Development of Visible-Light-Driven Rh–TiO2–CeO2 Hybrid Photocatalysts for Hydrogen Production
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of Rh–TiO2–CeO2 and Rh–TiO2 Hybrid Photocatalysts
3.3. Characterization
3.4. Photocatalysis Experiments
4. Conclusions
Funding
Conflicts of Interest
References
- Cheng, L.; Xiang, Q.; Liao, Y.; Zhang, H. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Tan, H.L.; Toe, C.Y.; Scott, J.; Wang, L.; Amal, R.; Ng, Y.H. Photocatalytic and photoelectrochemical systems: Similarities and differences. Adv. Mater. 2020, 32, 1904717. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zhang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Jaroniec, M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today 2018, 21, 1042–1063. [Google Scholar] [CrossRef]
- Hong, J.W.; Wi, D.H.; Lee, S.-U.; Han, S.W. Metal–semiconductor heteronanocrystals with desired configurations for plasmonic photocatalysis. J. Am. Chem. Soc. 2016, 138, 15766–15773. [Google Scholar] [CrossRef]
- Yu, E.-J.; Kim, H.C.; Kim, H.J.; Jung, S.-Y.; Ryu, K.-S.; Choi, S.-I.; Hong, J.W. Anisotropic heteronanocrystals of Cu2O–2D MoS2 for efficient visible light driven photocatalysis. Appl. Surf. Sci. 2021, 538, 148159. [Google Scholar] [CrossRef]
- Bang, J.; Das, S.; Yu, E.-J.; Kim, K.; Lim, H.; Kim, S.; Hong, J.W. Controlled photoinduced electron transfer from InP/ZnS quantum dots through Cu doping: A new prototype for the visible-light photocatalytic hydrogen evolution reaction. Nano Lett. 2020, 20, 6263–6271. [Google Scholar] [CrossRef]
- Huang, H.; Dai, B.; Wang, W.; Lu, C.; Kou, J.; Ni, Y.; Wang, L.; Xu, Z. Oriented built-in electric field introduced by surface gradient diffusion doping for enhanced photocatalytic H2 evolution in CdS nanorods. Nano Lett. 2017, 17, 3803–3808. [Google Scholar] [CrossRef]
- Liu, N.; Schneider, C.; Freitag, D.; Hartmann, M.; Venkatesan, U.; Müller, J.; Spiecker, E.; Schmuki, P. Black TiO2 nanotubes: Cocatalyst-free open-circuit hydrogen generation. Nano Lett. 2014, 14, 3309–3313. [Google Scholar] [CrossRef]
- Ju, L.; Qin, J.; Shi, L.; Yang, G.; Zhang, J.; Sun, L. Rolling the WSSe Bilayer into double-walled nanotube for the enhanced photocatalytic water-splitting performance. Nanomaterials 2021, 11, 705. [Google Scholar] [CrossRef]
- Li, C.; Koenigsmann, C.; Ding, W.; Rudshteyn, B.; Yang, K.R.; Regan, K.P.; Konezny, S.J.; Batista, V.S.; Brudvig, G.W.; Schmuttenmaer, C.A. Facet-dependent photoelectrochemical performance of TiO2 nanostructures: An experimental and computational study. J. Am. Chem. Soc. 2015, 137, 1520–1529. [Google Scholar] [CrossRef]
- Kargar, A.; Jing, Y.; Kim, S.J.; Riley, C.T.; Pan, X.; Wang, D. ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano 2013, 7, 11112–11120. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Zhu, Q.; Du, M.; Fan, L.; Xing, M.; Zhang, J. Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting. Angew. Chem. Int. Ed. 2017, 56, 2684–2688. [Google Scholar] [CrossRef]
- Mansingh, S.; Padhi, D.; Parida, K. Enhanced photocatalytic activity of nanostructured Fe doped CeO2 for hydrogen production under visible light irradiation. Int. J. Hydrog. Energy 2016, 41, 14133–14146. [Google Scholar] [CrossRef]
