Filtration Efficiency and Regeneration Behavior in a Catalytic Diesel Particulate Filter with the Use of Diesel/Polyoxymethylene Dimethyl Ether Mixture
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Size-Dependent Particulate Number Removal Efficiency
2.2. Regeneration Behavior of the cDPF
3. Experimental Methods
3.1. Experimental Setup and Fuels
3.2. Experimental Procedure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Wang, Y.; Bai, Y.; Wang, P.; Zhao, Y. An overview of physical and chemical features of diesel exhaust particles. J. Energy Inst. 2019, 92, 1864–1888. [Google Scholar] [CrossRef]
- Gao, J.; Wang, X.; Song, P.; Tian, G.; Ma, C. Review of the backfire occurrences and control strategies for port hydrogen injection internal combustion engines. Fuel 2022, 307, 121553. [Google Scholar] [CrossRef]
- Chen, H.; Su, X.; He, J.; Zhang, P.; Xu, H.; Zhou, C. Investigation on combustion characteristics of cyclopentanol/diesel fuel blends in an optical engine. Renew. Energy 2021, 167, 811–829. [Google Scholar] [CrossRef]
- Ge, J.C.; Yoon, S.K.; Choi, N.J. Using Canola Oil Biodiesel as an Alternative Fuel in Diesel Engines: A Review. Appl. Sci. 2017, 7, 881. [Google Scholar] [CrossRef]
- Mohankumar, S.; Senthilkumar, P. Particulate matter formation and its control methodologies for diesel engine: A comprehensive review. Renew. Sust. Energy Rev. 2017, 80, 1227–1238. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Bai, Y.; Guo, F.; Wang, D. Oxidation and nanostructural characterization of exhaust particulates from gasoline/diesel dual-fuel combustion. Fuel 2021, 298, 120837. [Google Scholar] [CrossRef]
- Chen, Z.M.; He, J.J.; Chen, H.; Geng, L.M.; Zhang, P. Comparative study on the combustion and emissions of dual-fuel common rail engines fueled with diesel/methanol, diesel/ethanol, and diesel/n-butanol. Fuel 2021, 304, 121360. [Google Scholar] [CrossRef]
- Kang, W.; Choi, B.; Jung, S.; Park, S. PM and NOx reduction characteristics of LNT/DPF plus SCR/DPF hybrid system. Energy 2018, 143, 439–447. [Google Scholar] [CrossRef]
- Ge, J.C.; Choi, N.J. Soot Particle Size Distribution, Regulated and Unregulated Emissions of a Diesel Engine Fueled with Palm Oil Biodiesel Blends. Energies 2020, 13, 5736. [Google Scholar] [CrossRef]
- Ge, J.C.; Kim, H.Y.; Yoon, S.K.; Choi, N.J. Reducing volatile organic compound emissions from diesel engines using canola oil biodiesel fuel and blends. Fuel 2018, 218, 266–274. [Google Scholar] [CrossRef]
- Ge, J.C.; Kim, H.Y.; Yoon, S.K.; Choi, N.J. Optimization of palm oil biodiesel blends and engine operating parameters to improve performance and PM morphology in a common rail direct injection diesel engine. Fuel 2020, 260, 116326. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Bai, Y. Oxidation behaviors and nanostructure of particulate matter produced from a diesel engine fueled with n-pentanol and 2-ethylhexyl nitrate additives. Fuel 2021, 288, 119844. [Google Scholar] [CrossRef]
- Eastwood, P. Particulate Emissions from Vehicles; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Liu, H.Y.; Wang, Z.; Zhang, J.; Wang, J.X.; Shuai, S.J. Study on combustion and emission characteristics of Polyoxymethylene Dimethyl Ethers/diesel blends in light-duty and heavy-duty diesel engines. Appl. Energy 2017, 185, 1393–1402. [Google Scholar] [CrossRef]
