Optimizing MgO Content for Boosting γ-Al2O3-Supported Ni Catalyst in Dry Reforming of Methane
Abstract
:1. Introduction
2. Results and Discussion
2.1. H2-TPR
2.2. X-ray Diffraction (XRD)
2.3. XPS
2.4. The Catalytic Activity and Stability
2.5. Space Velocity
2.6. Thermogravimetric Analysis (TGA)
2.7. Transmission Electron Microscopy (TEM) Analysis
3. Experimental
3.1. Materials
3.2. Catalyst Preparation
3.3. Catalyst Activity
3.4. Catalyst Characterization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loewert, M.; Serrer, M.-A.; Carambia, T.; Stehle, M.; Zimina, A.; Kalz, K.F.; Lichtenberg, H.; Saraçi, E.; Pfeifer, P.; Grunwaldt, J.-D. Bridging the gap between industry and synchrotron: An operando study at 30 bar over 300 h during Fischer–Tropsch synthesis. React. Chem. Eng. 2020, 5, 1071–1082. [Google Scholar] [CrossRef] [Green Version]
- Ayodele, B.V.; Khan, M.R.; Lam, S.S.; Cheng, C.K. Production of CO-rich hydrogen from methane dry reforming over lanthania-supported cobalt catalyst: Kinetic and mechanistic studies. Int. J. Hydrogen Energy 2016, 41, 4603–4615. [Google Scholar] [CrossRef] [Green Version]
- Saravanan, K.; Ham, H.; Tsubaki, N.; Bae, J.W. Recent progress for direct synthesis of dimethyl ether from syngas on the heterogeneous bifunctional hybrid catalysts. Appl. Catal. B Environ. 2017, 217, 494–522. [Google Scholar] [CrossRef]
- Hanna, J.; Lee, W.Y.; Shi, Y.; Ghoniem, A.F. Fundamentals of electro- and thermochemistry in the anode of solid-oxide fuel cells with hydrocarbon and syngas fuels. Prog. Energy Combust. Sci. 2014, 40, 74–111. [Google Scholar] [CrossRef] [Green Version]
- Al-Fatesh, A.S.; Atia, H.; Ibrahim, A.A.; Fakeeha, A.H.; Singh, S.K.; Labhsetwar, N.K.; Shaikh, H.; Qasim, S.O. CO2 reforming of CH4: Effect of Gd as promoter for Ni supported over MCM-41 as catalyst. Renew. Energy 2019, 140, 658–667. [Google Scholar] [CrossRef]
- Göransson, K.; Söderlind, U.; He, J.; Zhang, W. Review of syngas production via biomass DFBGs. Renew. Sustain. Energy Rev. 2011, 15, 482–492. [Google Scholar] [CrossRef]
- Usman, M.; Wan Daud, W.M.A.; Abbas, H.F. Dry reforming of methane: Influence of process parameters—A review. Renew. Sustain. Energy Rev. 2015, 45, 710–744. [Google Scholar] [CrossRef] [Green Version]
- Nagaoka, K.; Seshan, K.; Lercher, J.A.; Aika, K.I. Activation mechanism of methane-derived coke (CHx) by CO2 during dry reforming of methane—Comparison for Pt/Al2O3 and Pt/ZrO2. Catal. Lett. 2000, 70, 109–116. [Google Scholar] [CrossRef]
- Sepehri, S.; Rezaei, M. Ce promoting effect on the activity and coke formation of Ni catalysts supported on mesoporous nanocrystalline Γ-Al2O3 in autothermal reforming of methane. Int. J. Hydrogen Energy 2017, 42, 11130–11138. [Google Scholar] [CrossRef]
- Wu, H.; Wang, L. Shape effect of microstructured CeO2 with various morphologies on CO catalytic oxidation. Catal. Commun. 2011, 12, 1374–1379. [Google Scholar] [CrossRef]
- Tang, M.; Xu, L.; Fan, M. Effect of Ce on 5 wt% Ni/ZSM-5 catalysts in the CO2 reforming of CH4 reaction. Int. J. Hydrogen Energy 2014, 39, 15482–15496. [Google Scholar] [CrossRef]
- Navarro, R.M.; Guil-Lopez, R.; Ismail, A.A.; Al-Sayari, S.A.; Fierro, J.L.G. Ni- and PtNi-catalysts supported on Al2O3 for acetone steam reforming: Effect of the modification of support with Ce, la and Mg. Catal. Today 2015, 242, 60–70. [Google Scholar] [CrossRef]
- Kim, T.Y.; Kim, S.M.; Lee, W.S.; Woo, S.I. Effect and behavior of cerium oxide in Ni/γ-Al2O3 catalysts on autothermal reforming of methane: CeAlO3 formation and its role on activity. Int. J. Hydrogen Energy 2013, 38, 6027–6032. [Google Scholar] [CrossRef]
