# Thermodynamic Analysis of the Landolt-Type Autocatalytic System

## Abstract

**:**

## 1. Introduction

## 2. Results and Discussion

#### 2.1. Thermodynamic Consistency

#### 2.2. Independent and Dependent Reactions

#### 2.3. On Equilibrium and Thermodynamic Driving Forces

#### 2.4. Modeling of Rate Time Profiles

#### 2.5. Empirical Rate Equation

#### 2.6. Note on Diffusion

## 3. Methods

- —
- selection of the degree of the thermodynamic polynomial and writing down the full polynomial,
- —
- some concentrations are expressed from the equilibrium constants of the selected independent reactions and substituted in the equilibrium form of the thermodynamic polynomial,
- —
- restrictions on the polynomial (rate) coefficients follow from the requirement of the general validity of equilibrium [17],
- —
- these restrictions are introduced into the thermodynamic polynomial, this giving its final, simplified form—the rate equation.

## 4. Conclusions

## Supplementary Materials

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Berry, R.S.; Rice, S.A.; Ross, J. Physical Chemistry, 2nd ed.; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Atkins, P.; de Paula, J. Atkin’s Physical Chemistry, 7th ed.; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Houston, P.L. Chemical Kinetics and Reaction Dynamics; McGraw-Hill: New York, NY, USA, 2001. [Google Scholar]
- Bisette, A.J.; Fletcher, S.P. Mechanisms of Autocatalysis. Angew. Chem. Int. Ed.
**2013**, 52, 12800–12826. [Google Scholar] [CrossRef] [PubMed] - Preiner, M.; Xavier, J.C.; Vieirado, N.A.; Kleinermanns, K.; Allen, J.F.; Martin, W.F. Catalysts, autocatalysis and the origin of metabolism. Interface Focus
**2019**, 9, 20190072. [Google Scholar] [CrossRef] - Schuster, P. What is special about autocatalysis? Monatsh. Chem.
**2019**, 150, 763–775. [Google Scholar] [CrossRef] [Green Version] - Khot, A.; Pushpavanamcan, S. Coupled autocatalytic reactions: Interconversion and extinction of species. Chem. Eng. Sci.
**2017**, 160, 254–268. [Google Scholar] [CrossRef] - Woolf, N.J. A Hypothesis about the Origin of Biology. Orig. Life Evol. Biosph.
**2015**, 45, 257–274. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Veldhuis, M.P.; Berg, M.P.; Loreau, M.; Olff, H. Ecological autocatalysis: A central principle in ecosystem organization? Ecol. Monogr.
**2018**, 88, 304–319. [Google Scholar] [CrossRef] [Green Version] - Kauffman, S.A. Autocatalytic sets of proteins. J. Theor. Biol.
**1986**, 119, 1–24. [Google Scholar] [CrossRef] - Hordijk, W.; Steel, M. Detecting autocatalytic, self-sustaining sets in chemical reaction systems. J. Theor. Biol.
**2004**, 227, 451–461. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Mossel, E.; Steel, M. Random biochemical networks: The probability of self-sustaining autocatalysis. J. Theor. Biol.
**2005**, 233, 327–336. [Google Scholar] [CrossRef] [PubMed] - Klussmann, M.; Iwamura, H.; Mathew, S.P.; Wells, D.H.; Pandya1, U.; Armstrong, A.; Blackmond, D.G. Thermodynamic control of asymmetric amplification in amino acid catalysis. Thermodynamic control of asymmetric amplification in amino acid catalysis. Nature
**2006**, 441, 621–623. [Google Scholar] [CrossRef] [PubMed] - Horváth, A.K. Law of Mass Action Type Chemical Mechanisms for Modeling Autocatalysis and Hypercycles: Their Role in the Evolutionary Race. ChemPhysChem
**2020**, 21, 1703–1710. [Google Scholar] [CrossRef] [PubMed] - Pekař, M. Non-Equilibrium Thermodynamics View on Kinetics of Autocatalytic Reactions—Two Illustrative Examples. Molecules
**2021**, 26, 585. [Google Scholar] [CrossRef] [PubMed] - Érdi, P.; Tóth, J. Mathematical Models of Chemical Reactions; Princeton University Press: Princeton, NJ, USA, 1989. [Google Scholar]
- Pekař, M.; Samohýl, I. The Thermodynamics of Linear Fluids and Fluid Mixtures; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Pekař, M. Rates of Reactions as a Mathematical Consequence of the Permanence of Atoms and the Role of Independent Reactions in the Description of Reaction Kinetics. Front. Chem.
**2018**, 6, 287. [Google Scholar] [CrossRef] [PubMed] - Pekař, M. Thermodynamic framework for design of reaction rate equations and schemes. Collect. Czech. Chem. Commun.
**2009**, 74, 1375–1401. [Google Scholar] [CrossRef] - Pekař, M. Thermodynamics and foundations of mass-action kinetics. Prog. React. Kinet. Mech.
**2005**, 30, 3–113. [Google Scholar] [CrossRef] - Pekař, M. Thermodynamic analysis of chemically reacting mixtures—Comparison of first and second order models. Front. Chem.
**2018**, 6, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Bowen, R.M. On the Stoichiometry of Chemically Reacting Systems. Arch. Ration. Mech. Anal.
**1968**, 29, 114–124. [Google Scholar] [CrossRef] - Pekař, M. Reaction-Diffusion Systems: Self-Balancing Diffusion and the Use of the Extent of Reaction as a Descriptor of Reaction Kinetics. ChemRxiv
**2019**. [Google Scholar] [CrossRef] - Samohýl, I.; Malijevský, A. Phenomenological derivation of mass-action law of homogeneous chemical kinetics. Collect. Czech. Chem. Commun.
**1976**, 41, 2131–2142. [Google Scholar] [CrossRef]

**Figure 1.**Modeled rate time profiles. Reaction scheme (R1), rates (1), batch system. Rate constants correspond to the black curve in Figure 1 in ref. [14]: k

_{1}= 10

^{−8}, k

_{2}= 10

^{−3}, k

_{3}= 10

^{4}(all m

^{3}mol

^{−1}s

^{−1}). Insets show details in early times (upper) and r

_{1}profile (lower).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pekař, M.
Thermodynamic Analysis of the Landolt-Type Autocatalytic System. *Catalysts* **2021**, *11*, 1300.
https://doi.org/10.3390/catal11111300

**AMA Style**

Pekař M.
Thermodynamic Analysis of the Landolt-Type Autocatalytic System. *Catalysts*. 2021; 11(11):1300.
https://doi.org/10.3390/catal11111300

**Chicago/Turabian Style**

Pekař, Miloslav.
2021. "Thermodynamic Analysis of the Landolt-Type Autocatalytic System" *Catalysts* 11, no. 11: 1300.
https://doi.org/10.3390/catal11111300