Influence of Photo-Deposited Pt and Pd onto Chromium Doped TiO2 Nanotubes in Photo-Electrochemical Water Splitting for Hydrogen Generation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Photo-Electrochemical Characterization
2.3. PEC Water Splitting for H2 Evolution
3. Materials and Methods
3.1. Chemicals
3.2. Fabrication of Nanocomposites (CT) Using In-Situ Electro Anodization
3.3. Photo-Deposition Process
3.4. Characterization of Materials
3.5. Photo-Electrochemical Measurement
3.6. Photo-Electrochemical Water Splitting
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hisatomi, T.; Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2019, 2, 387–399. [Google Scholar] [CrossRef]
- Vinoth Kanna, I.; Paturu, P. A study of hydrogen as an alternative fuel. Int. J. Ambient. Energy 2020, 41, 1433–1436. [Google Scholar] [CrossRef]
- Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535. [Google Scholar] [CrossRef] [PubMed]
- Reddy, I.N.; Reddy, C.V.; Ravindranadh, K.; Cho, M.; Kim, D.; Shim, J. A study of coral reef-like tetragonal Mn3O4 nanostructure photoelectrode for photoelectrochemical water splitting under visible irradiation. J. Electroanal. Chem. 2020, 874, 114488. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nat. Cell Biol. 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Roger, I.; Shipman, M.A.; Symes, M.D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 1–13. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L.; Xiao, Z.; Liu, D.; Wang, S.; Zhang, J.; Hao, Y.; Zhang, W. Hollow sphere TiO2–ZrO2 prepared by self-assembly with polystyrene colloidal template for both photocatalytic degradation and H2 evolution from water splitting. ACS Sustain. Chem. Eng. 2016, 4, 2037–2046. [Google Scholar] [CrossRef]
- Ni, M.; Leung, M.K.; Leung, D.Y.; Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 2007, 11, 401–425. [Google Scholar] [CrossRef]
- Wang, L.; Meng, H.; Shen, P.K.; Bianchini, C.; Vizza, F.; Wei, Z. In situ FTIR spectroelectrochemical study on the mechanism of ethylene glycol electrocatalytic oxidation at a Pd electrode. Phys. Chem. Chem. Phys. 2010, 13, 2667–2673. [Google Scholar] [CrossRef]
- Zhao, C.; Luo, H.; Chen, F.; Zhang, P.; Yi, L.; You, K. A novel composite of TiO2 nanotubes with remarkably high efficiency for hydrogen production in solar-driven water splitting. Energy Environ. Sci. 2014, 7, 1700–1707. [Google Scholar] [CrossRef]
- Ding, L.; Ma, C.; Li, L.; Zhang, L.; Yu, J. A photoelectrochemical sensor for hydrogen sulfide in cancer cells based on the covalently and in situ grafting of CdS nanoparticles onto TiO2 nanotubes. J. Electroanal. Chem. 2016, 783, 176–181. [Google Scholar] [CrossRef]
- Momeni, M.M.; Ghayeb, Y. Photoelectrochemical water splitting on chromium-doped titanium dioxide nanotube photoanodes prepared by single-step anodizing. J. Alloy. Compd. 2015, 637, 393–400. [Google Scholar] [CrossRef]
- Sharifi, T.; Ghayeb, Y.; Mohammadi, T.; Momeni, M.M. Enhanced photoelectrochemical water splitting of CrTiO2 nanotube photoanodes by the decoration of their surface via the photodeposition of Ag and Au. Dalton Trans. 2018, 47, 11593–11604. [Google Scholar] [CrossRef]
- Mohammadi, T.; Ghayeb, Y.; Sharifi, T.; Momeni, M.M. RuO2 photodeposited on W-doped and Cr-doped TiO2 nanotubes with enhanced photoelectrochemical water splitting and capacitor properties. New J. Chem. 2020, 44, 2339–2349. [Google Scholar] [CrossRef]