- Mattos, L.V.; Rodino, E.; Resasco, D.E.; Passos, F.B.; Noronha, F.B. Partial oxidation and CO2 reforming of methane on Pt/Al2O3, Pt/ZrO2, and Pt/Ce-ZrO2 catalysts. Fuel Process. Technol. 2003, 83, 147–161. [Google Scholar] [CrossRef]
- Taherian, Z.; Khataee, A.; Orooji, Y. Nickel-based nanocatalysts promoted over MgO-modified SBA-16 for dry reforming of methane for syngas production: Impact of support and promoters. J. Energy Inst. 2021, 97, 100–108. [Google Scholar] [CrossRef]
- Al-Fatesh, A.S.; Kumar, R.; Fakeeha, A.H.; Kasim, S.O.; Khatri, J.; Ibrahim, A.A.; Arasheed, R.; Alabdulsalam, M.; Lanre, M.S.; Osman, A.I.; et al. Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane. Sci. Rep. 2020, 10, 13–16. [Google Scholar] [CrossRef]
- Karam, L.; Armandi, M.; Casale, S.; El Khoury, V.; Bonelli, B.; Massiani, P.; El Hassan, N. Comprehensive study on the effect of magnesium loading over nickel-ordered mesoporous alumina for dry reforming of methane. Energy Convers. Manag. 2020, 225, 113470. [Google Scholar] [CrossRef]
- Ghods, B.; Meshkani, F.; Rezaei, M. Effects of alkaline earth promoters on the catalytic performance of the nickel catalysts supported on high surface area mesoporous magnesium silicate in dry reforming reaction. Int. J. Hydrogen Energy 2016, 41, 22913–22921. [Google Scholar] [CrossRef] [Green Version]
- Alipour, Z.; Rezaei, M.; Meshkani, F. Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane. J. Ind. Eng. Chem. 2014, 20, 2858–2863. [Google Scholar] [CrossRef]
- Shen, J.; Reule, A.A.C.; Semagina, N. Ni/MgAl2O4 catalyst for low-temperature oxidative dry methane reforming with CO2. Int. J. Hydrogen Energy 2019, 44, 4616–4629. [Google Scholar] [CrossRef]
- Cho, E.; Lee, Y.H.; Kim, H.; Jang, E.J.; Kwak, J.H.; Lee, K.; Ko, C.H.; Yoon, W.L. Ni catalysts for dry methane reforming prepared by A-site exsolution on mesoporous defect spinel magnesium aluminate. Appl. Catal. A Gen. 2020, 602, 117694. [Google Scholar] [CrossRef]
- Ruckenstein, E. Binary MgO-based solid solution catalysts for methane conversion to syngas. Catal. Rev-Sci. Eng. 2002, 44, 423–453. [Google Scholar] [CrossRef]
- Zhang, R.-J.; Xia, G.-F.; Li, M.-F.; Wu, Y.; Nie, H.; Li, D.-D. Effect of Support on the Performance of Ni-Based Catalyst in Methane Dry Reforming-ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S1872581315300402 (accessed on 5 July 2021).
- Huang, F.; Wang, R.; Yang, C.; Driss, H.; Chu, W.; Zhang, H. Catalytic performances of Ni/mesoporous SiO2 catalysts for dry reforming of methane to hydrogen. J. Energy Chem. 2016, 25, 709–719. [Google Scholar] [CrossRef]
- Zhu, J.; Peng, X.; Yao, L.; Shen, J.; Tong, D.; Hu, C. The promoting effect of La, Mg, Co and Zn on the activity and stability of Ni/SiO2 catalyst for CO2 reforming of methane. Int. J. Hydrogen Energy 2011, 36, 7094–7104. [Google Scholar] [CrossRef]
- Pompeo, F.; Nichio, N.N.; González, M.G.; Montes, M. Characterization of Ni/SiO2 and Ni/Li-SiO2 catalysts for methane dry reforming. Catal. Today 2005, 107–108, 856–862. [Google Scholar] [CrossRef]
- Károlyi, J.; Németh, M.; Evangelisti, C.; Sáfrán, G.; Schay, Z.; Horváth, A.; Somodi, F. Carbon dioxide reforming of methane over Ni–In/SiO2 catalyst without coke formation. J. Ind. Eng. Chem. 2018, 58, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Kumar Yadav, P.; Das, T.; Mondal, P. Effect of the magnesia and alumina in the modified-supported perovskite-type catalysts for the dry reforming of methane. Fuel 2021, 302, 121233. [Google Scholar] [CrossRef]
