Google Scholar] [CrossRef]
- Yang, J.; Wang, D.; Han, H.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909. [Google Scholar] [CrossRef]
- Li, X.; Hao, X.; Abudula, A.; Guan, G. Nanostructured catalysts for electrochemical water splitting: Current state and prospects. J. Mater. Chem. A 2016, 4, 11973–12000. [Google Scholar] [CrossRef]
- Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S.Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812. [Google Scholar] [CrossRef]
- Takanabe, K.; Domen, K. Toward Visible Light Response: Overall Water Splitting Using Heterogeneous Photocatalysts. Green 2011, 1, 313–322. [Google Scholar] [CrossRef]
- Juodkazyte, J.; Seniutinas, G.; Sebeka, B.; Savickaja, I.; Malinauskas, T.; Badokas, K.; Juodkazis, K.; Juodkazis, S. Solar water splitting: Efficiency discussion. Int. J. Hydrogen Energy 2016, 41, 11941–11948. [Google Scholar] [CrossRef]
- Qureshi, M.; Garcia-Esparza, A.T.; Jeantelot, G.; Ould-Chikh, S.; Aguilar-Tapia, A.; Hazemann, J.-L.; Basset, J.-M.; Loffreda, D.; le Bahers, T.; Takanabe, K. Catalytic consequences of ultrafine Pt clusters supported on SrTiO3 for photocatalytic overall water splitting. J. Catal. 2019, 376, 180–190. [Google Scholar] [CrossRef]
- Han, K.; Kreuger, T.; Mei, B.; Mul, G. Transient Behavior of Ni@NiOx Functionalized SrTiO3 in Overall Water Splitting. ACS Catal. 2017, 7, 1610–1614. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Q.; Aoki, T.; Crozier, P.A. Structural evolution during photocorrosion of Ni/NiO core/shell cocatalyst on TiO2. J. Phys. Chem. C 2015, 119, 7207–7214. [Google Scholar] [CrossRef]
- Garcia-Esparza, A.T.; Shinagawa, T.; Ould-Chikh, S.; Qureshi, M.; Peng, X.; Wei, N.; Anjum, D.H.; Clo, A.; Weng, T.-C.; Nordlund, D.; et al. An Oxygen-Insensitive Hydrogen Evolution Catalyst Coated by a Molybdenum-Based Layer for Overall Water Splitting. Angew. Chem. Int. Ed. 2017, 56, 5780–5784. [Google Scholar] [CrossRef]
- Gustavsson, J.; Li, G.; Hummelgard, C.; Backstrom, J.; Cornell, A. On the suppression of cathodic hypochlorite reduction by electrolyte additions of molybdate and chromate ions. J. Electrochem. Sci. Eng. 2012, 2, 185–198. [Google Scholar] [CrossRef]
- Busser, G.W.; Mei, B.; Weide, P.; Vesborg, P.C.K.; Stührenberg, K.; Bauer, M.; Huang, X.; Willinger, M.-G.; Chorkendorff, I.; Schlögl, R.; et al. Cocatalyst designing: A regenerable molybdenum-containing ternary cocatalyst system for efficient photocatalytic water splitting. ACS Catal. 2015, 5, 5530–5539. [Google Scholar] [CrossRef]
- Endrődi, B.; Diaz-Morales, O.; Mattinen, U.; Cuartero, M.; Padinjarethil, A.K.; Simic, N.; Wildlock, M.; Crespo, G.A.; Cornell, A. Selective electrochemical hydrogen evolution on cerium oxide protected catalyst surfaces. Electrochim. Acta 2020, 341, 136022. [Google Scholar] [CrossRef]
- Bhardwaj, A.A.; Vos, J.G.; Beatty, M.E.S.; Baxter, A.F.; Koper, M.T.M.; Yip, N.Y.; Esposito, D.V. Ultrathin silicon oxide overlayers enable selective oxygen evolution from acidic and unbuffered pH-neutral seawater. ACS Catal. 2021, 11, 1316–1330. [Google Scholar] [CrossRef]
- Takata, T.; Pan, C.; Nakabayashi, M.; Shibata, N.; Domen, K. Fabrication of a core–shell-type photocatalyst via photodeposition of group IV and V transition metal oxyhydroxides: An effective surface modification method for overall water splitting. J. Am. Chem. Soc. 2015, 137, 9627–9634. [Google Scholar] [CrossRef]