- Al-Azri, Z.H.; Chen, W.-T.; Chan, A.; Jovic, V.; Ina, T.; Idriss, H.; Waterhouse, G.I. The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: Performance evaluation of M/TiO2 photocatalysts (M= Pd, Pt, Au) in different alcohol–water mixtures. J. Catal. 2015, 329, 355–367. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Z.; Guo, Z.; Yan, W.; Xin, Y. Enhancing light harvesting and charge separation of Cu2O photocathodes with spatially separated noble-metal cocatalysts towards highly efficient water splitting. J. Mater. Chem. A 2018, 6, 20393–20401. [Google Scholar] [CrossRef]
- Reddy, I.N.; Reddy, C.V.; Sreedhar, A.; Cho, M.; Kim, D.; Shim, J. Effect of plasmonic Ag nanowires on the photocatalytic activity of Cu doped Fe2O3 nanostructures photoanodes for superior photoelectrochemical water splitting applications. J. Electroanal. Chem. 2019, 842, 146–160. [Google Scholar] [CrossRef]
- Gaikwad, A.; Tyagi, D.; Betty, C.; Sasikala, R. Photocatalytic and photo electrochemical properties of cadmium zinc sulfide solid solution in the presence of Pt and RuS2 dual co-catalysts. Appl. Catal. A Gen. 2016, 517, 91–99. [Google Scholar] [CrossRef]
- Momeni, M.M.; Mahvari, M.; Ghayeb, Y. Photoelectrochemical properties of iron-cobalt WTiO2 nanotube photoanodes for water splitting and photocathodic protection of stainless steel. J. Electron. Chem. 2019, 832, 7–23. [Google Scholar] [CrossRef]
- Cai, Q.; Liu, Z.; Han, C.; Tong, Z.; Ma, C. CuInS2/Sb2S3 heterostructure modified with noble metal co-catalyst for efficient photoelectrochemical water splitting. J. Alloy. Compd. 2019, 795, 319–326. [Google Scholar] [CrossRef]
- Bowker, M.; Morton, C.; Kennedy, J.; Bahruji, H.; Greves, J.; Jones, W.; Davies, P.R.; Brookes, C.; Wells, P.; Dimitratos, N. Hydrogen production by photoreforming of biofuels using Au, Pd and Au–Pd/TiO2 photocatalysts. J. Catal. 2014, 310, 10–15. [Google Scholar] [CrossRef]
- Momeni, M.M.; Ghayeb, Y.; Ghonchegi, Z. Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visible-light photocatalyst. Ceram. Int. 2015, 41, 8735–8741. [Google Scholar] [CrossRef]
- Momeni, M.M.; Akbarnia, M.; Ghayeb, Y. Preparation of S–W-codoped TiO2 nanotubes and effect of various hole scavengers on their photoelectrochemical activity: Alcohol series. Int. J. Hydrogen Energy 2020, 45, 33552–33562. [Google Scholar] [CrossRef]
- Pisarek, M.; Kędzierzawski, P.; Andrzejczuk, M.; Hołdyński, M.; Mikołajczuk-Zychora, A.; Borodziński, A.; Janik-Czachor, M. TiO2 Nanotubes with Pt and Pd Nanoparticles as Catalysts for Electro-Oxidation of Formic Acid. Materials 2020, 13, 1195. [Google Scholar] [CrossRef] [Green Version]
- Schierbaum, K.; Fischer, S.; Torquemada, M.; De Segovia, J.; Roman, E.; Martin-Gago, J. The interaction of Pt with TiO2 (110) surfaces: A comparative XPS, UPS, ISS, and ESD study. Sur. Sci. 1996, 345, 261–273. [Google Scholar] [CrossRef]
- Su, R.; Dimitratos, N.; Liu, J.; Carter, E.; Althahban, S.; Wang, X.; Shen, Y.; Wendt, S.; Wen, X.; Niemantsverdriet, J. Mechanistic insight into the interaction between a titanium dioxide photocatalyst and Pd cocatalyst for improved photocatalytic performance. ACS Catal. 2016, 6, 4239–4247. [Google Scholar] [CrossRef] [Green Version]
- Grabowska, E.; Marchelek, M.; Klimczuk, T.; Trykowski, G.; Zaleska-Medynska, A. Noble metal modified TiO2 microspheres: Surface properties and photocatalytic activity under UV–vis and visible light. J. Mol. Catal. A Chem. 2016, 423, 191–206. [Google Scholar] [CrossRef]
- Harada, M.; Inada, Y. In situ time-resolved XAFS studies of metal particle formation by photoreduction in polymer solutions. Langmuir 2009, 25, 6049–6061. [Google Scholar] [CrossRef]