- Wi, D.H.; Park, S.Y.; Lee, S.; Sung, J.; Hong, J.W.; Han, S.W. Metal–semiconductor ternary hybrids for efficient visible-light photocatalytic hydrogen evolution. J. Mater. Chem. A 2018, 6, 13225–13235. [Google Scholar] [CrossRef]
- Sun, B.; Zhou, W.; Li, H.; Ren, L.; Qiao, P.; Li, W.; Fu, H. Synthesis of particulate hierarchical tandem heterojunctions toward optimized photocatalytic hydrogen production. Adv. Mater. 2018, 30, 1804282. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.F.; Su Su Zin, A.K.; Chen, Z.; Liow, C.H.; Phan, H.T.; Tan, H.R.; Xu, Q.-H.; Ho, G.W. Inverse stellation of CuAu-ZnO multimetallic-semiconductor nanostartube for plasmon-enhanced photocatalysis. ACS Nano 2018, 12, 4512–4520. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Hisatomi, T.; Jia, Q.; Tokudome, H.; Zhong, M.; Wang, C.; Pan, Z.; Takata, T.; Nakabayashi, M.; Shibata, N. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 2016, 15, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Ye, X.; Murray, C.B. Size-and shape-selective synthesis of metal nanocrystals and nanowires using CO as a reducing agent. Angew. Chem. Int. Ed. 2010, 49, 6156–6159. [Google Scholar] [CrossRef]
- Qian, K.; Sweeny, B.C.; Johnston-Peck, A.C.; Niu, W.; Graham, J.O.; DuChene, J.S.; Qiu, J.; Wang, Y.-C.; Engelhard, M.H.; Su, D. Surface plasmon-driven water reduction: Gold nanoparticle size matters. J. Am. Chem. Soc. 2014, 136, 9842–9845. [Google Scholar] [CrossRef]
- Ramasamy, K.; Malik, M.A.; Revaprasadu, N.; O’Brien, P. Routes to nanostructured inorganic materials with potential for solar energy applications. Chem. Mater. 2013, 25, 3551–3569. [Google Scholar] [CrossRef]
- Nakibli, Y.; Mazal, Y.; Dubi, Y.; Wächtler, M.; Amirav, L. Size matters: Cocatalyst size effect on charge transfer and photocatalytic activity. Nano Lett. 2018, 18, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Wolff, C.M.; Frischmann, P.D.; Schulze, M.; Bohn, B.J.; Wein, R.; Livadas, P.; Carlson, M.T.; Jäckel, F.; Feldmann, J.; Würthner, F. All-in-one visible-light-driven water splitting by combining nanoparticulate and molecular co-catalysts on CdS nanorods. Nat. Energy 2018, 3, 862–869. [Google Scholar] [CrossRef]
- Zhao, Y.; Min, X.; Ding, Z.; Chen, S.; Ai, C.; Liu, Z.; Yang, T.; Wu, X.; Liu, Y.; Lin, S.; et al. Metal-based nanocatalysts via a universal design on cellular structure. Adv. Sci. 2020, 7, 1902051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Wu, H.B.; Zheng, L.; Zhong, Y.; Hu, Y.; Lou, X.W. Formation of mesoporous heterostructured BiVO4/Bi2S3 hollow discoids with enhanced photoactivity. Angew. Chem. Int. Ed. 2014, 53, 5917–5921. [Google Scholar] [CrossRef]
- Linic, S.; Christopher, P.; Ingram, D.B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921. [Google Scholar] [CrossRef]
- Eskandarloo, H.; Badiei, A.; Behnajady, M.A. TiO2/CeO2 Hybrid photocatalyst with enhanced photocatalytic activity: Optimization of synthesis variables. Ind. Eng. Chem. Res. 2014, 53, 7847–7855. [Google Scholar] [CrossRef]
- Lu, X.; Li, X.; Chen, F.; Chen, Z.; Qian, J.; Zhang, Q. Biotemplating synthesis of N-doped two-dimensional CeO2–TiO2 nanosheets with enhanced visible light photocatalytic desulfurization performance. J. Alloys Compd. 2020, 815, 152326. [Google Scholar] [CrossRef]
