Relationship between Acidity and Activity on Propane Conversion over Metal-Modified HZSM-5 Catalysts
Abstract
:1. Introduction
2. Results
2.1. Texture Properties of the Catalysts
2.2. Acidity of the Catalysts
2.3. Propane Conversion on the Catalysts
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Propane Conversion Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schwach, P.; Pan, X.; Bao, X. Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chem. Rev. 2017, 117, 8497–8520. [Google Scholar] [CrossRef]
- Zhou, H.; Yi, X.F.; Hui, Y.; Wang, L.; Chen, W.; Qin, Y.C.; Wang, M.; Ma, J.B.; Chu, X.F.; Wang, Y.Q.; et al. Isolated boron in zeolite for oxidative dehydrogenation of propane. Science 2021, 372, 76–80. [Google Scholar] [CrossRef]
- Wang, G.; Li, C.; Shan, H. Catalytic dehydrogenation of isobutane over a Ga2O3/ZnO interface: Reaction routes and mechanism. Catal. Sci. Technol. 2016, 6, 3128–3136. [Google Scholar] [CrossRef]
- Ma, F.; Chang, Q.-Y.; Yin, Q.; Sui, Z.-J.; Zhou, X.-G.; Chen, D.; Zhu, Y.-A. Rational screening of single-atom-doped ZnO catalysts for propane dehydrogenation from microkinetic analysis. Catal. Sci. Technol. 2020, 10, 4938–4951. [Google Scholar] [CrossRef]
- Han, S.; Otroshchenko, T.; Zhao, D.; Lund, H.; Rockstroh, N.; Vuong, T.H.; Rabeah, J.; Rodemerck, U.; Linke, D.; Gao, M.; et al. The effect of ZrO2 crystallinity in CrZrOx/SiO2 on non-oxidative propane dehydrogenation. Appl. Catal. A Gen. 2020, 590, 117350. [Google Scholar] [CrossRef]
- Hu, Z.-P.; Yang, D.; Wang, Z.; Yuan, Z.-Y. State-of-the-art catalysts for direct dehydrogenation of propane to propylene. Chin. J. Catal. 2019, 40, 1233–1254. [Google Scholar] [CrossRef]
- Sattler, J.J.H.B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B.M. Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides. Chem. Rev. 2014, 114, 10613–10653. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Wang, N.; Fan, Q.; Zeng, L.; Mayoral, A.; Miao, S.; Yang, R.; Jiang, Z.; Zhou, W.; Zhang, J.; et al. Subnanometer Bimetallic Platinum–Zinc Clusters in Zeolites for Propane Dehydrogenation. Angew. Chem. Int. Ed. 2020, 59, 19450–19459. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Sun, M.; Hu, Z.; Ren, J.; Zhang, S.; Yuan, Z.-Y. New insight into the enhanced catalytic performance of ZnPt/HZSM-5 catalysts for direct dehydrogenation of propane to propylene. Catal. Sci. Technol. 2019, 9, 1979–1988. [Google Scholar] [CrossRef]
- Kim, K.; Ryoo, R.; Jang, H.-D.; Choi, M. Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences. J. Catal. 2012, 288, 115–123. [Google Scholar] [CrossRef]
- Lin, L.F.; Zhao, S.F.; Zhang, D.W.; Fan, H.; Liu, Y.M.; He, M.Y. Acid Strength Controlled Reaction Pathways for the Catalytic Cracking of 1-Pentene to Propene over ZSM-5. ACS Catal. 2015, 5, 4048–4059. [Google Scholar] [CrossRef]