- Gomes, J.F.; Lopes, A.; Bednarczyk, K.; Gmurek, M.; Stelmachowski, M.; Zaleska-Medynska, A.; Quinta-Ferreira, M.E.; Costa, R.; Quinta-Ferreira, R.M.; Martins, R.C. Effect of noble metals (Ag, Pd, Pt) loading over the efficiency of TiO2 during photocatalytic ozonation on the toxicity of parabens. ChemEngineering 2018, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Goodman, D.W. Catalytically active gold on ordered titania supports. Chemic. Soc. Rev. 2008, 37, 1860–1870. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, T.; Ghayeb, Y.; Mohammadi, T.; Momeni, M.M.; Bagheri, R.; Song, Z. Surface treatment of titanium by in-situ anodizination and NiO photodeposition: Enhancement of photoelectrochemical properties for water splitting and photocathodic protection of stainless steel. Appl. Phys. A 2021, 127, 1–12. [Google Scholar] [CrossRef]
- Fu, Y.; Wei, Z.; Chen, S.; Li, L.; Feng, Y.; Wang, Y.; Ma, X.; Liao, M.; Shen, P.; Jiang, S. Synthesis of Pd/TiO2 nanotubes/Ti for oxygen reduction reaction in acidic solution. J. Power Sources 2009, 189, 982–987. [Google Scholar] [CrossRef]
- Abida, B.; Chirchi, L.; Baranton, S.; Napporn, T.W.; Kochkar, H.; Léger, J.-M.; Ghorbel, A. Preparation and characterization of Pt/TiO2 nanotubes catalyst for methanol electro-oxidation. Appl. Catal. B Environ. 2011, 106, 609–615. [Google Scholar] [CrossRef]
- Zhang, W.; He, Y.; Zhang, M.; Yin, Z.; Chen, Q. Raman scattering study on anatase TiO2 nanocrystals. J. Phys. D Appl. Phys. 2000, 33, 912–916. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Z. Anodic formation of ordered TiO2 nanotube arrays: Effects of electrolyte temperature and anodization potential. J. Phys. Chem. C 2009, 113, 4026–4030. [Google Scholar] [CrossRef]
- López-Tenllado, F.; Hidalgo-Carrillo, J.; Montes, V.; Marinas, A.; Urbano, F.; Marinas, J.; Ilieva, L.; Tabakova, T.; Reid, F. A comparative study of hydrogen photocatalytic production from glycerol and propan-2-ol on M/TiO2 systems (M= Au, Pt, Pd). Catal. Today 2017, 280, 58–64. [Google Scholar] [CrossRef]
- Li, F.; Huang, H.; Li, G.; Leung, D.Y. TiO2 nanotube arrays modified with nanoparticles of platinum group metals (Pt, Pd, Ru): Enhancement on photoelectrochemical performance. J. Nanoparticle Res. 2019, 21, 29. [Google Scholar] [CrossRef]
- Tauc, J. Absorption edge and internal electric fields in amorphous semiconductors. Mater. Res. Bull. 1970, 5, 721–729. [Google Scholar] [CrossRef]
- Livshits, V.; Philosoph, M.; Peled, E. Direct ethylene glycol fuel-cell stack—study of oxidation intermediate products. J. Power Sources 2008, 178, 687–691. [Google Scholar] [CrossRef]
- Nguyen, S.T.; Lee, J.-M.; Yang, Y.; Wang, X. Excellent durability of substoichiometric titanium oxide as a catalyst support for Pd in alkaline direct ethanol fuel cells. Ind. Eng. Chem. Res. 2012, 51, 9966–9972. [Google Scholar] [CrossRef]
- Yue, H.; Zhao, Y.; Ma, X.; Gong, J. Ethylene glycol: Properties, synthesis, and applications. Chem. Soc. Rev. 2012, 41, 4218–4244. [Google Scholar] [CrossRef] [PubMed]
- Melvin, A.A.; Illath, K.; Das, T.; Raja, T.; Bhattacharyya, S.; Gopinath, C.S. M–Au/TiO2 (M= Ag, Pd, and Pt) nanophotocatalyst for overall solar water splitting: Role of interfaces. Nanoscale 2015, 7, 13477–13488. [Google Scholar] [CrossRef]
