Pd-HPW/SiO2 Bi-Functional Catalyst: Sonochemical Synthesis, Characterization, and Effect on Octahydroquinazolinone Synthesis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Pd-HPW/SiO2 Bi-Functional Catalyst
2.1.1. FT-IR Spectroscopy
2.1.2. XRD Patterns
2.1.3. N2 Adsorption-Desorption Isotherm
The Measurements of the BET Surface Area
2.1.4. XPS and EDX Analysis of Non-US Pd-HPW/SiO2 Catalyst
2.1.5. SEM Images of Pd-HPW/SiO2
2.2. Study of the Attributes of Ultrasound Effects Significant to the Preparation of 1%Pd-HPW/SiO2
2.3. Catalytic Activity
2.4. Catalyst Reusability
2.5. Probable Mechanism
3. Materials and Methods
3.1. Materials and Instrumentations
3.2. Preparation of the 1%Pd-HPW/SiO2 Bi-Functional Catalyst
3.3. General Procedure for the Synthesis of Octahydrquinazoline Derivatives (4a–f)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shia, L.; Duan, B.; Zhu, Z.; Sun, C.; Zhou, J.; Walsh, A. preparing copper catalyst by ultrasound-assisted chemical precipitation method. Ultrason. Sonochem. 2020, 64, 105013. [Google Scholar] [CrossRef]
- Chen, S.S.; Chen, X.C.; Ling, C.; Jiang, X. Effects of ultrasound on the preparation of Cu-ZnO catalysts in a microreactor. Chin. J. Chem. Eng. 2019, 33, 1092. [Google Scholar]
- Schwarz, J.A. Methods for Preparation of Catalytic Materials. Chem. Rev. 1995, 95, 477–510. [Google Scholar] [CrossRef]
- Onuegbu, T.U.; Ekemezi, P.N. Overview of Green Chemistry, an Effective Pollution Prevention. CSN Mag. 2000, 3, 623. [Google Scholar]
- Rake, I.M.; Romasco, R. Green Power, the Positive Impacts of a Green Chemistry Service-Learning Project. Green Chem. Gen. Reactio 2005, 14, 19. [Google Scholar]
- Behrens, M.; Girgsdies, F.; Anorg, Z. Structural Effects of Cu/Zn Substitution in the Malachite-Rosasite System. Int. J. Inorg. Chem. 2010, 636, 919–927. [Google Scholar] [CrossRef] [Green Version]
- Dastjerdi, N.M.; Ghanbari, M. Ultrasound-promoted green approach for the synthesis of multisubstituted pyridines using stable and reusable SBA-15@ADMPT/H5PW10V2O40 nanocatalyst at room temperature. Green. Chem. Lett. Rev. 2020, 13, 192–205. [Google Scholar] [CrossRef]
- Vesborg, P.C.K.; Chorkendorff, I.B.; Knudsen, I.D.A. Transient behavior of Cu/ZnO-based methanol synthesis catalysts. J. Catal. 2009, 262, 65–72. [Google Scholar] [CrossRef]
- Shishido, T.; Yamamoto, M.; Li, D.; Tian, Y.; Morioka, H.; Honda, M.; Sano, T.; Takehira, K. Water-gas shift reaction over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation. Appl. Catal. A Gen. 2006, 303, 62–71. [Google Scholar] [CrossRef]
- Yan, Q.; Qiu, M.; Chen, X.; Fan, Y. Ultrasound Assisted Synthesis of Size-Controlled Aqueous Colloids for the Fabrication of Nanoporous Zirconia Membrane. Front. Chem. 2019, 7, 337. [Google Scholar] [CrossRef] [Green Version]
- Okuhara, T.; Mizuno, N.; Misono, M. Catalytic chemistry of heteropoly compounds. Adv. Catal. 1996, 41, 113–252. [Google Scholar]
