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The thermodynamic method used for the derivation of the thermodynamic polynomial (rate 

equation) originated in a paper by Samohýl and Malijevský [24] and was further developed in 

subsequent work, particularly in [17, 19]. 

 

Equation (4).  

The second-degree polynomial approximating the rate function ([17], p. 251; [19]) is in the case of 

the mixture of A (1), B (2), AB (3), AB2 (4): 

𝐉 = 𝐤0000 + 𝐤1000𝑐1 + 𝐤0100𝑐2 + 𝐤0010𝑐3 + 𝐤0001𝑐4 + 𝐤2000 𝑐1
2 + 𝐤0200 𝑐2

2 + 𝐤0020 𝑐3
2 +

𝐤0002 𝑐4
2 + 𝐤1100𝑐1𝑐2 + 𝐤1010𝑐1𝑐3 + 𝐤1001𝑐1𝑐4 + 𝐤0110𝑐2𝑐3 + 𝐤0101𝑐2𝑐4 + 𝐤0011𝑐3𝑐4. (A1) 

Component numbers instead of symbols were used. The polynomial coefficients -vectors 𝐤𝑖𝑗𝑙𝑚 are 

functions of temperature only and in the end their components represent rate coefficients or 

constants [17] (p. 251), [19]. In equilibrium, where 𝐉 = 0, substituting for 𝑐1,eq and 𝑐2,eq from (5), we 

have: 

0 = 𝐤0000 + (𝐤0010 + 𝐤1100𝐾1
−1𝐾2

−1)𝑐3,eq + (𝐤0020 + 𝐤1001𝐾2
−1 + 𝐤1000𝐾2

−1𝑐4,eq
−1 )𝑐3,eq

2 +

(𝐤0001 + 𝐤0110𝐾1
−1 + 𝐤0100𝐾1

−2𝑐3,eq
−1 + 𝐤0011𝑐3,eq)𝑐4,eq + (𝐤0002 + 𝐤0101𝐾1

−1𝑐3,eq
−1 +

𝐤0200 𝐾1
−2𝑐3,eq

−2 )𝑐4,eq
2 + 𝐤1010𝐾2

−1𝑐4,eq
−1 𝑐3,eq

3 + 𝐤2000𝐾2
−2𝑐4,eq

−2 𝑐3,eq
4 . (A2) 

Identity (A2) should be valid in any equilibrium, consequently, expressions in brackets and following 

coefficients are zero [17] (p. 251), [19]: 

𝐤0000 = 𝐤1000 = 𝐤0100 = 𝐤0011 = 𝐤0002 = 𝐤0101 = 𝐤0200 = 𝐤1010 = 𝐤2000 = 0. (A3) 

From the zero expressions we can derive: 

𝐤0010 = −𝐤1100𝐾1
−1𝐾2

−1,   𝐤0020 = −𝐤1001 𝐾2
−1,   𝐤0001 = −𝐤0110𝐾1

−1. (A4) 

Substituting from (A3) and (A4) into (A1), the thermodynamic polynomial (4) is obtained. 

 

Equations (9.1), (9.2). 

First, the thermodynamic polynomial (4) is transformed to a function of chemical potentials using 

𝑐𝛼 = exp [(𝜇α − 𝜇𝛼
o ) (𝑅𝑇)⁄ ] and −𝑅𝑇 ln𝐾𝑝 = ∑ 𝜇𝛼

o 𝑃𝑝𝛼
𝛼  ([17], pp. 239, 249): 

𝐉 = 𝐤1100exp
−𝜇1

o−𝜇2
o

𝑅𝑇
exp

𝜇1+𝜇2

𝑅𝑇
(1 − exp

𝜇3−𝜇1−𝜇2

𝑅𝑇
) + 𝐤0110exp

−𝜇2
o−𝜇3

o

𝑅𝑇
exp

𝜇2+𝜇3

𝑅𝑇
(1 −

exp
𝜇4−𝜇2−𝜇3

𝑅𝑇
) + 𝐤1001exp

−𝜇1
o−𝜇4

o

𝑅𝑇
exp

𝜇1+𝜇4

𝑅𝑇
(1 − exp

2𝜇3−𝜇1−𝜇4

𝑅𝑇
). (A5) 

The chemical affinities in this simplified scheme are obtained from their general definition 𝐴𝑝 =

∑ 𝜇α𝑃𝑝𝛼
𝛼   ([17], p. 181) as: 

𝐴1 = −𝜇2 − 𝜇3 + 𝜇4, 𝐴2 = −𝜇1 + 2𝜇3 − 𝜇4. (A6) 

The basis vectors necessary to express the constitutional affinities ([17], p. 152) are 𝐟𝜎 = ∑ 𝑆σα𝐞𝛼
𝛼 : 

