Curcumin Doped SiO2/TiO2 Nanocomposites for Enhanced Photocatalytic Reduction of Cr (VI) under Visible Light
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Morphology
2.2. FT-IR and XPS Analyses
2.3. UV-Vis DRS Analyses
2.4. Photocatalytic Tests
2.4.1. Effect of Curcumin Doping Amount on the Photocatalytic Reduction of Cr (VI)
2.4.2. Effect of Initial Concentration on the Photocatalytic Reduction of Cr(VI)
2.4.3. Effect of pH on the Photocatalytic Reduction of Cr(VI)
2.4.4. Recyclability of Photocatalysts
2.5. Possible Reasons for the Enchanced Visble-light Photocatalytic Activity
3. Materials and Methods
3.1. Synthesis
3.2. Characterizations
3.3. Photocatalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhou, P.; Liu, J.; Yu, J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys.Chem. Chem. Phys. 2014, 16, 20382–20386. [Google Scholar] [CrossRef] [PubMed]
- Humayun, M.; Raziq, F.; Khan, A.; Luo, W. Modification strategies of TiO2 for potential applications in photocatalysis: A critical review. Green Chem. Lett. Rev. 2018, 11, 86–102. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C.; Bard, A.J. An improved photocatalyst of TiO2/SiO2 prepared by a Sol-Gel synthesis. J. Phys. Chem. 1995, 99, 9882–9885. [Google Scholar] [CrossRef]
- Kang, C.; Jing, L.; Guo, T.; Cui, H.; Zhou, J.; Fu, H. Mesoporous SiO2-modified nanocrystalline TiO2 with high anatase thermal stability and large surface area as efficient photocatalyst. J. Phys. Chem. C 2009, 113, 1006–1013. [Google Scholar] [CrossRef]
- Mahesh, K.P.O.; Kuo, D.H.; Huang, B.R.; Ujihara, M.; Imae, T. Chemically modified polyurethane-SiO2/TiO2 hybrid composite film and its reusability for photocatalytic degradation of Acid Black 1 (AB 1) under UV light. Appl. Catal. A Gen. 2014, 475, 235–241. [Google Scholar] [CrossRef]
- Li, Z.J.; Hou, B.; Xu, Y.; Wu, D.; Sun, Y.H. Hydrothermal synthesis, characterization, and photocatalytic performance of silica modified titanium dioxide nanoparticles. J. Colloids Interface Sci. 2005, 288, 149–154. [Google Scholar] [CrossRef]
- Hou, Y.D.; Wang, X.C.; Wu, L.; Chen, X.F.; Ding, Z.X.; Wang, X.X.; Fu, X.Z. N-Doped SiO2/TiO2 mesoporous nanoparticles with enhanced photocatalytic activity under visible-light irradiation. Chemosphere 2008, 72, 414–421. [Google Scholar] [CrossRef]
- Mahyar, A.; Behnajady, M.A.; Modirshahla, N. Characterization and photocatalytic activity of SiO2–TiO2 mixed oxide nanoparticles prepared by sol–gel method. Indian. J. Chem. A 2010, 49, 1593–1600. [Google Scholar]
- Meng, X.; Qian, Z.; Wang, H.; Gao, X.; Zhang, S.; Yang, M. Sol–gel immobilization of SiO2/TiO2 on hydrophobic clay and its removal of methyl orange from water. J. Sol-Gel. Sci. Tech. 2008, 46, 195–200. [Google Scholar] [CrossRef]
- Ghanbari1, S.; Givianrad, M.H.; Azar, P.A. Synthesis of N-F-codoped TiO2/SiO2 nanocomposites as a visible and sunlight response photocatalyst for simultaneous degradation of organic water pollutants and reduction of Cr (VI). J. Sol-Gel Sci. Techn. 2019, 89, 562–570. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Shi, F.; Hu, S.; Jiang, S.; Liu, S.; Liu, D.; Tian, X. F/W co-doped SiO2-TiO2 composite aerogels with improved visible light-driven photocatalytic activity. J. Solid State Chem. 2019, 275, 8–15. [Google Scholar] [CrossRef]