- Kozhevnikov, I.V. Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions. Chem. Rev. 1998, 98, 171–198. [Google Scholar] [CrossRef] [PubMed]
- Misono, M. Unique acid catalysis of heteropoly compounds (heteropolyoxometalates) in the solid-state. Chem. Commun. 2001, 13, 1141–1152. [Google Scholar] [CrossRef]
- Kozhevnikov, I.V. Catalysts for Fine Chemicals. Catalysis by Polyoxometalates; Wiley: Chichester, UK, 2002; p. 2. [Google Scholar]
- Barbier, J. Cooking of Reforming Catalysts. Stud. Surf. Sci. Catal. 1987, 34, 1. [Google Scholar]
- Furimsky, E.; Massoth, F.E. Regeneration of hydroprocessing catalysts. Catal. Today 1993, 17, 537–659. [Google Scholar] [CrossRef]
- Sano, K.; Uchida, H.; Wakabayashi, S. A new process for acetic acid production by direct oxidation of ethylene. Catal. Surv. Jpn. 1999, 3, 55–60. [Google Scholar] [CrossRef]
- Izumi, Y.; Hasebe, R.; Urabe, K. Catalysis by heterogeneous supported heteropoly acid. J. Catal. 1983, 84, 402–409. [Google Scholar] [CrossRef]
- Rocchiccioli-Deltcheff, C.; Amirouche, M.; Herve, G.; Fournier, M.; Che, M.; Tatibouet, J.M. Structure and catalytic properties of silica-supported polyoxomolybdates: II. Thermal Behavior of Unsupported and Silica-Supported 12-Molybdosilicic Acid catalysts from IR and Catalytic Reactivity Studies. J. Catal. 1990, 126, 591–599. [Google Scholar] [CrossRef]
- Edwards, J.C.; Thiel, C.Y.; Benac, B.; Knifton, J.F. Solid-state NMR and FT-IR investigation of 12-tungstophosphoric acid on TiO2. Catal. Lett. 1998, 51, 77–83. [Google Scholar] [CrossRef]
- Lopez-Salinas, E.; Hernandez-Cortez, J.G.; Schifter, I.; Torres-Garcia, E.; Navarrete, J.; Gutierrez-Carrillo, A.; Lopez, T.; Lottici, P.P.; Bersani, D. Thermal stability of 12-tungstophosphoric acid supported on zirconia. Appl. Catal. A Gen. 2000, 193, 215–225. [Google Scholar] [CrossRef]
- Devassy, B.M.; Halligudi, S.B.; Hegde, S.G.; Halgeri, A.B.; Lefebvre, F. 12-Tungstophosphoric acid/zirconia -a highly active stable solid acid-comparison with a tungstate zirconia catalyst. Chem. Commun. 2002, 1, 1074–1075. [Google Scholar] [CrossRef]
- Arndtsen, B.A. Metal-catalyzed one-step synthesis: Towards direct alternatives to multistep heterocycle and amino acid derivative formation. Eur. J. Chem. 2009, 15, 302–313. [Google Scholar] [CrossRef]
- Yarim, M.; Sarac, S.; Ertan, M. Synthesis, enantioseparation and pharmacological activity of4-aryl-7,7-dimethyl-5-oxo-1,2,3,4,5,6,7,8-octahydroquinazoline-2-thiones. Arzneimittelforschung 2002, 52, 27–33. [Google Scholar]
- Nigam, R.; Swarup, S.; Saxena, V.K. Synthesis and pharmacological screening of some new 2-(phenyl/chloromethyl)-3-[4 (N,N-disubstituted aminocarbonyl) phenyl]-8-substituted-4 (3H)-quinazolones. Indian Drugs 1990, 27, 238–243. [Google Scholar]
- Kidwai, M.; Bhatnagar, D.; Kumar, R.; Luthra, P.M. Synthesis of 2-oxo/thioxooctahydroquinazolin-5-one derivatives and their evaluation as anticancer agents. Chem. Pharm. Bull. 2010, 58, 1320–1323. [Google Scholar] [CrossRef] [Green Version]