- Zhao, S.; Yang, D.; Zhang, X.; Yao, X.; Liu, Y.; He, M. ZSM-5 with controllable acidity as an efficient catalyst for a highly adjustable propene/ethene ratio in the 1-butene cracking. Chem. Commun. 2016, 52, 11191–11194. [Google Scholar] [CrossRef]
- Gim, M.Y.; Song, C.; Lim, Y.H.; Lee, K.-Y.; Kim, D.H. Effect of the Si/Al ratio in Ga/mesoporous HZSM-5 on the production of benzene, toluene, and xylene via coaromatization of methane and propane. Catal. Sci. Technol. 2019, 9, 6285–6296. [Google Scholar] [CrossRef]
- Shao, J.; Fu, T.; Li, Z. The selective and stable synthesis of aromatics from methanol via two-step route using light alkenes as intermediates. Fuel 2020, 280, 118609. [Google Scholar] [CrossRef]
- Fu, T.; Shao, J.; Li, Z. Catalytic synergy between the low Si/Al ratio Zn/ZSM-5 and high Si/Al ratio HZSM-5 for high performance methanol conversion to aromatics. Appl. Catal. B Environ. 2021, 291, 120098. [Google Scholar] [CrossRef]
- Yarulina, I.; De Wispelaere, K.; Bailleul, S.; Goetze, J.; Radersma, M.; Abou-Hamad, E.; Vollmer, I.; Goesten, M.; Mezari, B.; Hensen, E.J.M.; et al. Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process. Nat. Chem. 2018, 10, 804–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, Y.; Wang, J.; Zhang, K.; Feng, W.; Liu, S.; Ding, C.; Liu, P. Nanocrystallite self-assembled hierarchical ZSM-5 zeolite microsphere for methanol to aromatics. Microporous Mesoporous Mater. 2017, 247, 103–115. [Google Scholar] [CrossRef]
- Wannapakdee, W.; Yutthalekha, T.; Dugkhuntod, P.; Rodponthukwaji, K.; Thivasasith, A.; Nokbin, S.; Witoon, T.; Pengpanich, S.; Wattanakit, C. Dehydrogenation of Propane to Propylene Using Promoter-Free Hierarchical Pt/Silicalite-1 Nanosheets. Catalysts 2019, 9, 174. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Liu, J.; Wang, J.; Lin, L.; He, N.; Zhang, X.; Guo, H. Transformation of Propane over ZnSnPt Modified Defective HZSM-5 Zeolites: The Crucial Role of Hydroxyl Nests Concentration. Catalysts 2019, 9, 571. [Google Scholar] [CrossRef] [Green Version]
- Arzumanov, S.S.; Gabrienko, A.A.; Freude, D.; Stepanov, A.G. Competitive pathways of methane activation on Zn2+-modified ZSM-5 zeolite: H/D hydrogen exchange with Bronsted acid sites versus dissociative adsorption to form Zn-methyl species. Catal. Sci. Technol. 2016, 6, 6381–6388. [Google Scholar] [CrossRef]
- Luo, Y.; Miao, C.; Yue, Y.; Hua, W.; Gao, Z. ZnO supported on Silicalite-1 as an efficient catalyst for isobutane dehydrogenation to isobutene assisted by CO2. Microporous Mesoporous Mater. 2020, 294, 109864. [Google Scholar] [CrossRef]
