Multi-Scale Studies of 3D Printed Mn–Na–W/SiO2 Catalyst for Oxidative Coupling of Methane
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Catalysts
2.2. Characterization
2.2.1. Lab Characterization
2.2.2. Synchrotron Characterization
2.3. Catalytic Testing
2.3.1. Fixed Bed Reactor
- CH4 = 96 cms3/min [standard cubic centimeter per minute]
- O2 = 24 cms3/min
- N2 = 96 or 120 cms3/min
- CH4 to O2 to N2 ratio of 4:1:4 or 4:1:5
- Gas hourly space velocity (GHSV): 4080 mLCH4 g−1Cat. h−1
2.3.2. Membrane Reactor
- CH4 = 120 cms3/min
- O2 = 30 cms3/min
- N2 = 150 cms3/min
- CH4 to O2 to N2 ratio of 4:1:5
- Gas hourly space velocity (GHSV): 2400 mLCH4 g−1Cat. h−1
3. Results and Discussion
3.1. Characterization Results
3.2. Catalytic Testing
- (1)
- (2)
- (3)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghanta, M.; Fahey, D.; Subramaniam, B. Environmental impacts of ethylene production from diverse feedstocks and energy sources. Appl. Petrochem. Res. 2014, 4, 167–179. [Google Scholar] [CrossRef]
- Bergmann, M.; Schmitz, A.; Hayden, M.; Kosonen, K. (Eds.) Imposing a Unilateral Carbon Constraint on Energy-Intensive Industries and Its Impact on Their International Competitiveness. Data and Analysis; Publications Office of the European Union: Luxembourg, 2007. [Google Scholar]
- Stünkel, S.; Illmer, D.; Drescher, A.; Schomäcker, R.; Wozny, G. On the design, development and operation of an energy efficient CO2 removal for the oxidative coupling of methane in a miniplant scale. Appl. Therm. Eng. 2012, 43, 141–147. [Google Scholar] [CrossRef]
- Penteado, A.T.; Kim, M.; Godini, H.R.; Esche, E.; Repke, J.-U. Techno-economic evaluation of a biogas-based oxidative coupling of methane process for ethylene production. Front. Chem. Sci. Eng. 2018, 12, 598–618. [Google Scholar] [CrossRef]
- Otsuka, K.; Hatano, M.; Komatsu, T. Synthesis of C2H4 by Partial Oxidation of CH4 Over Transition Metal Oxides With Alkali-Chlorides. In Studies in Surface Science and Catalysis: Methane Conversion; Bibby, D.M., Chang, C.D., Howe, R.F., Yurchak, S., Eds.; Elsevier: Amsterdam, The Netherlands, 1988; pp. 383–387. [Google Scholar]
- Farrell, B.L.; Linic, S. Oxidative coupling of methane over mixed oxide catalysts designed for solid oxide membrane reactors. Catal. Sci. Technol. 2016, 6, 4370–4376. [Google Scholar] [CrossRef]
- Sofranko, J. The oxidative conversion of methane to higher hydrocarbons. J. Catal. 1987, 103, 302–310. [Google Scholar] [CrossRef]
- Matras, D.; Vamvakeros, A.; Jacques, S.D.M.; Middelkoop, V.; Vaughan, G.; Aran, M.A.; Cernik, R.J.; Beale, A.M. In situ X-ray diffraction computed tomography studies examining the thermal and chemical stabilities of working Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes during oxidative coupling of methane. Phys. Chem. Chem. Phys. PCCP 2020, 22, 18964–18975. [Google Scholar] [CrossRef]
- Pak, S.; Qiu, P.; Lunsford, J.H. Elementary Reactions in the Oxidative Coupling of Methane over Mn/Na2WO4/SiO2 and Mn/Na2WO4/MgO Catalysts. J. Catal. 1998, 179, 222–230. [Google Scholar] [CrossRef]
- Mleczko, L.; Baerns, M. Catalytic oxidative coupling of methane—reaction engineering aspects and process schemes. Fuel Process. Technol. 1995, 42, 217–248. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Yang, D.; Gao, R.; Wang, Z.; Yang, J. Scale up and stability test for oxidative coupling of methane over Na2WO4-Mn/SiO2 catalyst in a 200 mL fixed-bed reactor. J. Nat. Gas Chem. 2008, 17, 59–63. [Google Scholar] [CrossRef]