- Yoshida, M.; Maeda, K.; Lu, D.; Kubota, J.; Domen, K. Lanthanoid Oxide Layers on Rhodium-Loaded (Ga1−xZnx)(N1−xOx) Photocatalyst as a Modifier for Overall Water Splitting under Visible-Light Irradiation. J. Phys. Chem. C 2013, 117, 14000–14006. [Google Scholar] [CrossRef]
- Gomes, A.S.O.; Busch, M.; Wildlock, M.; Simic, N.; Ahlberg, E. Understanding Selectivity in the Chlorate Process: A Step towards Efficient Hydrogen Production. ChemistrySelect 2018, 3, 6683–6690. [Google Scholar] [CrossRef]
- Gustavsson, J.; Nylén, L.; Cornell, A. Rare earth metal salts as potential alternatives to Cr (VI) in the chlorate process. J. Appl. Electrochem. 2010, 40, 1529–1536. [Google Scholar] [CrossRef]
- Hedenstedt, K.; Gomes, A.S.O.; Busch, M.; Ahlberg, E. Study of hypochlorite reduction related to the sodium chlorate process. Electrocatalysis 2016, 7, 326–335. [Google Scholar] [CrossRef]
- Tidblad, A.A.; Lindbergh, G. Surface analysis with ESCA and GD-OES of the film formed by cathodic reduction of chromate. Electrochim. Acta 1991, 36, 1605–1610. [Google Scholar] [CrossRef]
- Cornell, A.; Lindbergh, G.; Simonsson, D. The effect of addition of chromate on the hydrogen evolution reaction and on iron oxidation in hydroxide and chlorate solutions. Electrochim. Acta 1992, 37, 1873–1881. [Google Scholar] [CrossRef]
- Maeda, K.; Teramura, K.; Lu, D.; Saito, N.; Inoue, Y.; Domen, K. Noble-metal/Cr(2)O(3) core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting. Angew. Chem. Int. Ed. 2006, 45, 7806–7809. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Teramura, K.; Lu, D.; Saito, N.; Inoue, Y.; Domen, K. Roles of Rh/Cr2O3 (Core/Shell) Nanoparticles Photodeposited on Visible-Light-Responsive (Ga1−xZnx)(N1−xOx) Solid Solutions in Photocatalytic Overall Water Splitting. J. Phys. Chem. C 2007, 111, 7554–7560. [Google Scholar] [CrossRef]
- Dionigi, F.; Vesborg, P.C.; Pedersen, T.; Hansen, O.; Dahl, S.; Xiong, A.; Maeda, K.; Domen, K.; Chorkendorff, I. Suppression of the water splitting back reaction on GaN: ZnO photocatalysts loaded with core/shell cocatalysts, investigated using a μ-reactor. J. Catal. 2012, 292, 26–31. [Google Scholar] [CrossRef]
- Busser, G.W.; Mei, B.; Pougin, A.; Strunk, J.; Gutkowski, R.; Schuhmann, W.; Willinger, M.-G.; Schlögl, R.; Muhler, M. Photodeposition of Copper and Chromia on Gallium Oxide: The Role of Co-Catalysts in Photocatalytic Water Splitting. ChemSusChem 2014, 7, 1030–1034. [Google Scholar] [CrossRef]
- Chiang, T.H.; Lyu, H.; Hisatomi, T.; Goto, Y.; Takata, T.; Katayama, M.; Minegishi, T.; Domen, K. Efficient photocatalytic water splitting using Al-doped SrTiO3 coloaded with molybdenum oxide and rhodium–chromium oxide. ACS Catal. 2018, 8, 2782–2788. [Google Scholar] [CrossRef]
- Godin, R.; Hisatomi, T.; Domen, K.; Durrant, J.R. Understanding the visible-light photocatalytic activity of GaN:ZnO solid solution: The role of Rh2−yCryO3 cocatalyst and charge carrier lifetimes over tens of seconds. Chem. Sci. 2018, 9, 7546–7555. [Google Scholar] [CrossRef] [Green Version]
- Kanazawa, T.; Maeda, K. Light-induced synthesis of heterojunctioned nanoparticles on a semiconductor as durable cocatalysts for hydrogen evolution. ACS Appl. Mater. Interfaces 2016, 8, 7165–7172. [Google Scholar] [CrossRef]
- European Chemicals Agency (ECHA). Authorization List (Annex XIV of REACH). Available online: https://echa.europa.eu/authorisation-list (accessed on 4 January 2022).