- Liang, M.; Chen, J. Arylamine organic dyes for dyesensitized solar cells. Chem. Soc. Rev. 2013, 42, 3453–3488. [Google Scholar] [CrossRef] [PubMed]
- Venkateswararao, A.; JustinThomas, K.R.; Lee, C.P.; Li, C.T.; Ho, K.C. Organic dyes containing carbazole as donor and π-Linker: Optical, electrochemical, and photovoltaic properties. ACS Appl. Mater. Interfaces. 2014, 6, 2528–2539. [Google Scholar] [CrossRef]
- Wang, Z.; Lang, X. Visible light photocatalysis of dye-sensitized TiO2: The selective aerobic oxidation of amines to imines. Appl. Catal. B Environ. 2018, 224, 404–409. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, X.; Numata, Y.; Han, L. Highly efficient dye-sensitized solar cells: Progress and future challenges. Energy Environ. Sci. 2013, 6, 1443–1464. [Google Scholar] [CrossRef]
- Shalini, S.; Balasundaraprabhu, R.; Kumar, T.S.; Prabavathy, N.; Senthilarasu, S.; Prasanna, S. Status and outlook of sensitizers/dyes used in dye sensitized solar cells (DSSC): A review. Int. J. Energy Res. 2016, 40, 1303–1320. [Google Scholar] [CrossRef]
- Wongcharee, K.; Meeyoo, V.; Chavadej, S. Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Sol. Energ. Mat. Sol. C. 2007, 91, 566–571. [Google Scholar] [CrossRef]
- Maiaugree, W.; Lowpa, S.; Towannang, M.; Rutphonsan, P.; Tangtrakarn, A.; Pimanpang, S.; Maiaugree, P.; Ratchapolthavisin, N.; Sang-Aroon, W.; Jarernboon, W.; et al. A dye sensitized solar cell using natural counter electrode and natural dye derived from mangosteen peel waste. Sci. Rep. 2015, 5, 15230. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Jiang, L.; Li, Y.; Li, G.; Yang, Y.; He, J.; Wang, J.; Yan, Z. Highly efficient red cabbage anthocyanin inserted TiO2 aerogel nanocomposites for photocatalytic reduction of Cr(VI) under visible light. Nanomaterials 2018, 8, 937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanninger, S.; Lorenz, V.; Subhan, A.; Edelmann, F.T. Metal complexes of curcumin—Synthetic strategies, structures and medicinal applications. Chem. Soc. Rev. 2015, 44, 4986–5002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pröhl, M.; Schubert, U.S.; Weigand, W.; Gottschaldt, M. Metal complexes of curcumin and curcumin derivatives for molecular imaging and anticancer therapy. Coordin. Chem. Rev. 2016, 307, 32–41. [Google Scholar] [CrossRef]
- Ganesh, T.; Kim, J.H.; Yoon, S.J.; Kil, B.; Maldar, N.N.; Han, J.W. Photoactive curcumin-derived dyes with surface anchoring moieties used in ZnO nanoparticle-based dye-sensitized solar cells. Mater. Chem. Phys. 2010, 123, 62–66. [Google Scholar] [CrossRef]
- Lim, J.; Bokare, A.D.; Choi, W. Visible light sensitization of TiO2 nanoparticles by a dietary pigment, curcumin, for environmental photochemical transformations. RSC Adv. 2017, 7, 32488–32495. [Google Scholar] [CrossRef] [Green Version]
- Kushwaha, H.S.; Vaish, R. Enhanced visible light photocatalytic activity of curcumin-sensitized perovskite Bi0.5Na0.5TiO3 for rhodamine 6G degradation. Int. J. Appl. Ceram. Technol. 2016, 13, 333–339. [Google Scholar] [CrossRef]