𝐟1 = (1,0,1,1), 𝐟2 = (0,1,1,2). (A7) 
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The contravariant components 𝑓𝜎𝜏 of the metric tensor ([17], p. 295) obtained by inverting the 

metric tensor in covariant components (𝑓𝜎𝜏 = 𝐟𝜎 . 𝐟𝜏), are also necessary to express the constitutional 

constitutive affinities. In matrix form, these contravariant components are: 

[
4/3 −1
−1 1

].   (A8) 

The constitutional affinities 𝐵𝜎 = ∑ ∑ 𝜇α𝑆τα𝑓𝜎𝜏
𝜏𝛼  ([17], p. 182) then are: 

𝐵1 =
4

3
𝜇1 − 𝜇2 +

1

3
𝜇3 −

2

3
𝜇4,    

𝐵2 = −𝜇1 + 𝜇2 + 𝜇4. . (A9) 

From eqs. (A6) and (A9) the decomposition of the chemical potentials into affinities ([17], p. 181) is 

obtained: 

𝜇1 = −
1

3
𝐴1 −

1

3
𝐴2 + 𝐵1 +

2

3
𝐵2,    

𝜇2 = −
2

3
𝐴1 −

1

3
𝐴2 +

1

3
𝐵2,    

𝜇3 =
1

3
𝐴2 + 𝐵1 + 𝐵2,    

𝜇4 =
1

3
𝐴1 + 𝐵1 +

4

3
𝐵2. (A10) 

The relationships in (A10) are introduced into (A5); equations (9) in the main text follow.  

 

Modeling rate time profiles in CSTR. 

The same cases as in Figures 1 and 2 (main text) were modeled also in a continuous stirred tank 

reactor (CSTR) of constant volume (1 liter) and constant flow rate (1 liter per minute). For readers’ 

convenience the balance equation used in modeling is reported here: 

𝑉
𝑑𝑐𝑖

𝑑𝑡
= 𝐹(𝑐𝑖

0 − 𝑐𝑖) + 𝑉𝐽𝑖. 

𝑉 is the reactor volume, 𝐹 is the flow rate, 𝐽𝑖 represents the reaction rate of the component 𝑖 and 

superscript 0 refers to the input flow. 

Figure S1 shows profiles corresponding to the same kinetic parameters as in Figure 1 in the main 

text. Also here a maximum on 𝑟2 and 𝑟3 profiles is observed. However, the shape of 𝑟1 is completely 

different, this rate has a maximum around the time point when the steep increase of the other two 

rates begins. Even the maximum on 𝑟2 and 𝑟3 profiles is interesting, because it cannot be caused by 

exhaust of reactants as was the case in the batch reactor. It is a kind of “over-shooting” the 

subsequent stationary value by the autocatalytic route with a very high rate constant. The feed into 

the reactor is not sufficient to maintain such high rates and their values drop to stationary values 

reflecting the inflow (model equation with zero derivative). 

In the second modeling case (Figure S2) the two rates of the catalytic route are never higher than 

that of the direct pathway. In the stationary state the latter are several times slower. Although the 

rate constant of the autocatalytic product formation (𝑘3) is much higher than the rate constant of 

the direct pathway the continuous feed of reactants maintains the direct route faster, in contrast to 

the situation in the batch reactor. There is also no maximum on 𝑟2 and 𝑟3 profiles as observed in the 

batch system.  

These are other examples of the importance of concentration values when discussing the kinetics 

of reactions and comparing their rates. 

These rate profiles also demonstrate that coefficients 𝑎 and 𝑏 in (15) are not constants 

throughout the whole profile. Equation (15) thus has theoretical significance and does not simplify 

experiments or data evaluation. 
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Figure S1. Modeled rate time profiles. Reaction scheme (R1), rates (1), CSTR system. Rate constants 

correspond to the black curve in Figure 1 in [14] and to Figure 1 in the main text: k1 = 10–8, k2 = 10–3, 

k3 = 104 (all m3 mol-1 s-1). 

 

 
Figure S2. Modeled rate time profiles. Reaction scheme (R1), rates (1), CSTR system. Rate constants 

correspond to the cyan curve in Figure 1 in [14] and to Figure 2 in the main text:    k1 = k2 = 

3.1623×10–8, k3 = 104 (all m3 mol-1  s-1). 

 

 



4 
 

References (from the main text) 

14. Horváth, A. K. Law of Mass Action Type Chemical Mechanisms for Modeling Autocatalysis and 

Hypercycles: Their Role in the Evolutionary Race. ChemPhysChem, 2020, 21, 1703-1710. 

17. Pekař, M.; Samohýl, I. The Thermodynamics of Linear Fluids and Fluid Mixtures. Springer: Cham, 

Switzerland, 2014.  

19. Pekař, M. Thermodynamic framework for design of reaction rate equations and schemes. Collect. 

Czech. Chem. Commun. 2009, 74, 1375–1401. 

24. Samohýl, I.; Malijevský, A. Phenomenological derivation of mass-action law of homogeneous 

chemical kinetics. Collect. Czech. Chem. Commun. 1976, 41, 2131-2142. 

 