- Ivanova, I.I.; Kolyagin, Y.G.; Ordomsky, V.V.; Asachenko, E.V.; Pasynkova, E.M.; Pirogov, Y.A. Surface species formed during propane aromatization over Zn/MFI catalyst as determined by in situ spectroscopic techniques. J. Mol. Catal. A Chem. 2009, 305, 47–53. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.; Huang, L.; Zhou, S.; Sheng, X.; Wang, Q.; Zhang, C. Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation. Chem. Eng. J. 2015, 270, 352–361. [Google Scholar] [CrossRef]
- Salaeva, A.A.; Salaev, M.A.; Vodyankina, O.V.; Mamontov, G.V. Synergistic effect of Cu and Zn modifiers on the activity of CrOx/Al2O3 catalysts in isobutane dehydrogenation. Appl. Catal. A Gen. 2019, 581, 82–90. [Google Scholar] [CrossRef]
- Zhao, D.; Li, Y.; Han, S.; Zhang, Y.; Jiang, G.; Wang, Y.; Guo, K.; Zhao, Z.; Xu, C.; Li, R.; et al. ZnO Nanoparticles Encapsulated in Nitrogen-Doped Carbon Material and Silicalite-1 Composites for Efficient Propane Dehydrogenation. iScience 2019, 13, 269–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, H.; Zhang, J.; Wang, X.; Zhang, Q.; Xie, H.; Han, Y.; Tan, Y. A highly efficient Ga/ZSM-5 catalyst prepared by formic acid impregnation and in situ treatment for propane aromatization. Catal. Sci. Technol. 2015, 5, 4081–4090. [Google Scholar] [CrossRef]
- Hensen, E.J.M.; Pidko, E.A.; Rane, N.; van Santen, R.A. Water-Promoted Hydrocarbon Activation Catalyzed by Binuclear Gallium Sites in ZSM-5 Zeolite. Angew. Chem. Int. Ed. 2007, 46, 7273–7276. [Google Scholar] [CrossRef]
- Rodrigues, V.d.O.; Faro Júnior, A.C. On catalyst activation and reaction mechanisms in propane aromatization on Ga/HZSM5 catalysts. Appl. Catal. A Gen. 2012, 435–436, 68–77. [Google Scholar] [CrossRef]
- Kim, W.-G.; So, J.; Choi, S.-W.; Liu, Y.; Dixit, R.S.; Sievers, C.; Sholl, D.S.; Nair, S.; Jones, C.W. Hierarchical Ga-MFI Catalysts for Propane Dehydrogenation. Chem. Mater. 2017, 29, 7213–7222. [Google Scholar] [CrossRef]
- Choi, S.-W.; Kim, W.-G.; So, J.-S.; Moore, J.S.; Liu, Y.; Dixit, R.S.; Pendergast, J.G.; Sievers, C.; Sholl, D.S.; Nair, S.; et al. Propane dehydrogenation catalyzed by gallosilicate MFI zeolites with perturbed acidity. J. Catal. 2017, 345, 113–123. [Google Scholar] [CrossRef]
- Wang, L.; Tao, L.; Xie, M.; Xu, G.; Huang, J.; Xu, Y. Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catal. Lett. 1993, 21, 35–41. [Google Scholar] [CrossRef]
- Choudhary, V.R.; Mondal, K.C.; Mulla, S.A.R. Simultaneous Conversion of Methane and Methanol into Gasoline over Bifunctional Ga-, Zn-, In-, and/or Mo-Modified ZSM-5 Zeolites. Angew. Chem. Int. Ed. 2005, 117, 4455–4459. [Google Scholar] [CrossRef]
- Watanabe, R.; Hirata, N.; Miura, K.; Yoda, Y.; Fushimi, Y.; Fukuhara, C. Formation of active species for propane dehydrogenation with hydrogen sulfide co-feeding over transition metal catalyst. Appl. Catal. A Gen. 2019, 587, 117238. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Otroshchenko, T.; Lund, H.; Pohl, M.-M.; Rodemerck, U.; Linke, D.; Jiao, H.; Jiang, G.; Kondratenko, E.V. Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C–H bond activation. Nat. Commun. 2018, 9, 3794–3804. [Google Scholar] [CrossRef] [PubMed]