- Subhan, M.A.; Saha, P.C.; Uddin, N.; Sarker, P. Synthesis, structure, spectroscopy and photocatalytic studies of nano multimetal oxide MgO∙Al2O3∙ZnO and MgO∙Al2O3∙ZnO curcumin composite. Int. J. Nanosci. Nanotechnol. 2017, 13, 69–82. [Google Scholar]
- Yan, Z.; Gong, W.; Chen, Y.; Duan, D.; Li, J.; Wang, W.; Wang, J. Visible-light degradation of dyes and phenols over mesoporous titania prepared by using anthocyanin from red radish as template. Inter. J. Photoenergy 2014, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dorian, A.H.H.; Sorrell, C.C. Sand supported mixed-phase TiO2 photocatalysts for water decontamination applications. Adv. Eng. Mater. 2014, 16, 248–254. [Google Scholar]
- Kibombo, H.S.; Zhao, D.; Gonshorowski, A.; Budhi, S.; Koppang, M.D.; Koodali, R.T. Cosolvent-induced gelation and the hydrothermal enhancement of the crystallinity of titania-silica mixed oxides for the photocatalytic remediation of organic pollutants. J. Phys. Chem. C 2011, 115, 6126–6135. [Google Scholar] [CrossRef]
- Lin, X.; Rong, F.; Ji, X.; Fu, D. Carbon-doped mesoporous TiO2 film and its photocatalytic activity. Micropor. Mesopor. Mater. 2011, 142, 276–281. [Google Scholar] [CrossRef]
- Shao, J.; Sheng, W.; Wang, M.; Li, S.; Chen, J.; Zhang, Y.; Cao, S. In situ synthesis of carbon-doped TiO2 single-crystal nanorods with a remarkably photocatalytic efficiency. Appl. Catal. B Environ. 2017, 209, 311–319. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Wang, S.; Li, L.; Liu, X. Influence of tunable pore size on photocatalytic and photoelectrochemical performances of hierarchical porous TiO2/C nanocomposites synthesized via dual-templating. Appl. Catal. B Environ. 2018, 224, 341–349. [Google Scholar] [CrossRef]
- Fu, X.; Yang, H.; Sun, H.; Lu, G.; Wu, J. The multiple roles of ethylenediamine modification at TiO2/activated carbon in determining adsorption and visible-light-driven photoreduction of aqueous Cr (VI). J. Alloys Compd. 2016, 662, 165–172. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Wu, Y.; Chen, J.; Zhao, J.; Jin, F.; Na, P. Carbon dots-TiO2 nanosheets composites for photoreduction of Cr(VI) under sunlight illumination: Favorable role of carbon dots. Appl. Catal. B Environ. 2018, 224, 508–517. [Google Scholar] [CrossRef]
- Janus, M.; Inagaki, M.; Tryba, B.; Toyoda, M.; Morawski, A.W. Carbon-modified TiO2 photocatalyst by ethanol carbonisation. Appl. Catal. B Environ. 2006, 63, 272–276. [Google Scholar] [CrossRef]
- Ren, Z.; Liu, X.; Chu, H.; Yu, H.; Xu, Y.; Zheng, W.; Lei, W.; Chen, P.; Li, J.; Li, C. Carbon quantum dots decorated MoSe2 photocatalyst for Cr(VI) reduction in the UV–vis-NIR photon energy range. J. Colloid Interface Sci. 2017, 488, 190–195. [Google Scholar] [CrossRef]
- Mohammad, N.J.; Mehdi, S.S.; Yang, J.K.; Gholami, M.; Farzadkia, M. Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite. J. Ind. Eng. Chem. 2015, 22, 317–322. [Google Scholar]