- Liu, J.H.; Liu, Z.G.; Wang, L.J.; Wang, P.; Sun, P.; Ma, H.J.; Wu, P.C. Effects of PODE/diesel blends on particulate matter emission and particle oxidation characteristics of a common-rail diesel engine. Fuel Process. Technol. 2021, 212. [Google Scholar] [CrossRef]
- Zhao, Y.W.; Geng, C.; Weibo, E.; Li, X.Q.; Cheng, P.Y.; Niu, T.L. Experimental study on the effects of blending PODEn on performance, combustion and emission characteristics of heavy-duty diesel engines meeting China VI emission standard. Sci. Rep. 2021, 11, 9514. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Su, X.; Li, J.H.; Zhong, X.L. Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine. Energy 2019, 171, 981–999. [Google Scholar] [CrossRef]
- Tan, Y.R.; Botero, M.L.; Sheng, Y.; Dreyer, J.A.H.; Xu, R.; Yang, W.M.; Kraft, M. Sooting characteristics of polyoxymethylene dimethyl ether blends with diesel in a diffusion flame. Fuel 2018, 224, 499–506. [Google Scholar] [CrossRef]
- Zhao, Y.; Xie, Y.; Wang, X.; Li, Z.; Niu, T.; Liu, S. Energy balance analysis, combustion characteristics, and particulate number concentration-NO trade-off of a heavy-duty diesel engine fueled with various PODEn/diesel blends. Energy Convers. Manag. 2020, 225, 113489. [Google Scholar] [CrossRef]
- He, J.J.; Chen, H.; Su, X.; Xie, B.; Li, Q.W. Combustion Study of Polyoxymethylene Dimethyl Ethers and Diesel Blend Fuels on an Optical Engine. Energies 2021, 14, 4608. [Google Scholar] [CrossRef]
- Lin, Q.J.; Tay, K.L.; Yu, W.B.; Zong, Y.C.; Yang, W.M.; Rivellini, L.H.; Ma, M.T.; Lee, A.K.Y. Polyoxymethylene dimethyl ether 3 (PODE3) as an alternative fuel to reduce aerosol pollution. J. Clean. Prod. 2021, 285, 124857. [Google Scholar] [CrossRef]
- Wang, T.; Liu, J.; Sun, P.; Ji, Q.; Gao, W.; Yang, C. Influence of injection parameters on combustion, gaseous emissions and particle size distribution of a CRDI diesel engine operating with PODE/diesel blends. Fuel 2020, 281. [Google Scholar] [CrossRef]
- Chen, H.; Huang, R.; Huang, H.; Pan, M.; Teng, W. Potential improvement in particulate matter’s emissions reduction from diesel engine by addition of PODE and injection parameters. Appl. Therm. Eng. 2019, 150, 591–604. [Google Scholar] [CrossRef]
- Guan, B.; Zhan, R.; Lin, H.; Huang, Z. Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines. J. Environ. Manag. 2015, 154, 225–258. [Google Scholar] [CrossRef]
- Tsuneyoshi, K.; Yamamoto, K. A study on the cell structure and the performances of wall-flow diesel particulate filter. Energy 2012, 48, 492–499. [Google Scholar] [CrossRef]
- Pérez, V.R.; Bueno-López, A. Catalytic regeneration of Diesel Particulate Filters: Comparison of Pt and CePr active phases. Chem. Eng. J. 2015, 279, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Lisi, L.; Landi, G.; Di Sarli, V. The Issue of Soot-Catalyst Contact in Regeneration of Catalytic Diesel Particulate Filters: A Critical Review. Catalysts 2020, 10, 1307. [Google Scholar] [CrossRef]
- Guo, Y.; Stevanovic, S.; Verma, P.; Jafari, M.; Jabbour, N.; Brown, R.; Cravigan, L.; Alroe, J.; Osuagwu, C.G.; Brown, R.; et al. An experimental study of the role of biodiesel on the performance of diesel particulate filters. Fuel 2019, 247, 67–76. [Google Scholar] [CrossRef]