- Liu, L.J.; Liu, Y.G.; Gao, X.; Zhang, R.Q.; Zhai, Y.P. Hydrodeoxygenation of bio-oil model compounds over amorphous NiB/SiO2-Al2O3 catalyst in oil-water biphasic system. Ranliao Huaxue Xuebao/J. Fuel Chem. Technol. 2017, 45, 932–938. [Google Scholar] [CrossRef]
- Gobara, H.M. Characterization and catalytic activity of NiO/mesoporous aluminosilicate AlSBA-15 in conversion of some hydrocarbons. Egypt. J. Pet. 2012, 21, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Trasarti, A.F.; Marchi, A.J.; Apesteguía, C.R. Synthesis of menthols from citral on Ni/SiO2-Al2O3 catalysts. Catal. Commun. 2013, 32, 62–66. [Google Scholar] [CrossRef]
- Hu, Y.H.; Ruckenstein, E. The characterization of a highly effective NiO/MgO solid solution catalyst in the CO2 reforming of CH4. Catal. Lett. 1997, 43, 71–77. [Google Scholar] [CrossRef]
- Hoste, S.; van de Vondel, D.; van der Kelen, G.P.; de Deken, J. XPS of a steam reforming NiAl2O4 catalyst. J. Electron Spectros. Relat. Phenom. 1979, 16, 407–413. [Google Scholar] [CrossRef]
- Fakeeha, A.H.; Naeem, M.A.; Khan, W.U.; Al-Fatesh, A.S. Syngas production via CO2 reforming of methane using Co-Sr-Al catalyst. J. Ind. Eng. Chem. 2014, 20, 549–557. [Google Scholar] [CrossRef]
- Rahemi, N.; Haghighi, M.; Babaluo, A.A.; Allahyari, S.; Jafari, M.F. Syngas production from reforming of greenhouse gases CH4/CO2 over Ni-Cu/Al2O3 nanocatalyst: Impregnated vs. plasma-treated catalyst. Energy Convers. Manag. 2014, 84, 50–59. [Google Scholar] [CrossRef]
Catalyst | SBET (m2/g) | Pv (cm3/g) | Pd (nm) |
---|---|---|---|
3SiAl | 262.59 | 0.69 | 9.69 |
5Ni0Mg3SiAl | 222.08 | 0.59 | 9.21 |
5Ni1Mg3SiAl | 235.17 | 0.57 | 9.08 |
5Ni2Mg3SiAl | 236.60 | 0.61 | 9.13 |
5Ni3Mg3SiAl | 230.15 | 0.60 | 9.13 |
Catalyst | Temperature (°C) | H2-Consumption (µmole/g) |
---|---|---|
5Ni0Mg3SiAl | 697.9 | 951.1 |
833.0 | 1.0 | |
841.4 | 0.9 | |
5Ni1Mg3SiAl | 336.6 | 53.2 |
438.5 | 0.7 | |
454.8 | 30.1 | |
649.9 | 992.0 | |
850.2 | 5.8 | |
5Ni2Mg3SiA | 687.1 | 789.4 |
846.3 | 0.5 | |
846.5 | 2.1 | |
851.1 | 1.1 | |
854.1 | 0.7 | |
5Ni3Mg3SiAl | 705.1 | 887.7 |
844.4 | 13.5 | |
852.9 | 1.4 | |
855.6 | 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagabas, A.; Al-Fatesh, A.S.; Kasim, S.O.; Arasheed, R.; Ibrahim, A.A.; Ashamari, R.; Anojaidi, K.; Fakeeha, A.H.; Abu-Dahrieh, J.K.; Abasaeed, A.E. Optimizing MgO Content for Boosting γ-Al2O3-Supported Ni Catalyst in Dry Reforming of Methane. Catalysts 2021, 11, 1233. https://doi.org/10.3390/catal11101233
Bagabas A, Al-Fatesh AS, Kasim SO, Arasheed R, Ibrahim AA, Ashamari R, Anojaidi K, Fakeeha AH, Abu-Dahrieh JK, Abasaeed AE. Optimizing MgO Content for Boosting γ-Al2O3-Supported Ni Catalyst in Dry Reforming of Methane. Catalysts. 2021; 11(10):1233. https://doi.org/10.3390/catal11101233
Chicago/Turabian StyleBagabas, Abdulaziz, Ahmed Sadeq Al-Fatesh, Samsudeen Olajide Kasim, Rasheed Arasheed, Ahmed Aidid Ibrahim, Rawan Ashamari, Khalid Anojaidi, Anis Hamza Fakeeha, Jehad K. Abu-Dahrieh, and Ahmed Elhag Abasaeed. 2021. "Optimizing MgO Content for Boosting γ-Al2O3-Supported Ni Catalyst in Dry Reforming of Methane" Catalysts 11, no. 10: 1233. https://doi.org/10.3390/catal11101233
APA StyleBagabas, A., Al-Fatesh, A. S., Kasim, S. O., Arasheed, R., Ibrahim, A. A., Ashamari, R., Anojaidi, K., Fakeeha, A. H., Abu-Dahrieh, J. K., & Abasaeed, A. E. (2021). Optimizing MgO Content for Boosting γ-Al2O3-Supported Ni Catalyst in Dry Reforming of Methane. Catalysts, 11(10), 1233. https://doi.org/10.3390/catal11101233