- Otroshchenko, T.; Bulavchenko, O.; Thanh, H.V.; Rabeah, J.; Bentrup, U.; Matvienko, A.; Rodemerck, U.; Paul, B.; Kraehnert, R.; Linke, D.; et al. Controlling activity and selectivity of bare ZrO2 in non-oxidative propane dehydrogenation. Appl. Catal. A Gen. 2019, 585, 117189. [Google Scholar] [CrossRef]
- Jeon, N.; Choe, H.; Jeong, B.; Yun, Y. Cu-promoted zirconia catalysts for non-oxidative propane dehydrogenation. Appl. Catal. A Gen. 2019, 586, 117211. [Google Scholar] [CrossRef]
- Tshabalala, T.E.; Scurrell, M.S. Aromatization of n-hexane over Ga, Mo and Zn modified H-ZSM-5 zeolite catalysts. Catal. Commun. 2015, 72, 49–52. [Google Scholar] [CrossRef]
- Majhi, S.; Dalai, A.K.; Pant, K.K. Methanol assisted methane conversion for higher hydrocarbon over bifunctional Zn-modified Mo/HZSM-5 catalyst. J. Mol. Catal. A Chem. 2015, 398, 368–375. [Google Scholar] [CrossRef]
- Hu, C.; Li, J.; Jia, W.; Liu, M.; Hao, Z.; Zhu, Z. Influence of Metallic Modification on Ethylbenzene Dealkylation over ZSM-5 Zeolites. Chin. J. Chem. 2015, 33, 247–252. [Google Scholar] [CrossRef]
- Xu, C.; Jiang, B.; Liao, Z.; Wang, J.; Huang, Z.; Yang, Y. Effect of metal on the methanol to aromatics conversion over modified ZSM-5 in the presence of carbon dioxide. RSC Adv. 2017, 7, 10729–10736. [Google Scholar] [CrossRef] [Green Version]
- Xing, C.; Yang, G.; Wu, M.; Yang, R.; Tan, L.; Zhu, P.; Wei, Q.; Li, J.; Mao, J.; Yoneyama, Y.; et al. Hierarchical zeolite Y supported cobalt bifunctional catalyst for facilely tuning the product distribution of Fischer–Tropsch synthesis. Fuel 2015, 148, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Sikarin, T.; Tawan, S.; Lance, L.L.; Siriporn, J. Generation of reductive Zn species over Zn/HZSM–5 catalysts for n–pentane aromatization. Appl. Catal. A. Gen. 2016, 525, 190–196. [Google Scholar]
- Xin, M.; Xing, E.; Gao, X.; Wang, Y.; Ying, O.; Xu, G.; Luo, Y.; Shu, X. Ga Substitution during Modification of ZSM-5 and Its Influences on Catalytic Aromatization Performance. Ind. Eng. Chem. Res. 2019, 58, 6970–6981. [Google Scholar] [CrossRef]
Catalyst | Relative Crystallinity b (%) | Metal Content c (wt%) | SBET d (m2 g−1) | SMicro e (m2 g−1) | VTotal d (cm3 g−1) | VMicro e (cm3 g−1) |
---|---|---|---|---|---|---|
Zn/HZSM-5 | 73.7 | 1.98 | 326.2 | 268.4 | 0.437 | 0.133 |
Ga/HZSM-5 | 93.5 | 1.99 | 325.8 | 268.2 | 0.435 | 0.132 |
Mo/HZSM-5 | 87.9 | 1.95 | 328.7 | 270.8 | 0.431 | 0.129 |
Co/HZSM-5 | 62.3 | 1.97 | 326.1 | 268.4 | 0.436 | 0.132 |
Zr/HZSM-5 | 89.8 | 1.98 | 327.5 | 269.5 | 0.438 | 0.133 |