- Lee, J.Y.; Jeon, W.; Choi, J.-W.; Suh, Y.-W.; Ha, J.-M.; Suh, D.J.; Park, Y.K. Scaled-up production of C2 hydrocarbons by the oxidative coupling of methane over pelletized Na2WO4/Mn/SiO2 catalysts: Observing hot spots for the selective process. Fuel 2013, 106, 851–857. [Google Scholar] [CrossRef]
- Tiemersma, T.P.; Chaudhari, A.S.; Gallucci, F.; Kuipers, J.A.M.; van Sint Annaland, M. Integrated autothermal oxidative coupling and steam reforming of methane. Part 1: Design of a dual-function catalyst particle. Chem. Eng. Sci. 2012, 82, 200–214. [Google Scholar] [CrossRef]
- Tiemersma, T.P.; Chaudhari, A.S.; Gallucci, F.; Kuipers, J.A.M.; van Sint Annaland, M. Integrated autothermal oxidative coupling and steam reforming of methane. Part 2: Development of a packed bed membrane reactor with a dual function catalyst. Chem. Eng. Sci. 2012, 82, 232–245. [Google Scholar] [CrossRef]
- Tiemersma, T.P.; Kolkman, T.; Kuipers, J.A.M.; van Sint Annaland, M. A novel autothermal reactor concept for thermal coupling of the exothermic oxidative coupling and endothermic steam reforming of methane. Chem. Eng. J. 2012, 203, 223–230. [Google Scholar] [CrossRef]
- Scher, E.C.; Zurcher, F.R.; Cizeron, J.M.; Schammel, W.P.; Tkachenko, A.; Gamoras, J.; Karshtedt, D.; Greg, N.Y.C.E. Production of Ethylene with Nanowire Catalysts. U.S. Patent 9,718,054, 1 August 2017. [Google Scholar]
- Gao, Y.; Neal, L.; Ding, D.; Wu, W.; Baroi, C.; Gaffney, A.M.; Li, F. Recent Advances in Intensified Ethylene Production—A Review. ACS Catal. 2019, 9, 8592–8621. [Google Scholar] [CrossRef]
- Sadjadi, S.; Simon, U.; Godini, H.R.; Görke, O.; Schomäcker, R.; Wozny, G. Reactor material and gas dilution effects on the performance of miniplant-scale fluidized-bed reactors for oxidative coupling of methane. Chem. Eng. J. 2015, 281, 678–687. [Google Scholar] [CrossRef]
- Zanthoff, H.; Baerns, M. Oxidative coupling of methane in the gas phase. Kinetic simulation and experimental verification. Ind. Eng. Chem. Res. 1990, 29, 2–10. [Google Scholar] [CrossRef]
- Zohour, B.; Noon, D.; Senkan, S. New Insights into the Oxidative Coupling of Methane from Spatially Resolved Concentration and Temperature Profiles. ChemCatChem 2013, 5, 2809–2812. [Google Scholar] [CrossRef]
- Godini, H.R.; Xiao, S.; Kim, M.; Holst, N.; Jašo, S.; Görke, O.; Steinbach, J.; Wozny, G. Experimental and model-based analysis of membrane reactor performance for methane oxidative coupling: Effect of radial heat and mass transfer. J. Ind. Eng. Chem. 2014, 20, 1993–2002. [Google Scholar] [CrossRef]
- Middelkoop, V.; Coenen, K.; Schalck, J.; van Sint Annaland, M.; Gallucci, F. 3D printed versus spherical adsorbents for gas sweetening. Chem. Eng. J. 2019, 357, 309–319. [Google Scholar] [CrossRef]
- Godini, H.R.; Trivedi, H.; de Villasante, A.G.; Görke, O.; Jašo, S.; Simon, U.; Berthold, A.; Witt, W.; Wozny, G. Design and demonstration of an experimental membrane reactor set-up for oxidative coupling of methane. Chem. Eng. Res. Des. 2013, 91, 2671–2681. [Google Scholar] [CrossRef]
- Godini, H.R.; Xiao, S.; Kim, M.; Görke, O.; Song, S.; Wozny, G. Dual-membrane reactor for methane oxidative coupling and dry methane reforming: Reactor integration and process intensification. Chem. Eng. Process. Process Intensif. 2013, 74, 153–164. [Google Scholar] [CrossRef]
- Spallina, V.; Velarde, I.C.; Jimenez, J.A.M.; Godini, H.R.; Gallucci, F.; Annaland, M.V.S. Techno-economic assessment of different routes for olefins production through the oxidative coupling of methane (OCM): Advances in benchmark technologies. Energy Convers. Manag. 2017, 154, 244–261. [Google Scholar] [CrossRef]