- Spanu, D.; Recchia, S.; Mohajernia, S.; Schmuki, P.; Altomare, M. Site-selective Pt dewetting on WO3-coated TiO2 nanotube arrays: An electron transfer cascade-based H2 evolution photocatalyst. Appl. Catal. B Environ. 2018, 237, 198–205. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Altomare, M.; Yoo, J.E.; Taccardi, N.; Schmuki, P. Noble metals on anodic TiO2 nanotube mouths: Thermal dewetting of minimal Pt Co-Catalyst loading leads to significantly enhanced photocatalytic H2 generation. Adv. Energy Mater. 2015, 6, 1501926. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.T.; Yoo, J.; Altomare, M.; Schmuki, P. “Suspended” Pt nanoparticles over TiO2 nanotubes for enhanced photocatalytic H2 evolution. Chem. Commun. 2014, 50, 9653–9656. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.T.; Ozkan, S.; Hejazi, S.; Denisov, N.; Tomanec, O.; Zboril, R.; Schmuki, P. Providing significantly enhanced photocatalytic H2 generation using porous PtPdAg alloy nanoparticles on spaced TiO2 nanotubes. Int. J. Hydrogen Energy 2019, 44, 22962–22971. [Google Scholar] [CrossRef]
- Kwak, B.-S.; Chae, J.-H.; Kim, J.-Y.; Kang, M.-S. Enhanced hydrogen production from methanol/water photo-splitting in TiO2 including Pd component. Bull. Korean Chem. Soc. 2009, 30, 1047–1053. [Google Scholar]
- Beasley, C.; Kumaran Gnanamani, M.; Santillan-Jimenez, E.; Martinelli, M.; Shafer, W.D.; Hopps, S.D.; Wanninayake, N.; Kim, D.Y. Effect of metal work function on hydrogen production from photocatalytic water splitting with MTiO2 catalysts. ChemistrySelect 2020, 5, 1013–1019. [Google Scholar] [CrossRef]
- Van Langeveld, A.; Hendrickx, H.; Nieuwenhuys, B. The surface composition of Pd-Cu alloys: A comparative investigation of photoelectric work function measurements, Auger electron spectroscopy and calculations based on a broken bond approximation. Thin Solid Films 1983, 109, 179–192. [Google Scholar] [CrossRef]
Name | Electrolyte | Light Source | Rate of H2 Evolution | Reference |
---|---|---|---|---|
1Pt-3WO3-TiO2 NTs | Water with 20 vol% ethanol | UV | 5 µL h−1 | [43] |
Pt-TiO2 NT | Water with 20 vol% ethanol | UV | 0.31 mL h−1 | [44] |
Pt-TiO2 NTs | Na2SO4 (2 M) | Vis | 27.4 µ mol h−1 | [37] |
Pt-TiO2 NTs | Water-ethanol | UV | ≈ 0.11 mL h−1 | [45] |
Pd-TiO2 NTs | Water with 50 vol% methanol | UV | 70 µL h−1 | [46] |
Pd-TiO2 | Methanol-water (1:1) | UV | ≈ 0.35 mL h−1 | [47] |
Pd-TiO2 NTs | Na2SO4 (2 M) | Vis | 28.9 µ mol h−1 | [37] |
Pt1Pd1Ag6-TiO2 NTs | Water with 50 vol% methanol | UV | 70 µL h−1 | [46] |
Pt-CT-3 | KOH (1 M) with 5 vol% EG | Vis | 1.08 mL h−1 | This work |
Pd-CT-5 | KOH (1 M) with 5 vol% EG | Vis | 0.65 mL h−1 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharifi, T.; Mohammadi, T.; Momeni, M.M.; Kusic, H.; Kraljic Rokovic, M.; Loncaric Bozic, A.; Ghayeb, Y. Influence of Photo-Deposited Pt and Pd onto Chromium Doped TiO2 Nanotubes in Photo-Electrochemical Water Splitting for Hydrogen Generation. Catalysts 2021, 11, 212. https://doi.org/10.3390/catal11020212
Sharifi T, Mohammadi T, Momeni MM, Kusic H, Kraljic Rokovic M, Loncaric Bozic A, Ghayeb Y. Influence of Photo-Deposited Pt and Pd onto Chromium Doped TiO2 Nanotubes in Photo-Electrochemical Water Splitting for Hydrogen Generation. Catalysts. 2021; 11(2):212. https://doi.org/10.3390/catal11020212
Chicago/Turabian StyleSharifi, Tayebeh, Tecush Mohammadi, Mohamad Mohsen Momeni, Hrvoje Kusic, Marijana Kraljic Rokovic, Ana Loncaric Bozic, and Yousef Ghayeb. 2021. "Influence of Photo-Deposited Pt and Pd onto Chromium Doped TiO2 Nanotubes in Photo-Electrochemical Water Splitting for Hydrogen Generation" Catalysts 11, no. 2: 212. https://doi.org/10.3390/catal11020212