Ethanol Dehydrogenation to Acetaldehyde over Co@N-Doped Carbon
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalysts Characterization
2.2. Gas-Phase Catalytic Reactions of Ethanol in a Flow Reactor
3. Experimental
3.1. Materials
3.2. Catalysts Preparation
3.2.1. Preparation of Co@NC-ZIF and Co@NC-Gr
3.2.2. Preparation of Co@NC-ZIFSA and Co@NC-GrSA
3.2.3. Preparation of CoC-Gr
3.2.4. Preparation of NC-Gr
3.3. Catalysts Characterization Techniques
3.4. Catalytic Performance Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serrano-Ruiz, J.C.; Luque, R.A. Sepulveda-Escribano, Transformations of biomass-derived platform molecules: From high added-value chemicals to fuels via aqueous-phase processing. Chem. Soc. Rev. 2011, 40, 5266–5281. [Google Scholar] [CrossRef] [PubMed]
- Farmer, T.J.; Mascal, M. Platform Molecules. In Introduction to Chemicals from Biomass; Clark, J., Deswarte, F., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2015; pp. 89–155. [Google Scholar] [CrossRef]
- Angelici, C.; Weckhuysen, B.M.; Bruijnincx, P.C.A. Chemocatalytic Conversion of Ethanol into Butadiene and Other Bulk Chemicals. ChemSusChem 2013, 6, 1595–1614. [Google Scholar] [CrossRef]
- Abdulrazzaq, H.T.; Schwartz, T.J. Catalytic Conversion of Ethanol to Commodity and Specialty Chemicals. In Ethanol: Science and Engineering; Basile, A., Adolfo, I., Francesco, D., Nejat, V.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–24. [Google Scholar] [CrossRef]
- Grim, R.G.; To, A.T.; Farberow, C.A.; Hensley, J.E.; Ruddy, D.A.; Schaidle, J.A. Growing the Bioeconomy through Catalysis: A Review of Recent Advancements in the Production of Fuels and Chemicals from Syngas-Derived Oxygenates. ACS Catal. 2019, 9, 4145–4172. [Google Scholar] [CrossRef]
- Szymanski, G.S.; Rychlicki, G.; Terzyk, A.P. Catalytic conversion of ethanol on carbon catalysts. Carbon 1994, 32, 265–271. [Google Scholar] [CrossRef]
- Klinthongchai, Y.; Prichanont, S.; Praserthdam, P.; Jongsomjit, B. Synthesis, characteristics and application of mesocellular foam carbon (MCF-C) as catalyst for dehydrogenation of ethanol to acetaldehyde. J. Environ. Chem. Eng. 2020, 8, 103752. [Google Scholar] [CrossRef]
- Ob-eye, J.; Praserthdam, P.; Jongsomjit, B. Ethanol Dehydrogenation to Acetaldehyde over Activated Carbons-Derived from Coffee Residue. Bull. Chem. React. Eng. Catal. 2019, 14, 268–282. [Google Scholar] [CrossRef] [Green Version]
- Tveritinova, E.A.; Zhitnev, Y.N.; Chernyak, S.A.; Arkhipova, E.A.; Savilov, S.V.; Lunin, V.V. Catalytic Conversion of Aliphatic Alcohols on Carbon Nanomaterials: The Roles of Structure and Surface Functional Groups. Russ. J. Phys. Chem. A 2017, 91, 448–454. [Google Scholar] [CrossRef]
- Jasińska, J.; Krzyżyńska, B.; Kozłowski, M. Influence of activated carbon modifications on their catalytic activity in methanol and ethanol conversion reactions. Cent. Eur. J. Chem. 2011, 9, 925–931. [Google Scholar] [CrossRef]
- Li, S.; Wang, W.; Liu, X.; Zeng, X.; Li, W.; Tsubaki, N.; Yu, S. Nitrogen-doped graphene nanosheets as metal-free catalysts for dehydrogenation reaction of ethanol. RSC Adv. 2016, 6, 13450–13455. [Google Scholar] [CrossRef]
- Grunewald, G.C.; Drago, R.S. Carbon Molecular Sieves as Catalysts and Catalyst Supports. J. Am. Chem. Soc. 1991, 113, 1636–1639. [Google Scholar] [CrossRef]