- Luo, F.; Guo, L.; Xie, Y.; Xu, J.; Cai, W.; Qu, K.; Yang, Z. Robust hydrogen evolution reaction activity catalyzed by ultrasmall Rh–Rh2P nanoparticles. J. Mater. Chem. A 2020, 8, 12378–12384. [Google Scholar] [CrossRef]
- Soldano, G.; Schulz, E.N.; Salinas, D.R.; Santos, E.; Schmickler, W. Hydrogen electrocatalysis on overlayers of rhodium over gold and palladium substrates—More active than platinum? Phys. Chem. Chem. Phys. 2011, 13, 16437–16443. [Google Scholar] [CrossRef]
- Waqas, M.; Yang, B.; Cao, L.; Zhao, X.; Iqbal, W.; Xiao, K.; Zhu, C.; Zhang, J. Tuning the N-bonded cerium(III) fraction/g-C3N4 interface in hollow structures using an in situ reduction treatment for superior photochemical hydrogen evolution. Catal. Sci. Technol. 2019, 9, 5322–5332. [Google Scholar]
- Wu, L.; Shi, S.; Li, Q.; Zhang, X.; Cui, X. TiO2 nanoparticles modified with 2D MoSe2 for enhanced photocatalytic activity on hydrogen evolution. Int. J. Hydrog. Energy 2019, 44, 720–728. [Google Scholar] [CrossRef]
- Liu, J.; Ke, J.; Li, Y.; Liu, B.J.; Wang, L.D.; Xiao, H.N.; Wang, S.B. Co3O4 quantum dots/TiO2 nanobelt hybrids for highly efficient photocatalytic overall water splitting. Appl. Catal. B-Environ. 2018, 236, 396–403. [Google Scholar] [CrossRef]
- Dubnova, L.; Zvolska, M.; Edelmannova, M.; Matejova, L.; Reli, M.; Drobna, H.; Kustrowski, P.; Koci, K.; Capek, L. Photocatalytic decomposition of methanol-water solution over N-La/TiO2 photocatalysts. Appl. Surf. Sci. 2019, 469, 879–886. [Google Scholar] [CrossRef]
- Xing, X.; Zhu, H.; Zhang, M.; Xiao, L.; Li, Q.; Yang, J. Effect of heterojunctions and phase-junctions on visible-light photocatalytic hydrogen evolution in BCN-TiO2 photocatalysts. Chem. Phys. Lett. 2019, 727, 11–18. [Google Scholar] [CrossRef]
Photocatalyst | Irradiation Condition | Additive | Rate of H2 Production | Ref. |
---|---|---|---|---|
N-CeO2-x/g-C3N4 | Xe lamp (300 W) λ > 420 nm | Methanol | 43 µmol h−1 g−1 | [32] |
MoSe2/TiO2 | Xe lamp (300 W) λ > 420 nm | Methanol | 5.14 µmol h−1 | [33] |
Co3O4 quantum dots on TiO2 | Xe lamp (300 W) 1.5 AM filter | Methanol | 41.8 µmol h−1 g−1 | [34] |
N doped La/TiO2 | Mercury lamp (8 W) λ > 365 nm | Methanol | 8.25 µmol h−1 g−1 | [35] |
BCN-TiO2 | Xe lamp (300 W) λ > 420 nm | Triethanolamine | 68.5 µmol h−1 g−1 | [36] |
Rh-TiO2-CeO2 | Xe lamp (300 W) λ > 400 nm | Methanol | 48.3 µmol h−1 g−1 | This Work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, J.-W. Development of Visible-Light-Driven Rh–TiO2–CeO2 Hybrid Photocatalysts for Hydrogen Production. Catalysts 2021, 11, 848. https://doi.org/10.3390/catal11070848
Hong J-W. Development of Visible-Light-Driven Rh–TiO2–CeO2 Hybrid Photocatalysts for Hydrogen Production. Catalysts. 2021; 11(7):848. https://doi.org/10.3390/catal11070848
Chicago/Turabian StyleHong, Jong-Wook. 2021. "Development of Visible-Light-Driven Rh–TiO2–CeO2 Hybrid Photocatalysts for Hydrogen Production" Catalysts 11, no. 7: 848. https://doi.org/10.3390/catal11070848
APA StyleHong, J.-W. (2021). Development of Visible-Light-Driven Rh–TiO2–CeO2 Hybrid Photocatalysts for Hydrogen Production. Catalysts, 11(7), 848. https://doi.org/10.3390/catal11070848