- Yoshida, M.; Takanabe, K.; Maeda, K.; Ishikawa, A.; Kubota, J.; Sakata, Y.; Ikezawa, Y.; Domen, K. Role and function of noble-metal/Cr-layer core/shell structure cocatalysts for photocatalytic overall water splitting studied by model electrodes. J. Phys. Chem. C 2009, 113, 10151–10157. [Google Scholar] [CrossRef]
- Lindbergh, G.; Simonsson, D. Inhibition of cathode reactions in sodium hydroxide solution containing chromate. Electrochim. Acta 1991, 36, 1985–1994. [Google Scholar] [CrossRef]
- Qureshi, M.; Shinagawa, T.; Tsiapis, N.; Takanabe, K. Exclusive Hydrogen Generation by Electrocatalysts Coated with an Amorphous Chromium-Based Layer Achieving Efficient Overall Water Splitting. ACS Sustain. Chem. Eng. 2017, 5, 8079–8088. [Google Scholar] [CrossRef]
- Robinson, J.E.; Labrador, N.Y.; Chen, H.; Sartor, B.E.; Esposito, D.V. Silicon oxide-encapsulated platinum thin films as highly active electrocatalysts for carbon monoxide and methanol oxidation. ACS Catal. 2018, 8, 11423–11434. [Google Scholar] [CrossRef]
- Smulders, V.; Simic, N.; Gomes, A.S.; Mei, B.; Mul, G. Electrochemical formation of Cr (III)-based films on Au electrodes. Electrochim. Acta 2019, 296, 1115–1121. [Google Scholar] [CrossRef]
- Aguilar, M.; Barrera, E.; Palomar-Pardavé, M.; Huerta, L.; Muhl, S. Characterization of black and white chromium electrodeposition films: Surface and optical properties. J. Non Cryst. Solids 2003, 329, 31–38. [Google Scholar] [CrossRef]
- Aguilar-Sánchez, M.; Palomar-Pardavé, M.; Romero-Romo, M.; Ramírez-Silva, M.; Barrera, E.; Scharifker, B. Electrochemical nucleation and growth of black and white chromium deposits onto stainless steel surfaces. J. Electroanal. Chem. 2010, 647, 128–132. [Google Scholar] [CrossRef]
- Endrodi, B.; Simic, N.; Wildlock, M.; Cornell, A. A review of chromium (VI) use in chlorate electrolysis: Functions, challenges and suggested alternatives. Electrochim. Acta 2017, 234, 108–122. [Google Scholar] [CrossRef]
- Tidblad, A.A.; Mirtensson, J. In situ ellipsometric characterization of films formed by cathodic reduction of chromate. Electrochim. Acta 1997, 42, 389–398. [Google Scholar] [CrossRef]
- Kita, H. Periodic variation of exchange current density of hydrogen electrode reaction with atomic number and reaction mechanism. J. Electrochem. Soc. 1966, 113, 1095. [Google Scholar] [CrossRef]
- Moffat, T.P.; Yang, H.; Fan, F.-R.F.; Bard, A.J. Electron-Transfer Reactions on Passive Chromium. J. Electrochem. Soc. 1992, 139, 3158–3167. [Google Scholar] [CrossRef]
- Jo, W.J.; Katsoukis, G.; Frei, H. Ultrathin Amorphous Silica Membrane Enhances Proton Transfer across Solid-to-Solid Interfaces of Stacked Metal Oxide Nanolayers while Blocking Oxygen. Adv. Funct. Mater. 2020, 30, 1909262. [Google Scholar] [CrossRef]
- Gough, D.A.; Leypoldt, J.K. Membrane-covered, rotated disk electrode. Anal. Chem. 1979, 51, 439–444. [Google Scholar] [CrossRef]
- Ogumi, Z.; Takehara, Z.; Yoshizawa, S. Gas permeation in SPE method: I. Oxygen permeation through Nafion and NEOSEPTA. J. Electrochem. Soc. 1984, 131, 769–773. [Google Scholar] [CrossRef]
- Watanabe, M.; Igarashi, H.; Yosioka, K. An experimental prediction of the preparation condition of Nafion-coated catalyst layers for PEFCs. Electrochim. Acta 1995, 40, 329–334. [Google Scholar] [CrossRef]
- Mello, R.M.; Ticianelli, E.A. Kinetic study of the hydrogen oxidation reaction on platinum and Nafion® covered platinum electrodes. Electrochim. Acta 1997, 42, 1031–1039. [Google Scholar] [CrossRef]
- Seo, T.; Kurokawa, R.; Sato, B. A convenient method for determining the concentration of hydrogen in water: Use of methylene blue with colloidal platinum. Med. Gas Res. 2012, 2, 1. [Google Scholar] [CrossRef]