- Wang, Q.-N.; Shi, L.; Lu, A.-H. Highly Selective Copper Catalyst Supported on Mesoporous Carbon for the Dehydrogenation of Ethanol to Acetaldehyde. ChemCatChem 2015, 7, 2846–2852. [Google Scholar] [CrossRef]
- Lu, W.-D.; Wang, Q.-N.; He, L.; Li, W.-C.; Schuth, F.; Lu, A.-H. Copper Supported on Hybrid C@SiO2 Hollow Submicron Spheres as Active Ethanol Dehydrogenation Catalyst. ChemNanoMat 2018, 4, 505–509. [Google Scholar] [CrossRef]
- Ob-eye, J.; Praserthdam, P.; Jongsomjit, B. Dehydrogenation of Ethanol to Acetaldehyde over Different Metals Supported on Carbon Catalysts. Catalysts 2019, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-Y.; Lu, W.-D.; He, L.; Schüth, F.; Lu, A.-H. Tailoring the Surface Structure of Silicon Carbide Support for Copper Catalyzed Ethanol Dehydrogenation. ChemCatChem 2019, 11, 481–487. [Google Scholar] [CrossRef]
- Thumbayil, R.P.; Christensen, D.B.; Mielby, J.; Kegnæs, S. Dehydrogenation of bioethanol using Cu nanoparticles supported on N-doped ordered mesoporous carbon. ChemCatChem 2020, 12, 5644–5655. [Google Scholar] [CrossRef]
- Liu, L.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118, 4981–5079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, J.; Kammert, J.D.; Kaylor, N.; Zheng, J.W.; Choi, E.; Pham, H.N.; Sang, X.; Stavitski, E.; Attenkofer, K.; Unocic, R.R.; et al. Atomically Dispersed Co and Cu on N-Doped Carbon for Reactions Involving C–H Activation. ACS Catal. 2018, 8, 3875–3884. [Google Scholar] [CrossRef]
- Cui, X.; Li, Y.; Bachmann, S.; Scalone, M.; Surkus, A.-E.; Junge, K.; Topf, C.; Beller, M. Synthesis and Characterization of Iron–Nitrogen-Doped Graphene/Core–Shell Catalysts: Efficient Oxidative Dehydrogenation of N-Heterocycles. J. Am. Chem. Soc. 2015, 137, 10652–10658. [Google Scholar] [CrossRef]
- Iosub, A.V.; Stahl, S.S. Catalytic Aerobic Dehydrogenation of Nitrogen Heterocycles Using Heterogeneous Cobalt Oxide Supported on Nitrogen-Doped Carbon. Org. Lett. 2015, 17, 4404–4407. [Google Scholar] [CrossRef]
- Banerjee, D.; Jagadeesh, R.V.; Junge, K.; Pohl, M.-M.; Radnik, J.; Bruckner, A.; Beller, M. Convenient and Mild Epoxidation of Alkenes Using Heterogeneous Cobalt Oxide Catalysts. Angew. Chem. Int. Ed. 2014, 53, 4359–4363. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, E.; Hu, C.; Zhao, Y.; Zhang, H.; Zhang, Y.; Ji, M.; Yu, J.; Cong, G.; Liu, H.; et al. Controlled Synthesis of Co@N-Doped Carbon by Pyrolysis of ZIF with 2-Aminobenzimidazole Ligand for Enhancing Oxygen Reduction Reaction and the Application in Zn−Air Battery. ACS Appl. Mater. Interfaces 2020, 12, 11693–11701. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fu, H.; Li, W.; Zheng, J.; Li, X. Metal (metal = Fe, Co), N codoped nanoporous carbon for efficient electrochemical oxygen reduction. RSC Adv. 2014, 4, 37779–37785. [Google Scholar] [CrossRef]
- Sahraie, N.R.; Kramm, U.I.; Steinberg, J.; Zhang, Y.; Thomas, A.; Reier, T.; Paraknowitsch, J.-P.; Strasser, P. Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts. Nat. Commun. 2015, 6, 8618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morozan, A.; Goellner, V.; Nedellec, Y.; Hannauer, J.; Jaouen, F. Effect of the Transition Metal on Metal–Nitrogen–Carbon Catalysts for the Hydrogen Evolution Reaction. J. Electrochem. Soc. 2015, 162, H719–H726. [Google Scholar] [CrossRef]