- Tonkovich, A.L.Y.; Jimenez, D.M.; Zilka, J.L.; Roberts, G.L. Inorganic membrane reactors for the oxidative coupling of methane. Chem. Eng. Sci. 1996, 51, 3051–3056. [Google Scholar] [CrossRef]
- Bhatia, S.; Thien, C.Y.; Mohamed, A.R. Oxidative coupling of methane (OCM) in a catalytic membrane reactor and comparison of its performance with other catalytic reactors. Chem. Eng. J. 2009, 148, 525–532. [Google Scholar] [CrossRef]
- Shi, J.; Yao, L.; Hu, C. Effect of CO2 on the structural variation of Na2WO4/Mn/SiO2 catalyst for oxidative coupling of methane to ethylene. J. Energy Chem. 2015, 24, 394–400. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, C.-J. Three-dimensional Printing for Catalytic Applications: Current Status and Perspectives. Adv. Funct. Mater. 2017, 27, 1701134. [Google Scholar] [CrossRef]
- Cruellas, A.; Melchiori, T.; Gallucci, F.; van Sint Annaland, M. Advanced reactor concepts for oxidative coupling of methane. Catal. Rev. 2017, 59, 234–294. [Google Scholar] [CrossRef]
- Aigler, J.M.; Lunsford, J.H. Oxidative dimerization of methane over MgO and Li+/MgO monoliths. Appl. Catal. 1991, 70, 29–42. [Google Scholar] [CrossRef]
- Middelkoop, V.; Vamvakeros, A.; de Wit, D.; Jacques, S.D.M.; Danaci, S.; Jacquot, C.; De Vos, Y.; Matras, D.; Price, S.W.; Beale, A.M. 3D printed Ni/Al2O3 based catalysts for CO2 methanation—A comparative and operando XRD-CT study. J. CO2 Util. 2019, 33, 478–487. [Google Scholar] [CrossRef]
- Vamvakeros, A.; Jacques, S.D.M.; Di Michiel, M.; Matras, D.; Middelkoop, V.; Ismagilov, I.Z.; Matus, E.V.; Kuznetsov, V.V.; Drnec, J.; Senecal, P.; et al. 5D operando tomographic diffraction imaging of a catalyst bed. Nat. Commun. 2018, 9, 4751. [Google Scholar] [CrossRef]
- Beale, A.M.; Jacques, S.D.M.; Di Michiel, M.; Mosselmans, J.F.W.; Price, S.W.T.; Senecal, P.; Vamvakeros, A.; Paterson, J. X-ray physico-chemical imaging during activation of cobalt-based Fischer-Tropsch synthesis catalysts. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 2018, 376. [Google Scholar] [CrossRef]
- Beale, A.M.; Jacques, S.D.M.; Gibson, E.K.; Di Michiel, M. Progress towards five dimensional diffraction imaging of functional materials under process conditions. Coord. Chem. Rev. 2014, 277–278, 208–223. [Google Scholar] [CrossRef]
- Vamvakeros, A.; Jacques, S.D.M.; Middelkoop, V.; Di Michiel, M.; Egan, C.K.; Ismagilov, I.Z.; Vaughan, G.B.M.; Gallucci, F.; van Sint Annaland, M.; Shearing, P.R.; et al. Real time chemical imaging of a working catalytic membrane reactor during oxidative coupling of methane. Chem. Commun. 2015, 51, 12752–12755. [Google Scholar] [CrossRef] [PubMed]
- Matras, D.; Jacques, S.D.M.; Poulston, S.; Grosjean, N.; Estruch Bosch, C.; Rollins, B.; Wright, J.; Di Michiel, M.; Vamvakeros, A.; Cernik, R.J.; et al. Operando and Postreaction Diffraction Imaging of the La–Sr/CaO Catalyst in the Oxidative Coupling of Methane Reaction. J. Phys. Chem. C 2019, 123, 1751–1760. [Google Scholar] [CrossRef]
- Vamvakeros, A.; Matras, D.; Jacques, S.D.M.; Di Michiel, M.; Middelkoop, V.; Cong, P.; Price, S.W.; Bull, C.L.; Senecal, P.; Beale, A.M. Real-time tomographic diffraction imaging of catalytic membrane reactors for the oxidative coupling of methane. Catal. Today 2020. [Google Scholar] [CrossRef]
- Matras, D.; Vamvakeros, A.; Jacques, S.; Grosjean, N.; Rollins, B.; Poulston, S.; Stenning, G.B.; Godini, H.; Drnec, J.; Cernik, R.J.; et al. Effect of thermal treatment on the stability of Na-Mn-W/SiO2 Catalyst for the Oxidative Coupling of Methane. Faraday Discuss. 2020. [Google Scholar] [CrossRef]