HZSM-5 | 100.0 | - | 343.1 | 284.7 | 0.453 | 0.147 |
Samples | Acidity by NH3-TPD (mmol·g−1) | Acidity by Py-IR (μmol·g−1) | ||||
---|---|---|---|---|---|---|
Weak Acid | Medium Acid | Strong Acid | BAS | LAS | B/L | |
HZSM-5 | 0.28 (51.85%) | 0.08 (14.81%) | 0.18 (33.34%) | 37.07 | 19.01 | 1.95 |
Zr/HZSM-5 | 0.20 (47.62%) | 0.09 (21.43%) | 0.13 (30.95%) | 35.84 | 19.80 | 1.81 |
Co/HZSM-5 | 0.22 (51.16%) | 0.11 (25.58%) | 0.10 (23.26%) | 34.69 | 20.47 | 1.70 |
Mo/HZSM-5 | 0.23 (51.11%) | 0.10 (22.22%) | 0.12 (26.67%) | 32.64 | 19.78 | 1.65 |
Ga/HZSM-5 | 0.20 (44.45%) | 0.11 (24.44%) | 0.14 (31.11%) | 24.47 | 19.50 | 1.26 |
Zn/HZSM-5 | 0.26 (50.98%) | 0.13 (25.49%) | 0.12 (23.53%) | 25.95 | 24.53 | 1.06 |
HZSM-5 | Zr-HZSM-5 | Co-HZSM-5 | Mo-HZSM-5 | Ga-HZSM-5 | Zn-HZSM-5 | |
---|---|---|---|---|---|---|
Methane (C1) | 34.76 | 25.57 | 18.24 | 28.36 | 28.02 | 28.15 |
Ethane (C2) | 19.47 | 13.02 | 14.35 | 12.93 | 15.43 | 14.03 |
Ethene (C2 =) | 17.17 | 20.55 | 24.17 | 20.83 | 11.93 | 12.71 |
Propene (C3 =) | 15.27 | 20.21 | 24.14 | 16.27 | 10.54 | 8.76 |
Butane (C4) | 3.71 | 6.69 | 5.38 | 2.41 | 1.43 | 0.61 |
Butene (C4 =) | 4.02 | 5.46 | 4.66 | 3.57 | 1.31 | 1.88 |
Pentane (C5) | 0.19 | 0.21 | 0.17 | 0.21 | 0.10 | 0.14 |
Pentene (C5 =) | 0.71 | 2.34 | 0.68 | 4.07 | 0.27 | 1.44 |
Benzene (C6) | 0.36 | 1.72 | 2.01 | 2.07 | 5.10 | 5.62 |
Toluene (C7) | 1.41 | 1.42 | 3.22 | 4.39 | 11.93 | 13.91 |
Xylene (C8) | 0.55 | 1.06 | 1.14 | 2.02 | 4.45 | 4.47 |
Ethylbenzene (C8) | 0.08 | 0.03 | 0.06 | 0.16 | 0.39 | 0.07 |
C9 | 0.39 | 0.54 | 0.31 | 0.53 | 1.15 | 1.43 |
C10 | 0.11 | 0.22 | 0.16 | 0.25 | 0.84 | 0.43 |
C>10 | 0.78 | 0.15 | 0.60 | 0.89 | 3.27 | 3.04 |
Other liquids | 1.01 | 0.80 | 0.66 | 1.01 | 3.81 | 3.26 |
Carbon balance % | 99.99 | 99.99 | 99.95 | 99.97 | 99.97 | 99.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Zhang, F.; Ji, K.; Gao, J.; Liu, P.; Zhang, K.; Wu, S. Relationship between Acidity and Activity on Propane Conversion over Metal-Modified HZSM-5 Catalysts. Catalysts 2021, 11, 1138. https://doi.org/10.3390/catal11101138
Zhou H, Zhang F, Ji K, Gao J, Liu P, Zhang K, Wu S. Relationship between Acidity and Activity on Propane Conversion over Metal-Modified HZSM-5 Catalysts. Catalysts. 2021; 11(10):1138. https://doi.org/10.3390/catal11101138
Chicago/Turabian StyleZhou, Hao, Fucan Zhang, Keming Ji, Junhua Gao, Ping Liu, Kan Zhang, and Se Wu. 2021. "Relationship between Acidity and Activity on Propane Conversion over Metal-Modified HZSM-5 Catalysts" Catalysts 11, no. 10: 1138. https://doi.org/10.3390/catal11101138
APA StyleZhou, H., Zhang, F., Ji, K., Gao, J., Liu, P., Zhang, K., & Wu, S. (2021). Relationship between Acidity and Activity on Propane Conversion over Metal-Modified HZSM-5 Catalysts. Catalysts, 11(10), 1138. https://doi.org/10.3390/catal11101138