- Cuesta, A.; Couto, A.; Rincón, A.; Pérez, M.; López-Cudero, A.; Gutiérrez, C. Potential dependence of the saturation CO coverage of Pt electrodes: The origin of the pre-peak in CO-stripping voltammograms. Part 3: Pt(poly). J. Electroanal. Chem. 2006, 586, 184–195. [Google Scholar] [CrossRef]
- Łukaszewski, M.; Soszko, M.; Czerwinski, A. Electrochemical methods of real surface area determination of noble metal electrodes—An overview. Int. J. Electrochem. Sci. 2016, 11, 4442–4469. [Google Scholar] [CrossRef]
- Cuesta, A.; Gutiérrez, C. Catalysis in Electrochemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 339–373. [Google Scholar]
- Hanawa, H.; Kunimatsu, K.; Uchida, H.; Watanabe, M. In situ ATR-FTIR study of bulk CO oxidation on a polycrystalline Pt electrode. Electrochim. Acta 2009, 54, 6276–6285. [Google Scholar] [CrossRef]
- McPherson, I.J.; Ash, P.A.; Jones, L.; Varambhia, A.; Jacobs, R.M.J.; Vincent, K.A. Electrochemical CO Oxidation at Platinum on Carbon Studied through Analysis of Anomalous in Situ IR Spectra. J. Phys. Chem. C 2017, 121, 17176–17187. [Google Scholar] [CrossRef] [PubMed]
- Spiccia, L.; Marty, W. The fate of “active” chromium hydroxide, Cr(OH)3·3H2O, in aqueous suspension. Study of the chemical changes involved in its aging. Inorg. Chem. 1986, 25, 266–271. [Google Scholar] [CrossRef]
- Spiccia, L.; Stoeckli-Evans, H.; Marty, W.; Giovanoli, R. A new “active” chromium(III) hydroxide: Cr2(.mu.-OH)2(OH)4(OH2)4·2H2O. Characterization and use in the preparation of salts of the (H2O)4Cr(.mu.-OH)2Cr(OH2)44+ ion. Crystal structure of [(H2O)4Cr(.mu.-OH)2Cr(OH2)4][(H3C)3C6H2SO3]4·4H2O. Inorg. Chem. 1987, 26, 474–482. [Google Scholar] [CrossRef]
- Spiccia, L.; Marty, W.; Giovanoli, R. Hydrolytic trimer of chromium (III). Synthesis through chromite cleavage and use in the preparation of the “active” trimer hydroxide. Inorg. Chem. 1988, 27, 2660–2666. [Google Scholar] [CrossRef]
- Torapava, N.; Radkevich, A.; Davydov, D.; Titov, A.; Persson, I. Composition and structure of polynuclear chromium (III) hydroxo complexes. Inorg. Chem. 2009, 48, 10383–10388. [Google Scholar] [CrossRef]
- Stuenzi, H.; Spiccia, L.; Rotzinger, F.P.; Marty, W. Early stages of the hydrolysis of chromium(III) in aqueous solution. 4. The stability constants of the hydrolytic dimer, trimer, and tetramer at 25.degree.C and I = 1.0 M. Inorg. Chem. 1989, 28, 66–71. [Google Scholar] [CrossRef]
- Kankare, J. Sauerbrey equation of quartz crystal microbalance in liquid medium. Langmuir 2002, 18, 7092–7094. [Google Scholar] [CrossRef]
Conc. (µM) | τmin (nm) | τmax (nm) | No. of Monolayers |
---|---|---|---|
1 | 0.10 ± 0.02 | 0.17 ± 0.03 | <1 monolayer |
10 | 0.46 ± 0.09 | 0.77 ± 0.14 | 1 monolayer, approx. |
100 | 1.26 ± 0.07 | 2.11 ± 0.12 | 2–4 monolayers |
1000 | 1.76 ± 0.04 | 2.95 ± 0.07 | 4+ monolayers |
τav (nm) | j0 (A cm−2) | b (mV dec−1) |
---|---|---|
0 (Pt only) | −3.33 | 64 |
0.62 (1 monolayer, approx.) | −3.45 | 60 |
1.69 (2–4 monolayers) | −3.85 | 57 |
2.36 (4+ monolayers) | −4.00 | 55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Worsley, M.; Smulders, V.; Mei, B. Controlled Synthesis of Chromium-Oxide-Based Protective Layers on Pt: Influence of Layer Thickness on Selectivity. Catalysts 2022, 12, 1077. https://doi.org/10.3390/catal12101077
Worsley M, Smulders V, Mei B. Controlled Synthesis of Chromium-Oxide-Based Protective Layers on Pt: Influence of Layer Thickness on Selectivity. Catalysts. 2022; 12(10):1077. https://doi.org/10.3390/catal12101077
Chicago/Turabian StyleWorsley, Myles, Vera Smulders, and Bastian Mei. 2022. "Controlled Synthesis of Chromium-Oxide-Based Protective Layers on Pt: Influence of Layer Thickness on Selectivity" Catalysts 12, no. 10: 1077. https://doi.org/10.3390/catal12101077
APA StyleWorsley, M., Smulders, V., & Mei, B. (2022). Controlled Synthesis of Chromium-Oxide-Based Protective Layers on Pt: Influence of Layer Thickness on Selectivity. Catalysts, 12(10), 1077. https://doi.org/10.3390/catal12101077