- Vamvakeros, A.; Matras, D.; Jacques, S.D.M.; Di Michiel, M.; Price, S.W.T.; Senecal, P.; Aran, M.A.; Middelkoop, V.; Stenning, G.B.; Mosselmans, J.F.W.; et al. Real-time multi-length scale chemical tomography of fixed bed reactors during the oxidative coupling of methane reaction. J. Catal. 2020, 386, 39–52. [Google Scholar] [CrossRef]
- Wang, J.; Chou, L.; Zhang, B.; Song, H.; Zhao, J.; Yang, J.; Li, S. Comparative study on oxidation of methane to ethane and ethylene over Na2WO4–Mn/SiO2 catalysts prepared by different methods. J. Mol. Catal. A Chem. 2006, 245, 272–277. [Google Scholar] [CrossRef]
- Serres, T.; Aquino, C.; Mirodatos, C.; Schuurman, Y. Influence of the composition/texture of Mn–Na–W catalysts on the oxidative coupling of methane. Appl. Catal. A Gen. 2015, 504, 509–518. [Google Scholar] [CrossRef]
- Vaughan, G.B.M.; Baker, R.; Barret, R.; Bonnefoy, J.; Buslaps, T.; Checchia, S.; Duran, D.; Fihman, F.; Got, P.; Kieffer, J.; et al. ID15A at the ESRF—A beamline for high speed operando X-ray diffraction, diffraction tomography and total scattering. J. Synchrotron Radiat. 2020, 27 Pt 2, 515–528. [Google Scholar] [CrossRef]
- Kieffer, J.; Petitdemange, S.; Vincent, T. Real-time diffraction computed tomography data reduction. J. Synchrotron Radiat. 2018, 25 Pt 2, 612–617. [Google Scholar] [CrossRef]
- Ashiotis, G.; Deschildre, A.; Nawaz, Z.; Wright, J.P.; Karkoulis, D.; Picca, F.E.; Kieffer, J. The fast azimuthal integration Python library: pyFAI. J. Appl. Crystallogr. 2015, 48 Pt 2, 510–519. [Google Scholar] [CrossRef]
- Vamvakeros, A.; Jacques, S.D.M.; Di Michiel, M.; Middelkoop, V.; Egan, C.K.; Cernik, R.J.; Beale, A.M. Removing multiple outliers and single-crystal artefacts from X-ray diffraction computed tomography data. J. Appl. Crystallogr. 2015, 48, 1943–1955. [Google Scholar] [CrossRef]
- Vamvakeros, A. nDTomo Software Suite. 2018. Available online: https://github.com/antonyvam/nDTomo (accessed on 23 February 2021).
Mn-Na-W/SiO2 Catalyst | ||||
---|---|---|---|---|
Powder | Pellet | 3D Structure | ||
Sample weight | [g] | 0.29 | 0.35 | 0.22 |
Vm | [cm3(STP) g−1] | 8.82 | 0.37 | 2.11 |
as,BET | [m2 g−1] | 38.40 | 1.59 | 9.17 |
Average pore diameter | [nm] | 25.86 | 8.06 | 25.51 |
Spec. Pressure loss | [bar m−1] | 1.00 | 0.27 | 0.05 |
Osithereme type | IV | IV | IV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karsten, T.; Middelkoop, V.; Matras, D.; Vamvakeros, A.; Poulston, S.; Grosjean, N.; Rollins, B.; Gallucci, F.; Godini, H.R.; Jacques, S.D.M.; et al. Multi-Scale Studies of 3D Printed Mn–Na–W/SiO2 Catalyst for Oxidative Coupling of Methane. Catalysts 2021, 11, 290. https://doi.org/10.3390/catal11030290
Karsten T, Middelkoop V, Matras D, Vamvakeros A, Poulston S, Grosjean N, Rollins B, Gallucci F, Godini HR, Jacques SDM, et al. Multi-Scale Studies of 3D Printed Mn–Na–W/SiO2 Catalyst for Oxidative Coupling of Methane. Catalysts. 2021; 11(3):290. https://doi.org/10.3390/catal11030290
Chicago/Turabian StyleKarsten, Tim, Vesna Middelkoop, Dorota Matras, Antonis Vamvakeros, Stephen Poulston, Nicolas Grosjean, Benjamin Rollins, Fausto Gallucci, Hamid R. Godini, Simon D. M. Jacques, and et al. 2021. "Multi-Scale Studies of 3D Printed Mn–Na–W/SiO2 Catalyst for Oxidative Coupling of Methane" Catalysts 11, no. 3: 290. https://doi.org/10.3390/catal11030290
APA StyleKarsten, T., Middelkoop, V., Matras, D., Vamvakeros, A., Poulston, S., Grosjean, N., Rollins, B., Gallucci, F., Godini, H. R., Jacques, S. D. M., Beale, A. M., & Repke, J.-U. (2021). Multi-Scale Studies of 3D Printed Mn–Na–W/SiO2 Catalyst for Oxidative Coupling of Methane. Catalysts, 11(3), 290. https://doi.org/10.3390/catal11030290