Degradation of Anti-Inflammatory Drugs in Synthetic Wastewater by Solar Photocatalysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Catalyst Preparation
2.2.2. Catalyst Characterization
2.3. Experimental Setup
2.4. Range of Operating Parameters
2.5. Solution Preparation
3. Results and Discussion
3.1. Surface Morphology and Cu-Coated TiO2 Catalyst Structure
3.1.1. SEM Analysis
3.1.2. EDS Analysis
3.2. FTIR Analysis
3.3. Operating Parameters Effect on DIC, IBN, and MFA Degradation
3.3.1. Influence of pH
3.3.2. Effect of H2O2 Loading
3.3.3. Effect of Catalyst Loading
3.4. Comparison of Catalysts Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature and Abbreviations
Nomenclature | |
TiO2 | Titanium dioxide. |
H2O2 | Hydrogen peroxide. |
C | Concentration of electrolyte |
Cu doped | Copper doping. |
pH | Water acidity. |
QUV,n | Accumulated solar energy per unit volume of wastewater (kJ/L) |
R | Removal |
Abbreviations | |
AIMD | Anti-inflammatory drugs. |
DCF | Diclofenac sodium. |
IBN | Ibuprofen. |
MFA | Mefenamic acid. |
References
- Jedziniak, P.; Szprengier-Juszkiewicz, T.; Pietruk, K.; Śledzińska, E.; Żmudzki, J. Determination of non-steroidal anti-inflammatory drugs and their metabolites in milk by liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2012, 403, 2955–2963. [Google Scholar] [CrossRef] [PubMed]
- Al-Khazrajy, O.S.A.; Boxall, A.B.A. Risk-based prioritization of pharmaceuticals in the natural environment in Iraq. Environ. Sci. Pollut. Res. 2016, 23, 15712–15726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moribe, K.; Kinoshita, R.; Higashi, K.; Tozuka, Y.; Yamamoto, K. Coloration phenomenon of mefenamic acid in mesoporous silica FSM-16. Chem. Pharmac. Bull. 2010, 58, 214–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehinto, A.C.; Hill, E.M.; Tyler, C.R. Uptake and Biological Effects of Environmentally Relevant Concentrations of the Nonsteroidal Anti-inflammatory Pharmaceutical Diclofenac in Rainbow Trout (Oncorhynchus mykiss). Environ. Sci. Technol. 2010, 44, 2176–2182. [Google Scholar] [CrossRef]
- Daouk, S.; Chèvre, N.; Vernaz, N.; Widmer, C.; Daali, Y.; Fleury-Souverain, S. Dynamics of active pharmaceutical ingredients loads in a Swiss university hospital wastewaters and prediction of the related environmental risk for the aquatic ecosystems. Sci. Total Environ. 2016, 547, 244–253. [Google Scholar] [CrossRef]
- Chen, P.; Lv, W.; Chen, Z.; Ma, J.; Li, R.; Yao, K.; Liu, G.; Li, F. Phototrans formation of mefenamic acid induced by nitrite ions in water: Mechanism, toxicity, and degradation pathways. Environm. Sci. Polluti. Res. 2015, 22, 12585–12596. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Zhang, X. Titanium Dioxide Photocatalysis: Present Situation and Future Approaches. Comptes Rendus Chimie 2006, 9, 750–760. [Google Scholar] [CrossRef]
- Azzaz, A.A.; Assadi, A.A.; Jellali, S.; Bouzaza, A.; Wolbert, D.; Rtimi, S.; Bousselmi, L. Photoreactor using immobilized titanium dioxide: Effect of zinc and sodium chloride. J. Photochem. Photobiol. A Chem. 2015, 358, 111–120. [Google Scholar] [CrossRef]
- Raorane, D.V.; Chavan, P.S.; Pednekar, S.R.; Chaughule, R.S. Green and Rapid Synthesis of Copper-Doped TiO2 Nanoparticles with Increased Photocatalytic Activity. Adv. Chem. Sci. 2017, 6, 13–20. [Google Scholar] [CrossRef]