- Jagadeesh, R.V.; Junge, H.; Pohl, M.-M.; Radnik, J.; Brückner, A.; Beller, M. Selective oxidation of alcohols to esters using heterogeneous Co3O4–N@C catalysts under mild conditions. J. Am. Chem. Soc. 2013, 135, 10776–10782. [Google Scholar] [CrossRef]
- Su, H.; Zhang, K.-X.; Zhang, B.; Wang, H.-H.; Yu, Q.-Y.; Li, X.-H.; Antonietti, M.; Chen, J.-S. Activating cobalt nanoparticles via the Mott–Schottky effect in nitrogen rich carbon shells for base-free aerobic oxidation of alcohols to esters. J. Am. Chem. Soc. 2017, 139, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Zhong, W.; Liu, H.; Bai, C.; Liao, S.; Li, Y. Base-free oxidation of alcohols to esters at room temperature and atmospheric conditions using nanoscale co-based catalysts. ACS Catal. 2015, 5, 1850–1863. [Google Scholar] [CrossRef]
- Zhou, Y.-X.; Chen, Y.-Z.; Cao, L.; Lu, J.; Giang, H.-L. Conversion of a metal–organic framework to N-doped porous carbon incorporating Co and CoO nanoparticles: Direct oxidation of alcohols to esters. Chem. Commun. 2015, 51, 8292–8295. [Google Scholar] [CrossRef]
- Eisenberg, D.; Slot, T.K.; Rothenberg, G. Understanding oxygen activation on metal- and nitrogen-codoped carbon catalysts. ACS Catal. 2018, 8, 8618–8629. [Google Scholar] [CrossRef]
- Yasukawa, T.; Yang, X.; Kobayashi, S. Development of N-doped carbon-supported cobalt/copper bimetallic nanoparticle catalysts for aerobic oxidative esterifications based on polymer incarceration methods. Org. Lett. 2018, 20, 5172–5176. [Google Scholar] [CrossRef]
- Astrakova, T.V.; Chernov, A.N.; Sobolev, V.I.; Koltunov, K.Y. Effect of bases on catalytic properties of cobalt-nitrogen-carbon composites in oxidative esterification of benzyl alcohol with methanol. Russ. J. Appl. Chem. 2019, 92, 295–299. [Google Scholar] [CrossRef]
- Tang, C.; Surkus, A.-E.; Chen, F.; Pohl, M.-M.; Agostini, G.; Schneider, M.; Junge, H.; Beller, M. A stable nanocobalt catalyst with highly dispersed CoNx active sites for the selective dehydrogenation of formic acid. Angew. Chem. Int. Ed. 2017, 56, 16616–16620. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Surkus, A.-E.; Rabeah, J.; Anwar, M.; Dastigir, S.; Junge, H.; Bruckner, A.; Beller, M. Cobalt Single-Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid. Angew. Chem. Int. Ed. 2020, 59, 15849–15854. [Google Scholar] [CrossRef] [PubMed]
- Chernov, A.N.; Astrakova, T.V.; Sobolev, V.I.; Koltunov, K.Y. Liquid versus gas phase dehydrogenation of formic acid over Co@N-doped carbon materials. The role of single atomic sites. Mol. Catal. 2021, 504, 111457. [Google Scholar] [CrossRef]
- Astrakova, T.V.; Sobolev, V.I.; Koltunov, K.Y. Facile mechanochemical synthesis of Co@NC catalysts for oxidative esterification of benzyl alcohol with methanol. Catal. Commun. 2020, 137, 105952. [Google Scholar] [CrossRef]
- Sobolev, V.I.; Koltunov, K.Y. MoVNbTe Mixed Oxides as Efficient Catalyst for Selective Oxidation of Ethanol to Acetic Acid. ChemCatChem 2011, 3, 1143–1145. [Google Scholar] [CrossRef]
- Sobolev, V.I.; Koltunov, K.Y.; Simakova, O.A.; Leino, A.-R.; Murzin, D.Y. Low temperature gas-phase oxidation of ethanol over Au/TiO2. Appl. Catal. A 2012, 433–434, 88–95. [Google Scholar] [CrossRef]
- Vodyankina, O.V.; Blokhina, A.S.; Kurzina, I.A.; Sobolev, V.I.; Koltunov, K.Y.; Chukhlomina, L.N.; Dvilis, E.S. Selective oxidation of alcohols over Ag-containing Si3N4 catalysts. Catal. Today 2013, 203, 127–132. [Google Scholar] [CrossRef]