- Chien, T.R.; Chen, C.S.; You, F.H.; Chen, J.W. Nucleosides XI. Synthesis and antiviral evaluation of 5′-alkylthio-5′-deoxy quinazolinone nucleoside derivatives as S-adenosyl-L-homocysteine analogs. Chem. Phar. Bull. 2004, 52, 1422–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biginelli, P.; Gazz, P. Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones. Chim. Ital. 1893, 23, 360–416. [Google Scholar]
- Hassani, Z.; Islami, M.R.; Kalantari, M. An efficient one-pot synthesis of octahydroquinazolinone derivatives using catalytic amount of H2SO4 in water. Bioorg. Med. Chem. Lett. 2006, 16, 4479–4482. [Google Scholar] [CrossRef] [PubMed]
- Ladani, N.K.; Patel, M.P.; Patel, R.G. An efficient three-component one-pot synthesis of some new octahydroquinazolinone derivatives and investigation of their antimicrobial activities. Arkivoc 2009, 7, 292–302. [Google Scholar] [CrossRef] [Green Version]
- Kantevari, S.; Bantu, R.; Nagarapu, L. A Green Protocol for Efficient Synthesis of 1,8-Dioxo-Octahydroxanthenes Using Ionic Liquid. ARKIVOC 2006, 16, 136–148. [Google Scholar]
- Vanden Eynde, J.J.; Godin, J.; Mayence, A.; Maquestiau, A.; Anders, E. New and convenient method for the preparation of 2-substituted quinazolines. Synthesis 1993, 9, 867–869. [Google Scholar] [CrossRef]
- Kuraitheertha, K.A.; Pazhamalai, S.; Manikandan, H.; Gopalakrishnan, M. Rapid and efficient one-pot synthesis of octahydroquinazolinone derivatives using lanthanum oxide under solvent-free condition. J. Saudi Chem. Soc. 2014, 18, 920–924. [Google Scholar] [CrossRef] [Green Version]
- Bose, D.S.; Sudharshan, M.; Chavhan, S.W. New protocol for Biginelli reaction-a practical synthesis of Monastrol. ARKIVOC 2005, 3, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Dondoni, A.; Mass, A.; Minghimi, E.; Sabbatini, S.; Bertolasi, V.J. Model studies toward the synthesis of dihydropyrimidinyl and pyridyl alpha-amino acids via three-component Biginelli and Hantzsch cyclocondensations. J. Org. Chem. 2003, 68, 6172–6183. [Google Scholar] [CrossRef] [PubMed]
- Maiti, G.; Kundan, P.; Guin, C. One-Pot Synthesis of Dihydropyrimidinones Catalyzed by Lithium Bromide: An Improved Procedure for the Biginelli Reaction. Tetrahedron Lett. 2003, 44, 2757–2758. [Google Scholar] [CrossRef]
- Akbar, M.; Naser, F.; Homila, K. Synthesis of octahydroquinazolinone derivatives using silica sulfuric acid as an efficient catalyst. Eur. J. Chem. 2010, 1, 291–293. [Google Scholar]
- Anumulaa, R.; Nookarajua, M.; Selvarajb, K.; Reddya, I.A.K.; Narayanan, V. A Novel Vanadium n-propylamino phosphate catalyst: Synthesis, characterization and applications. Mater. Res. 2013, 16, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Cui, Z.M.; Niu, N.; Jiang, N.; Song, W.G. Pdnanoparticles in silica hollow spheres with mesoporous walls: A nanoreactor with extremely high activity. Chem. Commun. 2010, 46, 6524–6526. [Google Scholar] [CrossRef] [PubMed]