- Sahu, M.; Biswas, P. Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor. Nanoscale Res. Lett. 2011, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Abid, M.F.; Ebrahim, M.; Nafi, O.; Hussain, L.; Maneual, N.; Sameer, A. Designing and operating a pilot plant for purification of industrial wastewater from toxic organic compounds by utilizing solar energy. Korean J. Chem. Eng. 2014, 31, 1194–1203. [Google Scholar] [CrossRef]
- Abid, M.F.; Hamiedi, S.T.; Ibrahim, S.I.; Al-Nasri, S.K. Removal of toxic organic compounds from synthetic wastewater by a solar photocatalysis system. Desalination Water Treat. 2018, 105, 119–125. [Google Scholar] [CrossRef]
- Shivaraju, H.P.; Muzakkira, N.; Shahmoradi, B. Photocatalytic treatment of oil and grease spills in wastewater using coated N-doped TiO2 polyscales under sunlight as an alternative driving energy. Int. J. Environ. Sci. Technol. 2016, 13, 2293–2302. [Google Scholar] [CrossRef] [Green Version]
- Shi, R.; Li, Z.; Yu, H.; Shang, L.; Zhou, C.; Waterhouse, G.I.N.; Wu, L.Z.; Zhang, T. Effect of nitrogen doping level on the performance of N-doped carbon quantum dot/TiO2 composites for photocatalytic hydrogen evolution. ChemSusChem 2017, 10, 4650–4656. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.S.; Shah, J.A.; Arshad, M.; Halim, S.A.; Khan, A.; Shaikh, A.J.; Riaz, N.; Khan, A.J.; Arfan, M.; Shahid, M.; et al. Photocatalytic Decolorization and Biocidal Applications of Nonmetal Doped TiO2: Isotherm, Kinetic Modeling and In Silico Molecular Docking Studies. Molecules 2020, 25, 4468. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Riaz, N.; Shaikh, A.J.; Shah, J.A.; Hussain, J.; Irshad, M.; Awan, S.; Syed, A.; Kallerhoff, J.; Arshad, M.; et al. Graphene quantum dot and iron co-doped TiO2 photocatalysts: Synthesis, performance evaluation and phytotoxicity studies. Ecotoxicol. Environ. Saf. 2021, 226, 112855. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, I.H.; Al-Sudani, F.T.; AbdulRazak, A.A.; Aldahri, T.; Rohani, S. Optimization of Congo red dye adsorption from wastewater by a modified commercial zeolite catalyst using response surface modeling approach. Water Sci. Technol. 2021, 83, 1369. [Google Scholar] [CrossRef] [PubMed]
- AbdulRazak, A.A.; Rohani, S. Sodium dodecyl sulfate modified Fe2O3/molecular sieves for removal of rhodamine B dyes. Adv. Mater. Sci. Eng. 2018, 10, 3849867. [Google Scholar] [CrossRef] [Green Version]
- Al-Dahri, T.; AbdulRazak, A.A.; Rohani, S. Preparation and characterization of Linde-type A zeolite (LTA) from coal fly ash by microwave assisted synthesis method: Its application as adsorbent for removal of anionic dyes. Int. J. Coal Prep. Util. 2020, 1–14. [Google Scholar] [CrossRef]
- AbdulRazak, A.A.; Shakor, Z.M.; Rohani, S. Optimizing Biebrich Scarlet removal from water by magnetic zeolite 13X using response surface method. J. Environ. Chem. Eng. 2018, 5, 6175–6183. [Google Scholar] [CrossRef]
- Majid, Z.; AbdulRazak, A.A.; Noori, W.A.H. Modification of zeolite by magnetic nanoparticles for organic dye removal. Arab. J. Sci. Eng. 2019, 446, 5457–5474. [Google Scholar] [CrossRef]
- Krishnaiah, K.; Shahabudeen, P. Applied Design of Experiments and Taguchi Methods; PHI Learning Private Limited: New Delhi, India, 2012; ISBN -978-81-203-4527-0. [Google Scholar]
- Elsalamony, R.; El-Hafiza, D.A. Influence of Preparation Method on Copper Loaded Titania Nanoparticles: Textural, Structural Properties and Its Photocatalytic Activity towards P-Nitrophenol. Chem. Mater. Res. 2014, 64, 122–134. [Google Scholar]