- Rodríguez-Fernandez, J.; Lapuerta, M.; Sanchez-Valdepenas, J. Regeneration of diesel particulate filters Effect of renewable fuels. Renew. Energy 2017, 104, 30–39. [Google Scholar] [CrossRef]
- Boehman, A.L.; Song, J.; Alam, M. Impact of Biodiesel Blending on Diesel Soot and the Regeneration of Particulate Filters. Energy Fuels 2005, 19, 1857–1864. [Google Scholar] [CrossRef]
- Buono, D.; Senatore, A.; Prati, M.V. Particulate filter behaviour of a Diesel engine fueled with biodiesel. Appl. Therm. Eng. 2012, 49, 147–153. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, G.; Shen, Y.; Li, B.; Li, Q. Effects of Oxygenated Biomass Fuels on the Performance of Diesel Engine and After-Treatment System. J. Energy Resour. Technol. 2021, 143. [Google Scholar] [CrossRef]
- Liu, J.H.; Sun, P.; Huang, H.; Meng, J.; Yao, X.H. Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends. Appl. Energy 2017, 202, 527–536. [Google Scholar] [CrossRef]
- Tan, P.-q.; Zhong, Y.-m.; Hu, Z.-y.; Lou, D.-m. Size distributions, PAHs and inorganic ions of exhaust particles from a heavy duty diesel engine using B20 biodiesel with different exhaust aftertreatments. Energy 2017, 141, 898–906. [Google Scholar] [CrossRef]
- Rounce, P.; Tsolakis, A.; York, A.P.E. Speciation of particulate matter and hydrocarbon emissions from biodiesel combustion and its reduction by aftertreatment. Fuel 2012, 96, 90–99. [Google Scholar] [CrossRef]
- Orihuela, M.P.; Gómez-Martín, A.; Miceli, P.; Becerra, J.A.; Chacartegui, R.; Fino, D. Experimental measurement of the filtration efficiency and pressure drop of wall-flow diesel particulate filters (DPF) made of biomorphic Silicon Carbide using laboratory generated particles. Appl. Therm. Eng. 2018, 131, 41–53. [Google Scholar] [CrossRef]
- Apicella, B.; Mancaruso, E.; Russo, C.; Tregrossi, A.; Oliano, M.M.; Ciajolo, A.; Vaglieco, B.M. Effect of after-treatment systems on particulate matter emissions in diesel engine exhaust. Exp. Therm. Fluid Sci. 2020, 116. [Google Scholar] [CrossRef]
- Yang, H.; Li, X.; Wang, Y.; Mu, M.; Li, X.; Kou, G. Experimental investigation into the oxidation reactivity and nanostructure of particulate matter from diesel engine fuelled with diesel/polyoxymethylene dimethyl ethers blends. Sci. Rep. 2016, 6, 37611. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.Z.; Liu, Q.S.; Wang, Q.X.; Zhou, C.Z.; Mo, C.L.; Wang, X.Q. Experimental investigation of particle emissions under different EGR ratios on a diesel engine fueled by blends of diesel/gasoline/n-butanol. Energy Convers. Manag. 2016, 121, 212–223. [Google Scholar] [CrossRef]
- Iwata, H.; Konstandopoulos, A.; Nakamura, K.; Ogyu, K.; Ohno, K. Experimental Study of Physical and Chemical Properties of Soot under Several EGR Conditions; SAE Technical Paper 2014-01-1593; SAE: Warrendale, PA, USA, 2014. [Google Scholar]
- Wang, S.; Zhu, X.; Somers, L.M.T.; de Goey, L.P.H. Effects of exhaust gas recirculation at various loads on diesel engine performance and exhaust particle size distribution using four blends with a research octane number of 70 and diesel. Energy Convers. Manag. 2017, 149, 918–927. [Google Scholar] [CrossRef]