- Greeley, J.P. Active Site of an Industrial Catalyst. Science 2012, 36, 810–812. [Google Scholar] [CrossRef]
- Hokenek, S.; Kuhn, J.N. Methanol Decomposition over Palladium Particles Supported on Silica: Role of Particle Size and Co-Feeding Carbon Dioxide on the Catalytic Properties. ACS. Catal. 2013, 2, 1013–1019. [Google Scholar] [CrossRef]
- Alotaibi, M.; Bakht, M.A.; Alharthi, A.I.; Geesi, M.H.; Uddin, I.; Albalwi, H.A.; Riadi, Y. Preparation, Characterization and Application of Silica-Supported Tungstophosphoric (HPW/SiO2) Acid Catalyst to the Synthesis of 1, 8-Dioxoacridine Carboxylic Acid Derivatives in Semi Aqueous Condition. Polycycl. Aromat. Compd. 2020, 40, 1–15. [Google Scholar] [CrossRef]
- Alharthi, A.I. Simple Protocol dor the knoevenagel Condensation Under Solvent free Conditions using Tungstophosphoric Acid Catalyst. Asian J. Chem. 2019, 31, 2181–2184. [Google Scholar] [CrossRef]
- Verdes, O.; Sasca, V.; Suba, M.; Borcanescu, S.; Popa, A. The influence of palladium on the catalytic activity for ethanol conversion over heteropoly tungstate catalysts. React. Kinet. Mech. Catal. 2019, 28, 53–59. [Google Scholar] [CrossRef]
- Boudjahem, A.G.; Redjel, A.T.; Mokrane, J. Preparation, characterization and performance of Pd/SiO2 catalyst for benzene catalytic hydrogenation. J. Ind. Eng. Chem. 2012, 18, 303–308. [Google Scholar] [CrossRef]
- de Mattos, F.C.G.; de Carvalho, E.N.C.; de Freitas, B.E.F.; Paiva, M.F.; Ghesti, G.F.; de Macedo, J.L.S.; Dias, C.L.; Dias, J.A. Acidity and characterization of 12-tungstophosphoric acid supported on silica-alumina. J. Braz. Chem. Soc. 2017, 28, 336–347. [Google Scholar] [CrossRef]
- Waseem, M.; Mustafa, S.; Naeem, A.; Shah, K.H.; Shah, I. Mechanism of Cd (II) sorption on silica synthesized by sol–gel method. Chem. Eng. J. 2011, 169, 78–83. [Google Scholar] [CrossRef]
- Sharifzadeh, Z.; Berijani, K.; Morsali, A. High performance of ultrasonic-assisted synthesis of two spherical polymers for enantioselective catalysis. Ultrason. Sonochem. 2021, 73, 105499. [Google Scholar] [CrossRef]
- Bakht, M.A.; Ansari, M.J.; Riadi, Y.; Ajmal, N.; Ahsan, J. Physicochemical characterization of benzalkonium chloride and urea-based deep eutectic solvent (DES): A novel catalyst for the efficient synthesis of isoxazolines under ultrasonic irradiation. J. Mol. Liq. 2016, 224, 1249–1255. [Google Scholar] [CrossRef]
- Hadigavabar, A.D.; Tabatabaeian, K.; Zanjanchi, M.A.; Mamaghani, M. Molybdenum anchored onto zeolite beta: An efficient catalyst for the one-pot synthesis of octahydroquinazolinone derivatives under solvent-free conditions. React. Kinet. Mech. Catal. 2018, 124, 1–15. [Google Scholar] [CrossRef]
- Yarim, M.; Sarac, S.; Kilic, F.S.; Erol, K. Synthesis and in vitro calcium antagonist activity of4-aryl-7,7-dimethyl/1,7,7-trimethyl-1,2,3,4,5,6,7,8-octahydroquinazoline-2,5-dione derivatives. Farmaco 2003, 58, 17–24. [Google Scholar] [CrossRef]