- Shanian, Z.Y.; Abid, M.F.; Sukkar, K.A. Photodegradation of mefenamic acid from wastewater in a continuous flow solar falling film reactor. Desalin. Water Treat. 2021, 210, 22–30. [Google Scholar] [CrossRef]
- Poulios, I.; Tsachpinis, I. Photodegradation of the Textile Dye Reactive Black 5 in the Presence of Semiconducting Oxides. J. Chem. Technol. Biotechnol. 1999, 74, 349–357. [Google Scholar] [CrossRef]
- Preocanin, T.; Kallay, N. Point of Zero Charge and Surface Charge Density of TiO2 in Aqueous Electrolyte Solution as Obtained by Potentiometric Mass Titration. Croat. Chem. Acta 2006, 79, 95–106. [Google Scholar]
- Dixit, A.; Mungray, A.K.; Chakraborty, M. photochemical oxidation of phenol and chlorophenol by UV/H2O2/TiO2 process: A kinetic study. Int. J. Chem. Eng. Appl. 2010, 1, 247–250. [Google Scholar] [CrossRef]
- QianXin, Z.; FengLiang, W.; ZhiJie, X.; YueHan, S.; Ping, C.; Ying, L.; HaiJin, L.; GuoGuang, L. Photocatalytic degradation mechanism of mefenamic acid by N-doped carbon quantum dots loaded on TiO2. China Environ. Sci. 2017, 37, 2930–2940. [Google Scholar]
- Singh, C.; Chaudhary, R.; Gandhi, K. Preliminary study on optimization of pH, oxidant and catalyst dose for high COD content: Solar parabolic trough collector. Iran. J. Environ. Health Sci. Eng. 2013, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- Bakatula, E.N.; Richard, D.; Neculita, C.M.; Zagury, G.J. Determination of point of zero charge of natural organic materials. Environ. Sci. Pollut. Res. Int. 2018, 25, 7823–7833. [Google Scholar] [CrossRef] [PubMed]
- Czupryn, K.; Kocemba, I.; Rynkowski, J. Photocatalytic CO oxidation with water over Pt/TiO2 catalysts. Reac. Kinet. Mech. Cat. 2018, 124, 187–201. [Google Scholar] [CrossRef] [Green Version]
- Ademir, L.X.; Sergio, C. Black body radiation as a function of frequency and wavelength: An experimentally oriented approach. Rev. Bras. Ensino F’ısica 2012, 34, 2304–2307. [Google Scholar]
AIMD Conc. µg/L | pH | H2O2 Loading mg/L | TiO2 Loading mg/L |
---|---|---|---|
1 | 4 | 200 | 100 |
30 | 7 | 400 | 300 |
60 | 9 | 500 | 500 |
100 | 9 | 500 | 500 |
Item | wt% Cu-Coating | Wavelength (nm) | (eV) | Ref. |
---|---|---|---|---|
1 | 0 | 3.87 | 3.20 | present work |
2 | 2.5 | 410 | 2.20 | [24] |
2 | 3.5 | 415 | 1.98 | present work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Jemeli, M.; Mahmoud, M.A.; Majdi, H.S.; Abid, M.F.; Abdullah, H.M.; AbdulRazak, A.A. Degradation of Anti-Inflammatory Drugs in Synthetic Wastewater by Solar Photocatalysis. Catalysts 2021, 11, 1330. https://doi.org/10.3390/catal11111330
Al-Jemeli M, Mahmoud MA, Majdi HS, Abid MF, Abdullah HM, AbdulRazak AA. Degradation of Anti-Inflammatory Drugs in Synthetic Wastewater by Solar Photocatalysis. Catalysts. 2021; 11(11):1330. https://doi.org/10.3390/catal11111330
Chicago/Turabian StyleAl-Jemeli, Marwan, Mahmoud Abbas Mahmoud, Hasan Sh. Majdi, Mohammad Fadhil Abid, Hiba M. Abdullah, and Adnan A. AbdulRazak. 2021. "Degradation of Anti-Inflammatory Drugs in Synthetic Wastewater by Solar Photocatalysis" Catalysts 11, no. 11: 1330. https://doi.org/10.3390/catal11111330
APA StyleAl-Jemeli, M., Mahmoud, M. A., Majdi, H. S., Abid, M. F., Abdullah, H. M., & AbdulRazak, A. A. (2021). Degradation of Anti-Inflammatory Drugs in Synthetic Wastewater by Solar Photocatalysis. Catalysts, 11(11), 1330. https://doi.org/10.3390/catal11111330