- Gill, S.S.; Turner, D.; Tsolakis, A.; York, A.P. Controlling soot formation with filtered EGR for diesel and biodiesel fuelled engines. Environ. Sci. Technol. 2012, 46, 4215–4222. [Google Scholar] [CrossRef]
- Gill, S.S.; Turner, D.; Tsolakis, A.; York, A.P. Understanding the Role of Filtered EGR on PM Emissions; SAE Technical Paper 2011-01-2080; SAE: Warrendale, PA, USA, 2011. [Google Scholar]
- Gill, S.S.; Chatha, G.S.; Tsolakis, A. Analysis of reformed EGR on the performance of a diesel particulate filter. Int. J. Hydrogen Energy 2011, 36, 10089–10099. [Google Scholar] [CrossRef]
- Stanmore, B.R.; Brilhac, J.F.; Gilot, P. The oxidation of soot: A review of experiments, mechanisms and models. Carbon 2001, 39, 2247–2268. [Google Scholar] [CrossRef]
- Chen, H.; He, J.J.; Hua, H.N. Investigation on Combustion and Emission Performance of a Common Rail Diesel Engine Fueled with Diesel/Biodiesel/Polyoxymethylene Dimethyl Ethers Blends. Energy Fuels 2017, 31, 11710–11722. [Google Scholar] [CrossRef]
- Chen, H.; He, J.; Chen, Z.; Geng, L. A comparative study of combustion and emission characteristics of dual-fuel engine fueled with diesel/methanol and diesel–polyoxymethylene dimethyl ether blend/methanol. Process. Saf. Environ. Prot. 2021, 147, 714–722. [Google Scholar] [CrossRef]
Engine Type | In-Line, Four-Cylinder, Turbocharged, Water-Cooling |
---|---|
Bore × stroke [mm] | 105 × 130 |
Displacement [L] | 4.5 |
Compression ratio | 18:1 |
Combustion chamber | ω type |
Max. torque [N·m @ rpm] | 520 @ 1600–1800 |
Max. power [kW @ rpm] | 113 @ 2300 |
Parameter | Value |
---|---|
Substrate material | SiC |
Diameter [mm] | 190.5 |
Length [mm] | 177.8 |
Pore density [cpsi] | 300 |
Wall thickness | 0.23 |
Catalysts and ratios | Pt:Pd = 12:1 |
Catalyst mass [g/L] | 0.106 |
Step | Engine Speed [rpm] | BMEP [MPa] | EGR Ratio [%] | Operating Duration [min] |
---|---|---|---|---|
1 | 2000 | 0.92 | 0 | 60 |
2 | 1600 | 0.42 | 12 | 20 |
3 | 2000 | 0.14 | 0 | 20 |
4 | 2000 | 0.42 | 0 | 20 |
5 | 2000 | 0.70 | 0 | 20 |
6 | 2000 | 0.92 | 0 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Su, X.; Wang, X.; Sun, F.; Zhang, P.; Geng, L.; Wang, H. Filtration Efficiency and Regeneration Behavior in a Catalytic Diesel Particulate Filter with the Use of Diesel/Polyoxymethylene Dimethyl Ether Mixture. Catalysts 2021, 11, 1425. https://doi.org/10.3390/catal11121425
Chen H, Su X, Wang X, Sun F, Zhang P, Geng L, Wang H. Filtration Efficiency and Regeneration Behavior in a Catalytic Diesel Particulate Filter with the Use of Diesel/Polyoxymethylene Dimethyl Ether Mixture. Catalysts. 2021; 11(12):1425. https://doi.org/10.3390/catal11121425
Chicago/Turabian StyleChen, Hao, Xin Su, Xiaochen Wang, Fengyu Sun, Peng Zhang, Liming Geng, and Haifeng Wang. 2021. "Filtration Efficiency and Regeneration Behavior in a Catalytic Diesel Particulate Filter with the Use of Diesel/Polyoxymethylene Dimethyl Ether Mixture" Catalysts 11, no. 12: 1425. https://doi.org/10.3390/catal11121425
APA StyleChen, H., Su, X., Wang, X., Sun, F., Zhang, P., Geng, L., & Wang, H. (2021). Filtration Efficiency and Regeneration Behavior in a Catalytic Diesel Particulate Filter with the Use of Diesel/Polyoxymethylene Dimethyl Ether Mixture. Catalysts, 11(12), 1425. https://doi.org/10.3390/catal11121425