- Kamble, S.B.; Kumbhar, A.S.; Jadhavcand, S.N.; Salunkhe, R.S. Microwave-Assisted Attractive and Rapid Process for Synthesis of Octahydroquinazolinone in Aqueous Hydrotropic Solutions, 3rd International Conference on Materials Processing and Characterization (ICMPC 2014). Procedia Mater. Sci. 2014, 6, 1850–1856. [Google Scholar] [CrossRef] [Green Version]
Catalyst | SBETa m2 g−1 | Pore volume b cm3 g−1 | Pore Size c Å |
---|---|---|---|
1%Pd-HPW/SiO2 (US) | 395 | 0.27 | 18.13 |
1%Pd-HPW/SiO2 (Non US) | 382 | 0.23 | 18.18 |
Entry | Reaction Time | Yield (%) | Energy Utilized (kJ/g) | Energy Saved (%) | |||
---|---|---|---|---|---|---|---|
1 | NUS | US | NUS | US | NUS | US | 44 |
1 h | 20 min | 80 | 95 | 1.64 | 0.92 |
Entry | Catalyst (mg) | (US) | Yield (%) b (NON-US) | Time (Minute) |
---|---|---|---|---|
1 | - | Trace | Trace | 120 |
2 | 50 | 72 | 67 | 60 |
3 | 70 | 78 | 70 | 40 |
4 | 80 | 90 | 85 | 30 |
5 | 100 | 97 | 93 | 20 |
6 | 120 | 92 | 89 | 20 |
Entry | R | X | Product | Time (min) | Yield (%) a,b | M.P (°C) | Ref. No. | ||
---|---|---|---|---|---|---|---|---|---|
US | Non-US | Observed | Reported | ||||||
1 | 4-(F)-C6H4 | O | 4a | 20 | 97 | 94 | 268–270 | 274–75 | [50] |
2 | 3,4,5-(CH3O)-C6H2 | O | 4b | 25 | 95 | 92 | 135–137 | 139–140 | [51] |
3 | 2-( CH3)-C6H4 | O | 4c | 25 | 93 | 91 | 238–240 | 240–241 | [51] |
4 | 4-(F)-C6H4 | S | 4d | 20 | 91 | 90 | 261–263 | 260–262 | [33] |
5 | 3,4,5-(CH3O)-C6H2 | S | 4e | 30 | 89 | 86 | 132–134 | 134–136 | [52] |
6 | 2-(CH3)-C6H4 | S | 4f | 25 | 86 | 84 | 156–158 | - | - |
Entry | Catalyst | Time | Yield b |
---|---|---|---|
1 | HPW | 3 h | 71 |
2 | HPW/SiO2 | 1.5 h | 88 |
3 | 1%Pd-HPW/SiO2 | 20 min | 97 |
Run | Time (min) | Yield (%) | Catalyst Amount (mg) |
---|---|---|---|
1 | 20 | 97 | 100 |
2 | 20 | 96 | 90 |
3 | 20 | 95 | 83 |
4 | 20 | 93 | 77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakht, M.A.; Alotaibi, M.; Alharthi, A.I.; Din, I.U.; Ali, A.; Ali, A.; Ahsan, M.J. Pd-HPW/SiO2 Bi-Functional Catalyst: Sonochemical Synthesis, Characterization, and Effect on Octahydroquinazolinone Synthesis. Catalysts 2021, 11, 1273. https://doi.org/10.3390/catal11111273
Bakht MA, Alotaibi M, Alharthi AI, Din IU, Ali A, Ali A, Ahsan MJ. Pd-HPW/SiO2 Bi-Functional Catalyst: Sonochemical Synthesis, Characterization, and Effect on Octahydroquinazolinone Synthesis. Catalysts. 2021; 11(11):1273. https://doi.org/10.3390/catal11111273
Chicago/Turabian StyleBakht, Md. Afroz, Mshari. Alotaibi, Abdulrahman I. Alharthi, Israf Ud Din, Abuzer Ali, Amena Ali, and Mohamed Jawed Ahsan. 2021. "Pd-HPW/SiO2 Bi-Functional Catalyst: Sonochemical Synthesis, Characterization, and Effect on Octahydroquinazolinone Synthesis" Catalysts 11, no. 11: 1273. https://doi.org/10.3390/catal11111273
APA StyleBakht, M. A., Alotaibi, M., Alharthi, A. I., Din, I. U., Ali, A., Ali, A., & Ahsan, M. J. (2021). Pd-HPW/SiO2 Bi-Functional Catalyst: Sonochemical Synthesis, Characterization, and Effect on Octahydroquinazolinone Synthesis. Catalysts, 11(11), 1273. https://doi.org/10.3390/catal11111273