- Liu, X.; Pan, L.; Zhao, Q.; Lv, T.; Zhu, G.; Chen, T.; Lu, T.; Sun, Z.; Sun, C. UV-assisted photocatalytic synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI). Chem. Eng. J. 2012, 183, 238–243. [Google Scholar] [CrossRef]
- Li, Y.; Cui, W.; Liu, L.; Zong, R.; Yao, W.; Liang, Y.; Zhu, Y. Removal of Cr(VI) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction. Appl. Catal. B Environ. 2016, 199, 412–423. [Google Scholar] [CrossRef]
- Belisa, A.M.; Ridha, D.; Raquel, O.C.; José, M.L.; Rui, A.R.B.; Madalena, M.D.; José Carlos, B.L.; Vítor, J.P.V. Intensification of heterogeneous TiO2 photocatalysis using an innovative micro–meso-structured-reactor for Cr(VI) reduction under simulated solar light. Chem. Eng. J. 2017, 318, 76–88. [Google Scholar]
- Liu, F.; Yu, J.; Tu, G.; Qu, L.; Xiao, J.; Liu, Y.; Wang, L.; Lei, J.; Zhang, J. Carbon nitride coupled Ti-SBA15 catalyst for visible-light-driven photocatalytic reduction of Cr (VI) and the synergistic oxidation of phenol. Appl. Catal. B Environ. 2017, 201, 1–11. [Google Scholar] [CrossRef]
- Anderson, C.; Bard, A.J. Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials. J. Phys. Chem. 1997, 101, 2611–2616. [Google Scholar] [CrossRef]
- Jafry, H.R.; Liga, M.V.; Li, Q.; Barron, A.R. Simple route to enhanced photocatalytic activity of P25 titanium dioxide nanoparticles by silica addition. Environ. Sci. Technol. 2011, 45, 1563–1568. [Google Scholar] [CrossRef] [PubMed]
Samples | Crystalline Sizes (nm) | SBET (m2g−1) | Pore Volume (cm3g−1) | Pore Size (nm) | Eg (eV) |
---|---|---|---|---|---|
TS | 9.8 | 268 | 0.95 | 18.6 | 3.04 |
CTS (3) | 8.2 | 263 | 0.87 | 17.2 | 2.45 |
CTS (6) | 7.5 | 270 | 0.77 | 17.2 | 2.37 |
CTS (9) | 6.8 | 275 | 0.77 | 15.0 | 2.19 |
CTS (12) | 6.5 | 287 | 0.82 | 15.5 | 2.10 |
CTS (15) | 5.8 | 285 | 0.70 | 15.0 | 2.19 |
CT (12) | 11.5 | 134 | 0.46 | 15.8 | 2.78 |
Samples | Ti2p (%) | Si2p (%) | O1s (%) | C1s (%) |
---|---|---|---|---|
TS | 15.8 | 11.0 | 57.1 | 16.1 |
CTS (12) | 19.6 | 15.2 | 41.9 | 23.3 |
pH | 2 | 4 | 5 | 6 | 8 |
---|---|---|---|---|---|
Adsorption Yield after dark reaction (%) | 45.3 | 31.9 | 9.6 | 6.7 | 5.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; He, Z.; Li, M.; Zhang, L.; Luo, Y.; He, J.; Chen, Y.; Wang, J. Curcumin Doped SiO2/TiO2 Nanocomposites for Enhanced Photocatalytic Reduction of Cr (VI) under Visible Light. Catalysts 2020, 10, 942. https://doi.org/10.3390/catal10080942
Yan Z, He Z, Li M, Zhang L, Luo Y, He J, Chen Y, Wang J. Curcumin Doped SiO2/TiO2 Nanocomposites for Enhanced Photocatalytic Reduction of Cr (VI) under Visible Light. Catalysts. 2020; 10(8):942. https://doi.org/10.3390/catal10080942
Chicago/Turabian StyleYan, Zhiying, Zijuan He, Mi Li, Lin Zhang, Yao Luo, Jiao He, Yongjuan Chen, and Jiaqiang Wang. 2020. "Curcumin Doped SiO2/TiO2 Nanocomposites for Enhanced Photocatalytic Reduction of Cr (VI) under Visible Light" Catalysts 10, no. 8: 942. https://doi.org/10.3390/catal10080942
APA StyleYan, Z., He, Z., Li, M., Zhang, L., Luo, Y., He, J., Chen, Y., & Wang, J. (2020). Curcumin Doped SiO2/TiO2 Nanocomposites for Enhanced Photocatalytic Reduction of Cr (VI) under Visible Light. Catalysts, 10(8), 942. https://doi.org/10.3390/catal10080942