- Li, Z.Q.; Lu, C.J.; Xia, Z.P.; Zhou, Y.; Luo, Z. X-ray diffraction patterns of graphite and turbostratic carbon. Carbon 2007, 45, 1686–1695. [Google Scholar] [CrossRef]
- Mekhemer, G.A.H.; Abd-Allah, H.M.M.; Mansour, S.A.A. Surface characterization of silica-supported cobalt oxide catalysts. Coll. Surf. A 1999, 160, 251–259. [Google Scholar] [CrossRef]
- Guan, Y.; Hensen, E.J.M. Ethanol dehydrogenation by gold catalysts: The effect of the gold particle size and the presence of oxygen. Appl. Catal. A 2009, 361, 49–56. [Google Scholar] [CrossRef]
- Blokhinaa, A.S.; Kurzina, I.A.; Sobolev, V.I.; Koltunov, K.Y.; Mamontov, G.V.; Vodyankina, O.V. Selective Oxidation of Alcohols over Si3N4 Supported Silver Catalysts. Kinet. Catal. 2012, 53, 477–481. [Google Scholar] [CrossRef]
- Torbina, V.V.; Vodyankin, A.A.; Ten, S.; Mamontov, G.V.; Salaev, M.A.; Sobolev, V.I.; Vodyankina, O.V. Ag-Based Catalysts in Heterogeneous Selective Oxidation of Alcohols: A Review. Catalysts 2018, 8, 447. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.; Han, S.; Mao, K.; Chen, C.; Yang, L.; Zou, Z.; Guc, M.; Hu, Z.; Yang, H. Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibers for oxygen reduction with high activity and remarkable durability. Nano Energy 2018, 52, 485–493. [Google Scholar] [CrossRef]
- Ob-Eye, J.; Jongsomjit, B. Dehydrogenation of ethanol to acetaldehyde over Co/C catalysts. Eng. J. 2019, 23, 1–13. [Google Scholar] [CrossRef]
| ||||
Catalyst | Reaction Temperature (°C) | Ethanol Conversion (%) | Selectivity to Acetaldehyde (%) | Ref. |
NC-Gr | 400 | 25 | 91 | This work |
Co@C-Gr | 400 | 52 | 82 | This work |
Co@NC-GrSA | 400 | 66 | 84 | This work |
300 | 15 | 97 | ||
MCF-C b | 400 | 17 | 80 | [7] |
NG c | 350 | ~10 | ~100 | [11] |
AC-D d | 400 | 48 | 98 | [8,47] |
CNT-AO e | 300 | 59 | 97 | [9] |
Co/ACC f | 400 | 7 | 93 | [15] |
4%Co/C g | 400 | 54 | 92 | [47] |
Cu/ACC h | 350 | 65 | 96 | [15] |
1Cu/NMC-7 i | 350 | 57 | 99 | [17] |
Cu/MC j | 280 | 83 | 95 | [13] |
Cu/C/SiC k | 280 | 66 | 99 | [16] |
Entry | Catalyst | Cobalt Salt/L a | Carbon Support b (wt.%) | Pyrolysis (°C, h, Gas) | Co c (wt.%) | SBET (m2 g−1) |
---|---|---|---|---|---|---|
1 | Co@NC-ZIF d | Co2/L2 = 1:40 | - | 850, 2, Ar | 32.8 | 174 |
2 | Co@NC-ZIFSA e | - | - | - | 10.9 | 507 |
3 | Co@NC-Gr f | Co1/L1 = 1:2 | 65 | 800, 2, Ar | 5.0 | 93 |
4 | Co@NC-GrSA e | - | - | - | 1.8 | 45 |
5 | Co@C-Gr f | Co1 | 80 | 800, 2, Ar | 5.3 | 234 |
6 | NC-Gr f | L1 | 77 | 800, 2, Ar | 0.0 | 202 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernov, A.N.; Astrakova, T.V.; Koltunov, K.Y.; Sobolev, V.I. Ethanol Dehydrogenation to Acetaldehyde over Co@N-Doped Carbon. Catalysts 2021, 11, 1411. https://doi.org/10.3390/catal11111411
Chernov AN, Astrakova TV, Koltunov KY, Sobolev VI. Ethanol Dehydrogenation to Acetaldehyde over Co@N-Doped Carbon. Catalysts. 2021; 11(11):1411. https://doi.org/10.3390/catal11111411
Chicago/Turabian StyleChernov, Aleksey N., Tatiana V. Astrakova, Konstantin Yu. Koltunov, and Vladimir I. Sobolev. 2021. "Ethanol Dehydrogenation to Acetaldehyde over Co@N-Doped Carbon" Catalysts 11, no. 11: 1411. https://doi.org/10.3390/catal11111411
APA StyleChernov, A. N., Astrakova, T. V., Koltunov, K. Y., & Sobolev, V. I. (2021). Ethanol Dehydrogenation to Acetaldehyde over Co@N-Doped Carbon. Catalysts, 11(11), 1411. https://doi.org/10.3390/catal11111411